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Background. Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they

have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through

structural and/or functional mimicry of host machinery. Many such effectors have been identified in a

wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with

eukaryotic ubiquitin E3 ligases.

Methods. To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences

we have developed a machine learning approach, the SVM-based Identification and Evaluation of

Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to

sequence classification by introducing reduced amino acid (RAA) alphabet encoding for protein

sequences.

Results. We found that 14mer peptides with amino acids represented as simply either hydrophobic or

hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a

receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3

ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was

0.82, demonstrating the effectiveness of our method at identifying novel functional family members.

Recursive feature elimination was used to identify a parsimonious set of 100 RAA peptides that provided

good discrimination, and these peptides were found to be located in functionally important regions of the

proteins involved in E2 and host target protein binding.Our general approach enables construction of

models based on other effector functions. We used SIEVE-Ub to predict seven potential novel E3 ligases

from a large set of bacterial genomes. SIEVE-Ub is available for download at

https://github.com/biodataganache/SIEVE-Ub[p]
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16 ABSTRACT
17 Background. Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they 

18 have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through 

19 structural and/or functional mimicry of host machinery. Many such effectors have been identified in a 

20 wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with 

21 eukaryotic ubiquitin E3 ligases. 

22 Methods. To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences 

23 we have developed a machine learning approach, the SVM-based Identification and Evaluation of 

24 Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously 

25 to sequence classification by introducing reduced amino acid (RAA) alphabet encoding for protein 

26 sequences. 

27 Results. We found that 14mer peptides with amino acids represented as simply either hydrophobic or 

28 hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a 

29 receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 
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30 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 

31 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. 

32 Recursive feature elimination was used to identify a parsimonious set of 100 RAA peptides that provided 

33 good discrimination, and these peptides were found to be located in functionally important regions of the 

34 proteins involved in E2 and host target protein binding. Our general approach enables construction of 

35 models based on other effector functions. We used SIEVE-Ub to predict seven potential novel E3 ligases 

36 from a large set of bacterial genomes. SIEVE-Ub is available for download at 

37 https://github.com/biodataganache/SIEVE-Ub. 

38

39 INTRODUCTION
40 Assignment of functional annotations for newly sequenced proteomes is accomplished largely through 

41 transference of annotations from existing proteins using sequence similarity. Many protein families exist 

42 that have shared sequence homology and functional annotation and new members can be identified 

43 through established models such as hidden Markov models (HMMs). However, there are many other 

44 groups of proteins that have closely related functions but diverse sequences. These groups can be 

45 described with multiple models that capture different regions of sequence space but may include members 

46 that don9t have sequence similarity with other members detectable by traditional sequence methods.

47

48 Standard methods for developing sequence-based models such as HMMs rely on sequence alignment of 

49 family members as a first step. Models are then constructed using variability at specific locations 

50 established from those alignments. If sequence alignment is not possible or results in poorly aligned 

51 sequences, robust models for functionally related proteins may not exist. In these cases machine learning 

52 methods can be used to group proteins with similar function together based on sequence-derived features 

53 that do not require alignment. Such applications have developed models for problematic protein functions 

54 such as multidrug antibiotic resistance transporters [1] by us, and DNA binding proteins [2], calmodulin-

55 binding proteins [3] and to identify subcellular localization [4] immunogenic regions of proteins [5], and 
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56 kinase specificity [6], by others. Our group previously developed a machine learning model to identify 

57 substrates of the bacterial type III secretion system, and this and similar models have been successful at 

58 identifying novel family members [7-11].

59

60 A versatile method for creation of sequence-based features for use in such models is the kmer approach, 

61 also known as string kernels. This method has been used in sequence analysis to identify distant 

62 homologs [12, 13],   nucleotide-based functional features [14], and structural folds [6], and to predict 

63 antibody epitopes [15]. A current limitation of this approach is computational. Since the alphabet used by 

64 amino acids is 20, the space of possible sequences of length k expands exponentially with k, rendering 

65 even shorter kmers of length 6 with 206 (64 million) possible features. Additionally, as kmers increase in 

66 length they become less common resulting in feature sets that are more distinct for each protein, and thus 

67 less likely to reveal underlying relationships. This problem can be addressed using mismatch kernels [13] 

68 and similar approaches, but remains a computational and pragmatic barrier. Here we report the use of a 

69 kmer-based approach to identification of novel ubiquitin E3 ligases in pathogenic bacteria.

70

71 Ubiquitination is an abundant protein post-translation modification (PTM) in eukaryotic cells that 

72 controls many key pathways, including controlling protein turnover and innate immune signaling [16, 

73 17]. Ubiquitination is a dynamic and reversible PTM produced by the coordinated action of three 

74 enzymes: E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase., The 

75 removal of ubiquitin units from proteins is catalyzed by deubiquitinating enzymes [18, 19]. Eukaryotic E3 

76 ligases are mainly classified into two groups, HECT and RING, with different structural features and 

77 catalyic mechanisms. The first group is characterized by its HECT (homolog of E6-associated protein C-

78 terminus) domain and during catalysis forms an intermediate that receives ubiquitin from the E2 

79 conjugating enzyme before transferring to substrates [18]. The second type is characterized by the 

80 presence of a RING (Really Interesting New Gene) finger domain, which consists of a series of histidine 

81 and cysteine residues that coordinate binding to zinc ions. The RING-type E3 ligases do not form a 
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82 ubiquitin-linked intermediate, but promote the direct ubiquitin transfer from the E2 to the targeted 

83 substrate [18]. 

84

85 Although Gram-negative bacteria lack complete ubiquitination machinery, some pathogenic bacteria have 

86 evolved or acquired virulence effectors that can manipulate the process of ubiquitination through 

87 structural and/or functional mimicry [20, 21]. Although bacterial proteins that mimic the E1 and E2 

88 enzymes have not been identified, a number of bacterial and viral E3 ligases have been shown to be 

89 enzymatically active and to be important for virulence [20, 21]. These E3 ligases expand the number of 

90 sequence families from eukaryotic ubiquitin ligases [22, 23], with several displaying structural mimicry, 

91 i.e. similar structure and function arising from dissimilar sequence [20]. E. coli expresses a class of 

92 effector proteins named NleG-like proteins, after the first characterized member of this class,  that contain 

93 U-boxes, a domain similar to RING but lacking the coordination with zinc ions, and were shown to be 

94 enzymatically active E3 ligases [24]. Some Gram-negative bacteria have members of a class of E3 ligases 

95 named Novel E3 Ligases (NEL, not to be confused with NleG) that despite having a conserved cysteine 

96 residue at the catalytic site has little similarity to HECT domains [25]. Members of NELs include 

97 virulence factors, such as Shigella IpaH and Salmonella SspH1, SspH2 and SlrP [25-29]. 

98

99 Sequence family models have been developed as part of the popular Pfam database that can identify new 

100 members of the classes described above, but fail to identify E3 ligases that do not fall into these families. 

101 This lack of sequence similarity makes it difficult characterize new ubiquitin ligase mimics in bacteria or 

102 viruses. While experimental techniques are essential to definitively characterize a protein's function, they 

103 are time-consuming and expensive, making them unrealistic for genome-wide screening of effectors. 

104 Computational techniques are a better for choice for identifying the putative function of uncharacterized 

105 proteins, which can later verified by experimental assays. Since most protein structures have not been 

106 solved experimentally, computational techniques for identifying the function of uncharacterized protein 

107 rely upon the similarity of its amino acid sequence to that of a protein with a known function. 
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108

109 Here we present a novel method for alignment-free classification of proteins using kmers built from 

110 reduced amino acid alphabets. That is, physicochemical properties or other grouping strategies are used to 

111 group amino acids into sets that are then used to represent kmer feature sets. These feature sets are then 

112 used as input to an SVM using a family-wise cross-validation strategy and a classifying model is derived. 

113 Surprisingly, we found that an amino acid alphabet that represents residues as either generally 

114 hydrophobic or generally hydrophilic performed the best as features for classification yielding a 

115 classification receiver-operator characteristic (ROC) area under the curve (AUC) performance of 0.90. 

116 Feature selection identified several regions of similarity across disparate families of E3 ubiquitin ligases. 

117 We predict a number of novel E3 ubiquitin ligases from a large set of genomes with this novel approach.

118

119 MATERIALS & METHODS

120 Dataset

121 We identified a set of 168 confirmed bacterial or viral E3 ubiquitin ligase effectors from the UniProt 

122 database [30, 31]. Negative examples were 235 other bacterial effectors identified from literature [8, 20, 

123 24, 27, 30-44]. We include details on the dataset as Supplemental Data.

124

125 To provide predictions for relevant bacterial pathogens we downloaded a set of 171 genomes that are 

126 listed as human pathogens and are representative reference genomes from PATRIC [45]. This set 

127 comprises 480,562 protein sequences excluding all of the proteins used in the training set above.

128

129 Features

130 Every protein sequence used for either learning or prediction is encoded by counting occurrences of 

131 peptides of varying length in the sequence in a manner similar to the previously described string kernel. 

132 The possible number of peptides greater than 4 amino acids long is very large (204 = 160,000 peptides). 

133 We wanted to extend this approach to identify sequence patterns based on groupings of amino acids based 
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134 on physiochemical or other properties. We therefore also encoded sequences to reduce the sequence space 

135 using one of several encodings (Table 1.) Features were then generated for a range of different peptide 

136 lengths and peptides that were observed in fewer than 10 examples were removed from consideration.

137

138 Features for each protein are generated by considering all peptides of length k in a sequence, including 

139 overlapping peptides, encoding these (optionally) using the chosen encoding scheme, then counting the 

140 occurrences of the encoded peptide.

141

142 Data Partitioning

143 To remove bias created by having multiple examples with very similar features (i.e. closely related 

144 effectors from different organisms) we first partitioned the examples to identify/generate clusters of 

145 related effectors. In order to achieve this partitioning, we clustered the sequences based on NCBI 

146 BLASTP [46] similarity results. Parameters of BLASTP were set to their default values. Using a lower E 

147 value threshold (for example, E = 0) groups sequences more tightly and thus results in clusters that are 

148 likely to be more similar to another cluster and thus represent a generous division of families for the 

149 classification task using our cross-validation approach (see below). Conversely, higher E value thresholds 

150 (for example, E = 0.01) yield broader, more general clusters that are less likely to be similar to any other 

151 clusters, and thus represent a conservative division of families for our classification task. We used a more 

152 conservative threshold to group the set of 407 proteins into 172 clusters of loosely related protein 

153 sequences. We examine the effect of varying the BLAST E-value threshold on the sizes of the generated 

154 protein families (Supplemental Figure 1).

155

156 Cross Validation

157 Cross validation (CV) is widely used to test the performance of a classification scheme on a given dataset. 

158 The entire dataset is partitioned into several non-overlapping folds. These folds are used as test sets. The 

159 corresponding training set for a particular fold consists of the remainder of the dataset. Each iteration of 
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160 cross validation involves using a training set to generate a model and testing that model on the 

161 corresponding test set. This process is repeated until every fold has been tested.

162

163 The experimental setup of our study uses a variant of CV called Family-Wise Cross Validation (FWCV) 

164 to judge the performance of our classifier. FW places all the samples belonging to a particular cluster in a 

165 single test set, while the classifier is trained using the remaining data. This prevents model overfitting by 

166 reducing the trivial similarities between testing and training sets (i.e. those similarities based on 

167 traditional sequence similiarity).

168

169 The Support Vector Machine (SVM) determines the optimally separating hyperplane between two sets of 

170 points in high-dimensional feature space each belonging to a different class [47]. We utilized the radial 

171 kernel from the e1071 R library in our implementation.

172

173 The area under the curve (AUC) and receiver-operator characteristic curve (ROC) calculation was 

174 performed using the R library pROC.

175

176 Feature Selection 

177 Feature selection was accomplished using SVM Recursive Feature Extraction (SVM-RFE). We can 

178 obtain an ordering of the features using the absolute value of the entries of the SVM weight vector w. 

179 Each recursive feature elimination iteration involves eliminating the set of features that have the smallest 

180 absolute weight wi until k features remain. 

181

182 Implementation Details and Availability

183 Feature generation from sequences is performed using a standalone Python script. Training and validation 

184 of models was performed in R. The SVM-RFE algorithm used by SIEVE-Ub was implemented in R as 

185 described by GIST-RFE [48, 49]. 
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186

187 Code for the algorithm and datasets used for training are available at 

188 https://github.com/biodataganache/SIEVE-Ub.

189

190 RESULTS
191 Known ubiquitin ligases fall into one of several sequence families, HECT, RING, and NEL, each of 

192 which can be identified using existing hidden Markov models (HMMs) from the Pfam database 

193 (PF00632, PF13639, PF14496). Additionally, sequence-based models exist for AvrPtoB (PF09046) and 

194 BRE1 (PF08647), which represent distinct E3 ubiquitin ligase families, and SopA (PF13981), which is a 

195 HECT-like domain. We analyzed the assembled sequences using the Pfam database and identified 

196 members of all these families (Supplemental Data). We note that each of these Pfam families map to a 

197 different sequence cluster identified by BLAST, though NEL and RING are broken into more than one 

198 sequence cluster each. The family with the most representation in our set of positive examples is the NEL 

199 family with 102 members. Taken as a whole the nine Pfam models achieve an accuracy of 95% and a 

200 precision of 98% for prediction of E3 ubiquitin ligases from the background of other virulence effectors, 

201 with 14 known ubiquitin ligases being missed. It is important to note that neither the BLAST approach we 

202 took to identify sequence clusters nor the individual Pfam models provided any predictive ability across 

203 sequence families. Our goal is to develop a generalized, alignment-free approach to predict members of 

204 this functional family capturing those not identifiable through a sequence-based model such as those in 

205 Pfam, and providing the potential to identify novel functional family members.

206

207 Dissimilar ubiquitin ligases can be detected using reduced amino acid (RAA) peptides 

208 To provide feature sets that were specific enough to capture relationships between functionally similar 

209 proteins, yet general enough to identify regions of similarity between divergent sequences we adapted the 

210 kmer approach. Our novel extension translates each amino acid in the sequence to a smaller number of 

211 groups based on physicochemical properties or other arbitrary grouping methods- a reduced amino acid 
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212 (RAA) alphabet. Initially we chose three reduction mappings based on previously reported approaches: 

213 hydrophobicity (RAA1), standard physiochemical properties (RAA2), and solvent accessibility (RAA3) 

214 [9, 50]. The groups are listed in Table 1. 

215

216 The set of positive and negative examples for E3 ubiquitin ligases was encoded using each of the RAAs 

217 and the native sequence, and peptide kmers of various lengths were counted for each. Peptides present in 

218 fewer than 10 examples were excluded from further consideration. Each dataset was then split into 

219 independent training and testing sets on a sequence cluster-wise basis (that is, clusters of similar 

220 sequences as determined by BLAST were kept together in the training or testing set), based on a 

221 conservative cluster grouping (E < 1e-2.) Cluster-wise splits and associated training and testing were 

222 performed 100 times for each model and the score (SVM discriminant) for each example averaged. 

223 Average scores were used to determine ROC AUC for each model and results are presented in Table 2 

224 and Supplemental Figure 3. 

225

226 Surprisingly, the models using RAA1, a simple division of amino acids into hydrophobic and hydrophilic 

227 residues, performed the best for nearly all peptide lengths with a maximum AUC of about 0.90. The 

228 maximum AUC observed occurs with RAA1 and a peptide length of 14 (RAA1-K14) and so we focused 

229 on characterization of this model for the remainder of the paper. Our results indicate that a simple 

230 encoding of amino acids can be used to classify effectors with E3 ubiquitin ligase function from other 

231 effectors, and from other non-effector proteins in general (see Prediction of novel E3 ubiquitin ligase 

232 mimics, below), with good confidence.

233

234 We hypothesized that the performance of the RAA1 is based on accurately representing the pattern of 

235 hydrophobic and hydrophilic residues in kmers. To examine this hypothesis we applied a family-wise 

236 cross-validation approach using ten alphabets where residues had been randomly assigned to either the 

237 hydrophobic or hydrophilic groups preserving the overall balance of hydrophobic to hydrophilic residues 
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238 in the resulting random alphabet (6:14; see Table 1). We compared the performance of these random 

239 binary RAAs at a kmer size of 14 with the true hydrophobic/hydrophilic RAA1-K14 also run ten times to 

240 show the variability in partitioning of training and testing sets inherent in our approach and show the 

241 results in Figure 1. In all cases the true RAA1 outperforms the randomized RAAs supporting our 

242 hypothesis though we note that there is a wide range of performances given with random binary RAAs. 

243 We believe this is due to some random assortments containing reasonable divisions of residues between 

244 hydrophobic and hydrophilic residues because of the very simple nature of this division.

245

246 SIEVE-Ub identifies biologically functional peptides

247 To identify a minimal set of features that are important for classification of E3 ubiquitin ligases from 

248 other effectors we used recursive feature elimination, a standard machine learning approach [8]. Briefly, a 

249 model is trained on all features, then weights for each feature are used to discard 50% of the features with 

250 the lowest impact on model performance. The remaining features are then used in another model training 

251 round in which this process is repeated until all the features have been eliminated. The training 

252 performance results from the RFE on the RAA1-K14 model are shown in Figure 2. We chose to keep 100 

253 features in our final analysis given that this provided good training performance (AUC >0.9), but retained 

254 a small portion of the initial features (3%). These features are provided as Supplemental Data along with 

255 their locations in each of the positive and negative examples in our analysis set. 

256

257 Though the E3 ligase examples used as our positive examples are diverse in terms of sequence many do 

258 fall into the families of E3 ligases described in the Introduction; HECT/U-box, RING, and NEL. We 

259 chose two example effectors to highlight the biological relevance of our findings. The NleL (HECT) and 

260 SspH2 (NEL) effectors have crystal structures available and in the case of NleL have also been solved in 

261 the presence of the E2 conjugating enzyme (UbcH7) [51]. In each of these structures a top-scoring 

262 peptide match was found close to the known (NleL) or presumed (SspH2) E2 binding site. The kmer 

263 peptides for both structures are directly C-terminal of the catalytic cysteine residue. The kmer peptides 
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264 matched amphipathic alpha helices with buried hydrophobic residues and exposed polar or charged 

265 residues, including a histidine for each (Figure 3). 

266

267 Since a limited number of structures are available for E3 ubiquitin ligases, and some of these structures 

268 cover only small regions of the proteins, this analysis was not possible for all examples. However, 

269 RING/U-box E3 ligases have a consensus motif with two repeated zinc fingers: Cx2Cx9-39Cx1-3Hx2-

270 3/Hx2Cx4-48Cx2C [20]. The first zinc finger has been found to be responsible for E2 binding and catalytic 

271 activity whereas there is evidence that the second zinc finger directs binding to host targets, such as Cdc2-

272 like kinase 1 (Clk1) in the case of the L. pneumophila LubX protein [52]. We found that top-scoring 

273 peptides from our model matched the second zinc finger sequences for several RING/U-box E3 ligases 

274 including the LubX protein and the herpesvirus ICP0 protein, suggesting that these peptides participate in 

275 interactions with the host target.

276

277 Prediction of novel E3 ubiquitin ligase mimics

278 To predict novel E3 ubiquitin ligase mimics in a larger set of sequences we applied the model described 

279 above (kmer 14 in RAA1, top 100 most important features) to a set of over 400,000 proteins from 

280 representative human pathogens obtained from the PATRIC database [45]. We further filtered this list 

281 using a version of our previously developed type III secreted effector prediction algorithm, SIEVE [8]. 

282 The combination of these two methods provides a list of predicted E3 ubiquitin ligases that are also 

283 predicted to be secreted via type III mechanism, though we note that such effectors could be secreted via 

284 other mechanisms.  These predictions are listed in Table 3.  Most of these top predictions are hypothetical 

285 proteins, with the exception of the RNA endonuclease, which could be a false positive barring any 

286 unusual and unexpected dual functionality. Though two of the predictions are quite short in length at 

287 around 40 amino acids, this is consistent with the length of, for example, the RING zinc finger motif of 

288 E3 ubiquitin ligases, so these predictions should not be immediately discarded, though the involvement of 

289 additional protein machinery would be stipulated if a novel E3 ligase were to be presumed to at least have 
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290 similar requirements for binding the ubiquitin and host target substrates.

291

292 DISCUSSION

293 We note that the intent of our study was to develop a model that could identify E3 ubiquitin ligases based 

294 on protein sequence with reasonable accuracy and precision, which we demonstrated clearly. As such, we 

295 did not fully explore the range of possible parameters such as choice of SVM kernel, or other machine 

296 learning approaches that would work on our input features, to determine an optimal model. Our results 

297 show that we can use models based on highly divergent sequences to robustly predict E3 ubiquitin ligase 

298 function in bacterial and viral effectors. It is unclear how many E3 ubiquitin ligases that may exist but 

299 have not yet been discovered, and this question will only be answered through experimental validation of 

300 predictions made by our method, similar to the validation we have done for the original SIEVE [8].

301

302 CONCLUSIONS
303 The general approach we describe, using peptides with reduced amino acid alphabets as features for 

304 machine learning, could be easily applied to other problems of functional classification given appropriate 

305 positive and negative example sets. We show that this approach can be used to discriminate effectors with 

306 E3 ubiquitin ligase activity from other effectors with good confidence and present a single model that is 

307 able to identify E3 ubiquitin ligases from different sequence families. Importantly, development of this 

308 model does not require sequence alignment of any kind.  From this analysis we have presented an 

309 example of this approach identifying functionally important regions with dissimilar sequences, but similar 

310 structures. However, further work is necessary to explore the possibility that this is a more general 

311 property of the approach. This is the first algorithm dedicated to prediction of E3 ligase function in non-

312 eukaryotic proteins. In combination with our existing SIEVE algorithm for prediction of Type III secreted 

313 effectors our SIEVE-Ub algorithm can be used to predict novel effectors with E3 ligase activity as we9ve 

314 shown in Table 3. Combining this approach with type IV prediction algorithms would allow similar 

315 results for type IV secretion systems.
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Figure 1(on next page)

Amino acid reduction based on physicochemical properties is important.

Models were evaluated using the standard hydrophobic/hydrophilic reduction alphabet

(RED0) and randomly divided sets of amino acids (RND0) with a kmer length of 14.

Performance was evaluated using 100 fold family-wise cross validation and AUC. The plot

shows that a division of amino acids into hydrophobic and hydrophilic residues outperforms a

random division of amino acids.
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Figure 2(on next page)

Model performance with varying numbers of features.

Recursive feature elimination (RFE) was applied to all examples using 14mers and the RAA1

and AUC assessed for each model. The plot shows that very good performance can be

achieved with 100 features.
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Figure 3

Discriminating peptides in E3 ligase structures.

Ribbon cartoon diagrams of known bacterial ubiquitin E3 ligase mimics E. coliNleL and

SalmonellaSspH2 (NEL), as well as NleL homologue SopA from Salmonellawhich was not

identified by SIEVE-Ub but has sequence similarity at the site of the kmer peptide of NleL. In

NleL the kmer peptide is a helix (depicted as light blue/red spheres) that interacts alternately

with either E2 (in open form) or the hinge linking the N-term and C-term domains (in closed

form), as if mediating the two structural forms. For SspH2, there is no structure with bound

E2 available, but the helix is similarly positioned relative to the LRR-domain and the catalytic

Cys. The catalytic Cys in each structure near the N-term of the kmer helix is indicated as red

spheres. No structural information about a presumed ubiquitin binding site is available for

either of these structures.
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Table 1(on next page)

Reduced amino acid (RAA) encodings
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1 Table 1. Reduced amino acid (RAA) encodings

Name Groups Notes Reference

NAT

(Natural)

ACDEFGHIKLMNPQRSTVWY No encoding

RAA1

(Hydrophobicity)

SFTNKYEQCWPHDR

AGILMV

Hydrophilic

Hydrophobic

[9]

RAA2

(Physiochemical)

AGILMV

PH

FEY

NQST

DE

KR

CY

Hydrophobic

Hydrophilic

Aromatic

Polar

Acidic

Basic

Ionizable

[9]

RAA3

(Solvent 

accessibility)

CILMVFWY

AGHST

PDEKNQR

Low

Medium

High

[50]

RAA4

(Hydrophobicity 

and charge)

SFTNYQCWPH

AGILMV

KEDR

Hydrophobic

Hydrophilic

Charged

This study

RAA5

(Hydrophobicity 

and structure)

SFTNKYEQCWHDR

AILMV

PG

Hydrophilic

Hydrophobic

Structural

This study

2

3
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Table 2(on next page)

Best model performance
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1 Table 2. Best model performance

 

Kmer 

Length AUC

NAT 17 0.851

RAA1 14 0.903

RAA2 6 0.803

RAA3 8 0.742

RAA4 6 0.884

RAA5 13 0.814
2

3
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Table 3(on next page)

Proteins predicted to be similar to ubiquitin ligase mimic set.

*annotation based on sequence comparison only
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1 Table 3. Proteins predicted to be similar to ubiquitin ligase mimic set. *annotation based on 

2 sequence comparison only

3

Genbank ID

SIEVE 

score

SIEVE-Ub 

score Genome Length Gene Description

WP_012732629.1 0.50 0.82
Corynebacterium 

kroppenstedtii 360

hypothetical 

protein

WP_082022266.1 0.31 0.71 Rickettsia conorii 43

hypothetical 

protein 

ABE96403.1 0.30 0.87 Bifidobacterium breve 1021 rne

Ribonuclease E 

(EC 3.1.26.12)*

AMD88982.1 0.30 0.58 Desulfovibrio fairfieldensis 159

hypothetical 

protein

AMD99888.1 0.24 0.65 Actinomyces oris 428

GNAT family 

acetyltransferase*

KDS45810.1 0.23 0.87 Bacteroides cellulosilyticus 45

hypothetical 

protein

WP_012742696.1 0.21 0.65 Eubacterium rectale 551

Iron-sulfur 

flavoprotein 

multimeric 

flavodoxin WrbA*

4
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