Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting
- Published
- Accepted
- Subject Areas
- Bioinformatics, Computational Biology, Microbiology, Infectious Diseases, Data Mining and Machine Learning
- Keywords
- machine learning, protein function, sequence analysis, virulence, ubiquitination
- Licence
- This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication. This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
- Cite this article
- 2018. Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting. PeerJ Preprints 6:e27292v1 https://doi.org/10.7287/peerj.preprints.27292v1
Abstract
Background. Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through structural and/or functional mimicry of host machinery. Many such effectors have been identified in a wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with eukaryotic ubiquitin E3 ligases.
Methods. To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences we have developed a machine learning approach, the SVM-based Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to sequence classification by introducing reduced amino acid (RAA) alphabet encoding for protein sequences.
Results. We found that 14mer peptides with amino acids represented as simply either hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. Recursive feature elimination was used to identify a parsimonious set of 100 RAA peptides that provided good discrimination, and these peptides were found to be located in functionally important regions of the proteins involved in E2 and host target protein binding.Our general approach enables construction of models based on other effector functions. We used SIEVE-Ub to predict seven potential novel E3 ligases from a large set of bacterial genomes. SIEVE-Ub is available for download at https://github.com/biodataganache/SIEVE-Ub
Author Comment
This is a submission to PeerJ for review.