

# Isolation, identification and molecular phylogenetic analysis of *Hyblaea puera* Nucleopolyhedrovirus

Saranya Vijay Krishnan Corresp., 1, Sajeev TV 1

<sup>1</sup> Department of Forest Entomology, Kerala Forest Research Institute, Thrissur, Kerala, India

Corresponding Author: Saranya Vijay Krishnan Email address: saranyasivadas89@gmail.com

Hyblaea puera (Lepidoptera: Hyblaeidae), is considered as a serious pest of teak in India and other tropical regions. It causes entire defoliation of teak trees and results in huge timber loss thereby decreasing forest productivity. Hyblaea puera Nucleopolyhedrovirus (HpNPV) is a baculovirus that has been employed in various parts of India as a bio-control agent against the pest H. puera. An unfeigned nucleopolyhedrovirus was isolated from the larvae of the moth, H. puera in Kerala, South India. Polh, Ief-8, pif-2 gene sequences were amplified by PCR with degenerate primers and extracted for phylogenetic analysis. Hyblaea puera Nucleopolyhedrovirus appeared to be a distinct species of Group II NPV alphabaculovirus. Polyhedrin coding region was characterized by nucleotide sequence analysis. To date, Polyhedrin is the first isolated and characterized gene of HpNPV. It indicated the presence of ORF comprising 741 nucleotides which encode 246 amino acids with a predicted molecular mass of 28 KDa. Phylogeny based on three conserved baculovirus genes showed the highest homology of HpNPV to Helicoverpa armigera NPV. These findings were hardened by restriction endonuclease analysis, even though some differences in restriction pattern were observed. The current study will encourage future efforts to improve the efficacy of HpNPV against its natural host.



- 1 Isolation, identification and molecular phylogenetic analysis of Hyblaea puera
- 2 Nucleopolyhedrovirus
- 3 Saranya Vijay Krishnan<sup>1</sup> and Sajeev TV<sup>1</sup>
- 4 <sup>1</sup>Department of Forest Entomology, Division of Forest Health, Kerala Forest Research Institute,
- 5 Peechi, 680653, Thrissur, Kerala, India
- 6 Corresponding author:
- 7 Saranya Vijay Krishnan
- 8 KFRI, Thrissur, Kerala, 680653, India
- 9 Email: saranyasivadas89@gmail.com)

11 Abstract

10

- 12 Hyblaea puera (Lepidoptera: Hyblaeidae), is considered as a serious pest of teak in India and
- other tropical regions. It causes entire defoliation of teak trees and results in huge timber loss
- 14 thereby decreasing forest productivity. *Hyblaea puera* Nucleopolyhedrovirus (HpNPV) is a
- baculovirus that has been employed in various parts of India as a bio-control agent against the
- pest H. puera. An unfeigned nucleopolyhedrovirus was isolated from the larvae of the moth, H.
- 17 puera in Kerala, South India. Polh, lef-8, pif-2 gene sequences were amplified by PCR with
- 18 degenerate primers and extracted for phylogenetic analysis. *Hyblaea puera*
- 19 Nucleopolyhedrovirus appeared to be a distinct species of Group II NPV alphabaculovirus.
- 20 Polyhedrin coding region was characterized by nucleotide sequence analysis. To date,
- 21 Polyhedrin is the first isolated and characterized gene of HpNPV. It indicated the presence of
- ORF comprising 741 nucleotides which encode 246 amino acids with a predicted molecular
- 23 mass of 28 KDa. Phylogeny based on three conserved baculovirus genes showed the highest
- 24 homology of HpNPV to *Helicoverpa armigera* NPV. These findings were hardened by
- 25 restriction endonuclease analysis, even though some differences in restriction pattern were
- observed. The current study will encourage future efforts to improve the efficacy of HpNPV
- 27 against its natural host.

29 Keywords: Nucleopolyhedrovirus, *Hyblaea puera*, Phylogeny, HpNPV, Baculovirus.

30 31



#### Introduction

| _ | 1 |
|---|---|
| ~ | - |
| J | J |

32

- 34 Baculovirus genomes are delineated by large circular double stranded DNA molecules,
- straggling from 80-180 kbp length [Miele et al.,2011; Monique & Vlak,2007; Zhu et al.,2014].
- 36 The family *baculoviridae* is stratified into four distinct genera based on the phylogeny and the
- 37 host specificities scilicet Alphabaculovirus (lepidopteran specific NPV), Betabaculovirus
- 38 (lepidopteran specific GV), Gammabaculovirus (hymenopteran specific NPV), and
- 39 Deltabaculovirus (dipteran specific NPV). Alphabaculovirus can be further indexed into Group I
- 40 NPV and Group II NPV under the basis of phylogenetic analyses [Bulach et al.,1999; Herniou et
- al.,2001; Jehle et al.,2006a; Zanotto, kissing&Maruniak,1993]. Till date, sixty-two baculovirus
- 42 genomes have been radically sequenced [NCBI GenBank May 2018]. Among those sequenced,
- 43 forty-two discern a kinship with *Alphabaculovirus*, fifteen establish a good rapport with
- 44 Betabaculovirus, three have been accorded to Gammabaculovirus, one is lone classified under
- 45 Deltabaculovirus and one belongs to an unclassified virus. A clique of thirty-seven core genes
- are extant in all baculoviruses sequenced until now [Miele et al., 2011; Zhu et al., 2014].

47

- 48 The combined sequences of conserved genes can be used to study molecular phylogeny which in
- 49 turn is a powerful tool to identify lepidopteran specific baculoviruses [Herniou et al.,2001;
- 50 Herniou et al., 2003; Jehle, 2004; Jehle et al., 2006a; Jehle et al., 2006b; Lange et al., 2004]. Earlier
- 51 phylogenetic analyses copiously pivoted on a single gene, but nowadays it is being gentrified by
- 52 combined gene sets. The verity is that polyhedrin is a chimeric gene that arises from
- recombination [Jehle, 2004]. Amongst the conserved genes-lef-8, pif-2 and pol h used for
- 54 phylogenetic analysis and species identification, *lef-8* and *pif-2* corroborated to be the bulk
- steadfast markers [Herniou et al.,2004; Van oers et al.,2004]. *Lef-8* gene encodes the largest
- subunit of RNA polymerase incumbent for late gene transcription [Acharya & Gopinathan, 2002;
- 57 Van oers et al., 2004]. Oral infectivity of the virus requires *pif-2* which is crucial for instigating
- an evolutionarily conserved complex on ODV surface alongside other noted proteins [ Peng et
- 59 al.,2012., Pijilman, Pruijssers & Vlak,2003]. Pol h, encodes for polyhedrin, a key protein of
- 60 occlusion body [Bideshi, Bigo&Federici, 2000 Zanotto, Kissing&Maruniak, 1993].



Hyblaea puera (order: Lepidoptera) is reviewed as a profound pest of teak, which feeds on 62 tender foliage of teak leaves, consequently precipitating conspicuous economic forfeiture on teak 63 productivity [Chandrasekhar et al., 2005; Nair & Sudheendrakumar, 1986]. This major pest is 64 prevalent in forests of India, Thailand, Bangladesh, South East Asia, Mexico and Northern 65 Queensland in Australia [Moraes & Maruniak, 1997; Nair & Sudheendrakumar, 1986; Cibrien et 66 al.,2015]. Tectona grandis is considered as an economically important timber indigenous to 67 India, Myanmar, Malaysia, Thailand, Laos and certain parts of Australia. Hyblaea puera 68 nucleopolyhedrovirus(HpNPV), an imminent biopesticide maneuvered in resistance to the teak 69 defoliator H. puera, is a part of the large family Baculoviridae [Biji, Sudheendrakumar & 70 Sajeev, 2006; Sudheendrakumar, Mohammed & Verma, 1988]. Molecular characterization of 71 HpNPV is still very much in its infancy. Even, the studies on its genomic sequence analysis is 72 73 totally lacking. In this paper, we characterized this virus(HpNPV) on a molecular basis and

sequenced three conserved baculovirus core genes. Its evolutionary relationship with other

NPV's was evaluated using these three core gene sequences, thereby resolving the phylogenetic

77 78

74

75

76

#### Materials and methods

position of HpNPV.

- 79
- 80 *Invitro rearing of Hyblaea puera larvae and isolation of the virus*
- First instar larvae of *H. puera* were collected from infested Palapilly and Nilambur forest areas.
- 82 The collected larvae were aseptically transferred into sterile glass bottles. In the laboratory, the
- larval rearing room was facilitated with a temperature of 28±4°C and relative humidity of
- 84 60±10%. HpNPV used in this study was obtained from the stock culture maintained in
- 85 Entomology laboratory of KFRI, Nilambur, Kerala. The virus was multiplied by infecting the
- 86 fourth instar *H. puera* larvae. Each larva was individually fed with HpNPV coated leaf discs (0.5
- 87 cm diameter) at a dosage of 10<sup>6</sup> POB's per larva. The larvae were then individually reared in
- rearing tubes(5.5x2.3cm) with a perforated lid on an artificial diet [Bindu,
- 89 Sajeev&Sudheendrakumar, 2014; Mathew et al., 1990; Sudheendrakumar, Sajeev& Biji, 2008] at
- 90 28±4°C with 60±10% humidity. [Bindu, Sajeev&Sudheendrakumar,2014; Mathew et al.,1990].



After 96 hours of post-infection, fully infected and dead larvae were retrieved and processed for 92 virus extraction. Extraction and purification of Polyhedral Occlusion Bodies (POB's) were 93 initiated by cutting the abdominal epithelium, filtering and centrifugation at 5000 rpm for 5 94 minutes. The entire process was repeated thrice. Purified POB's were then enumerated with the 95 aid of a Neubauer's haemocytometer (0.1 mm depth) under a light microscope. 96 97 To extract virus DNA, the purified polyhedral bodies were re-suspended in lysis buffer (10Mm 98 Tris-Hcl, 10 Mm EDTA, 1% SDS, 1M Na<sub>2</sub>CO<sub>3</sub>, p<sup>H</sup> 8.3) and incubated at 37°C overnight with 99 proteinase k (0.5 mg/ml). Further purification of viral DNA was carried out by phenol: 100 chloroform: isoamyl alcohol (25:24:1) extraction and precipitation. Purified viral DNA was 101 digested with Hind III restriction enzyme and DNA fragments were separated on 0.6% agarose 102 gel at 50V overnight. 103 104 PCR of Polyhedrin, lef-8 and pif-2 genes 105 Purified HpNPV DNA was used as a template for PCR reactions. To acquire a partial pol h gene 106 107 for nucleotide sequencing, the conserved domain was amplified with degenerate polh primer sets as described previously by Moraes and Maruniak [Moraes & Maruniak, 1997] under standard 108 109 PCR conditions. The reaction product was cloned into a pGEM-T easy plasmid (Promega). DNA sequence towards the 3'end was extended by three successive steps following linear 110 111 amplification, homopolymer tailing and PCR amplification. Linear amplification mix contained 2 µl of purified HpNPV DNA as the template, 2 pmol of Polyhedrin F2 primer (Table 1), 200 112 μM dNTP,1.5 mMMgCl<sub>2</sub> and 2.5 U of Taq DNA polymerase (Roche applied science) in a total 113 volume of 50 µl. Amplification protocol consisted of initial denaturation at 94°C for 5 min 114 115 followed by 25 cycles of 94°C for 30 seconds, 45°C for 30 sec and 72°C for 1 min followed by final elongation at 72°C for 10 min. The DNA amplicon was purified by reaction cleanup 116 kit(Qiagen). Amplicon thus obtained was subjected to homopolymer tailing, containing 20 µl of 117 final reaction mix (5ul amplicon, 400 U terminal transferase (Roche applied science), 1X 118 reaction buffer, 5 mM COCl<sub>2</sub> 0.5 mM dCTP). The reaction was incubated at 37°C for 15 minutes 119 after which 0.2 µM EDTA pH 8.0 (2µl) was added to stop the reaction. The DNA was further 120 purified by clean up kit (Qiagen) prior to final PCR amplification. 121 122



| 123 | PCR amplification contained a final 20 µl of reaction mix consisting of 50 pmol of each                      |
|-----|--------------------------------------------------------------------------------------------------------------|
| 124 | polyhedrin F3 primer and polyG primer (Table 1), 200M dNTP, 1.5 mM MgCl <sub>2</sub> , 2.5U OF Taq           |
| 125 | DNA polymerase and 2 µl of tailed fragments. The PCR protocol consisted of initial                           |
| 126 | denaturation at 94°C for 5 min followed by 35 cycles of 94°C for 30 secs, 55°C for 30 secs, 72°C             |
| 127 | for 1 min followed by final elongation at 72 °C for 15 minutes. Finally, the amplification                   |
| 128 | products were cloned into pGEM -T easy vector (Promega) to generate a library of fragments for               |
| 129 | sequencing [Bioserve Biotechnologies, Hyderabad]. The DNA sequence towards the 5' end of                     |
| 130 | polyhedrin gene was extended by the same method described above except for a change in                       |
| 131 | primer to polyhedrin R2 (Table 1) for linear amplification and polyhedrin R3 (Table 1) in final              |
| 132 | PCR amplification.                                                                                           |
| 133 |                                                                                                              |
| 134 | To complement the data set previously used for baculovirus phylogenetic analyses, lef-8 and pif-             |
| 135 | 2 gene sequences were obtained by degenerate primer sets (Table 1) as described by Herniou et                |
| 136 | al [Herniou et al.,2004]. PCR reaction mix contained 30 ng of purified viral DNA, 1.5 mM                     |
| 137 | MgCl <sub>2</sub> , 200 μM dNTP's, 2.5U of Taq DNA Polymerase(Promega), 1X PCR buffer (Promega),             |
| 138 | $50\ pmol\ of\ each\ primer\ (Table\ 1)$ in a final volume of $50\ \mu l$ under standard PCR conditions. The |
| 139 | amplification products were 704 bp and 480 bp respectively.                                                  |
| 140 |                                                                                                              |
| 141 | Phylogenetic analysis                                                                                        |
| 142 | Since the two genes (lef-8 and pif-2) are congruent as suggested by previous reports, both can be            |
| 143 | concatenated for phylogenetic analyses [Herniou et al.,2001; Herniou et al.,2004]. The pol h                 |
| 144 | gene was analyzed separately since it is not congruent to other gene sets [Herniou et al.,2003b;             |
| 145 | Jakubowska, Vlak&Ziemmicka,2005]. Pol h, lef-8, pif-2 gene sequences from other                              |
| 146 | baculoviruses were obtained from GenBank and used for phylogenetic analysis (Table 2).                       |
| 147 | Multiple sequence alignments were generated using ClustalX. Phylogenetic trees were                          |
| 148 | constructed using the Maximum Likelihood(ML) method in PAUP* version 4.0                                     |
| 149 | [Swofford,2001]. The robustness of tree topologies was evaluated by bootstrap analysis with                  |
| 150 | 1000 replicates. All the three genes were found suitable for phylogenetic analysis because of the            |
| 151 | sequence availability for most baculoviruses.                                                                |
| 152 |                                                                                                              |
| 153 | Results                                                                                                      |



154 Gene sequencing, polyhedrin characterization and phylogenetic analysis 155 To determine the taxonomic status of HpNPV, three commemorated baculovirus genes pol h, lef-156 8 and pif-2 genes were amplified, sequenced and analyzed phylogenetically. Partial sequences of 157 lef-8 and pif-2 obtained after degenerate PCR primers (Table 1) were deposited in GenBank 158 under accession numbers MH254887 and MH362814 respectively. BLAST homology searches 159 for lef-8 and pif-2 genes revealed the highest (100%) homology with Helicoverpa armigera NPV 160 (HearNPV) at the nucleotide level. Translated BLAST provided the result of 100% amino acid 161 sequence identity. The concatenated lef-8 + pif-2 phylogenetic analysis which contains only fully 162 sequenced lepidopteran NPV's clearly placed HpNPV among group II NPV's (Figure 1A). The 163 combined lef-8+pif-2 tree provides greater resolution with high bootstrap support (100%), but 164 greater than 98% in most cases for the elementary relationships of NPV's. The combined 165 analysis of lef-8 and pif-2 amino acid sequences provides insights into relatedness of baculovirus 166 genomes [George, Martin & David, 2015]. From this phylogenetic analysis, it can be concluded 167 that sequences of both these genes from HpNPV showed the closest relationship to H. armigera 168 169 NPV(HearNPV), which is a member of group II lineage supported by high bootstrap scores. 170 171 However, since polyhedrin sequences are available for a majority of the NPV's sequenced till date, HpNPV polyhedrin gene (pol h) was characterized. Therefore, the sequence of 1398 bp 172 173 DNA fragment (GenBank accession no:MH719085), flanking the entire coding region was determined. PCR amplification products were obtained with polyhedrin degenerate primers 174 (Table 1) and sequenced (GenBank accession no: MH254886). The sequence was extended on 175 both the ends by DNA walking using HpNPV polyhedrin specific primers (Table 1) thereby 176 177 generating the library of fragments covering the flanking region. 178 179 *Nucleotide sequence analysis of polyhedrin* 180 Nucleotide sequence analysis of pol h gene indicated the presence of an open reading frame of 181 182 741 nucleotides encoding 246 amino acid residues with a predicted molecular mass of 28.9 KDa. The upstream sequence of the translation initiation site contains a putative baculovirus late 183 promoter element ATAAG at position -73 to -69. It was demonstrated that the pentanucleotide 184



| 185 | ATAAG is comprehensively located 100 nucleotides upstream to start codon and are highly                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 186 | conserved among insect baculovirus Polyhedrin promoters [Van oers et al.,2004; Parin et                                                 |
| 187 | al.,2008]. The isolated pol h gene also has an AT-rich region downstream to the stop codon TAA                                          |
| 188 | in the 3' noncoding region. It is assumed that the T-rich sequence is essential for termination and                                     |
| 189 | polyadenylation [ Parin et al., 2008]. Furthermore, this AT-rich region is highly conserved among                                       |
| 190 | insect baculovirus polyhedrin promoters [Rohrmann,1986]. Moreover, the coding portion of                                                |
| 191 | HpNPV is not interrupted by introns. The salient elements of eukaryotic gene promoters                                                  |
| 192 | analogous to the consensus sequence TATA and CCAAT boxes were also located in the 5'                                                    |
| 193 | flanking region of the HpNPV pol h gene. The TATA box with DNA sequence, GTATAA was                                                     |
| 194 | found 245 nucleotides upstream from the start codon. In addition, two more TATA sequences,                                              |
| 195 | ATAAAG and TAAATA were also observed at position -120 and -14 respectively. An extra set                                                |
| 196 | of CCAAT sequence was recognized some 186 nucleotides upstream to the transcription start                                               |
| 197 | site. Notwithstanding the role of any of the eukaryotic promoter signals noted above is merely                                          |
| 198 | speculative and should be figured through transcriptional studies.                                                                      |
| 199 |                                                                                                                                         |
| 200 | Amino acid sequence analysis                                                                                                            |
| 201 | Amino acid sequence analysis revealed that polyhedrin is a 246-amino acid peptide with a                                                |
| 202 | molecular weight of 28.9 KDa. It has an aliphatic index of 78 and hydropathicity around -0.5.                                           |
| 203 | Since the number of positively and negatively charged residues are roughly equivalent, the                                              |
| 204 | protein can be considered as relatively stable. Although several potential motifs for N-                                                |
| 205 | glycosylation and O-glycosylation were found in HpNPV polyhedrin, proteins without signal                                               |
| 206 | peptide are unlikely to be exposed to those post-translational modifications. (www.cbs.dtu.dk)                                          |
| 207 |                                                                                                                                         |
| 208 | It is quite interesting to detect one more prominent open reading frame of 168 nucleotides                                              |
| 209 | encoding 55 amino acids with a predicted molecular mass of 6.2 KDa in the complementary                                                 |
| 210 | strand. BLAST analysis revealed a striking similarity to ChchNPV with 100% homology. We                                                 |
| 211 | have also noted 96% and 87% homology with PsinNPV and TnNPV respectively. The latter                                                    |
| 212 | analysis reported it to be a viral capsid protein. Furthermore, this hypothetical protein of 55                                         |
| 213 | amino acids tends to be an intrinsically disordered protein with a higher proportion of                                                 |
| 214 | hydrophilic, charged residues ( <a href="http://iupred.elte.hu/">http://iupred.elte.hu/</a> ). Our predicted hypothetical protein lacks |
| 215 | any tryptophan, tyrosine and cysteine residues which render it invisible under UV-                                                      |
|     |                                                                                                                                         |



spectrophotometry. Nevertheless, extensive studies are needed to determine whether the 216 observed protein is just a part of the structural gene. Such studies are now in progress. 217 218 Phylogenetic analysis 219 Phylogenetic analysis of the Polyhedrin sequence placed HpNPV in Group II NPV's. The GC 220 content of pol h appeared to be 38%, in contrast to 38.9% for HearNPV. The phylogeny (pol h 221 tree) shows a highly supported group (Fig. 1B), comprising HearNPV and BufuNPV. However, 222 only the Polyhedrin sequence is available for the latter virus, further studies with other genes are 223 required to confirm the ancestry of these two baculoviruses. 224 225 Restriction analysis 226 227 The restriction enzyme analysis with HindIII was performed for HpNPV and H. armigera NPV (strain kindly provided by TNAU, Coimbatore). The Hind III restriction pattern (Fig. 2) was 228 229 used to estimate the genome size (Table 3) which appears to be approximately 138 kbp. The restriction profile of HpNPV was almost identical to H. armigera NPV (Fig. 2). This result 230 231 supports the contention that HpNPV is closely related to H. armigera NPV, representing a distinct species of alphabaculovirus. 232 233 **Discussion** 234 235 The size of HpNPV DNA was estimated to be 138 kbp by restriction endonuclease analysis (Fig. 236 2, Table 3). Even though the isolation of HpNPV was previously reported, knowledge of its 237 genomic sequence is embryonic and not proclaimed yet. The restriction profile for a baculovirus 238 239 is apparently copper-bottomed and hence milked to draw a distinction between closely related species [Woo et al., 2006]. A group of researchers from Kerala Forest Research Institute (KFRI) 240 has patented a coherent composition of biopesticide widely acknowledged as HpNPV. HpNPV is 241 contemplated as one of the swiftest acting insect viruses as it subjugates wholly seventy-two 242 hours to liquidate the larvae 243 [Bindu, Sajeev & Sudheendrakumar, 2014; Biji, Susheendrakumar & Sajeev, 2006; Sudheendrakumar, 244 Sajeev&Biji,2008;Sudheendrakumar,Mohammed&Verma,1988]The revelation of HpNPV as a 245 potent biopesticide was a quantum leap in the field of Hyblaea management research 246



| 247 | [Sudheendrakumar, Mohammed & Verma, 1988]. Since then the teak plantations in Kerala endured         |
|-----|------------------------------------------------------------------------------------------------------|
| 248 | extortionate diminution owing to this pest [Chandrasekhar et al.,2005; Nair &                        |
| 249 | Sudheendrakumar,1986]. It was probed that polyhedrins are perpetuated in all lepidopteran            |
| 250 | NPV's which shares almost 85 to 90% amino acid homology [Rohrmann,1986; Woo et al.,2006].            |
| 251 | HpNPV is a protein of 246 amino acid residues that in fact resemble other NPV's as well. It only     |
| 252 | differs at position 106 when compared to H. armigera NPV polyhedrin which might be the               |
| 253 | repercussion of point mutation. Evolutionary homology is generally analyzed by comparison of         |
| 254 | DNA and protein sequences. Besides, amino acid sequence is the key to explore protein structure      |
| 255 | and function in the cell. Hence amino acid sequence analysis forms a vital part of post- genomic     |
| 256 | studies. The stability of a protein is greatly contributed by the participating amino acid residues. |
| 257 | This accounts for the higher stability of polyhedrin. The greater the disorder promoting amino       |
| 258 | acids, greater the instability. Such proteins are called as intrinsically disordered proteins(IUP);  |
| 259 | which may be short or long. Short disordered proteins around 50 amino acids tend to participate      |
| 260 | in metal ion binding, ion channels, signal transduction and even regulate GTPase functions.          |
| 261 | However, there are shreds of evidence that they play a significant role in evolution as well [       |
| 262 | Robin et al.,2014]. The predicted hypothetical protein is one among the short disordered IUP's.      |
| 263 |                                                                                                      |
| 264 | Phylogenetic analysis evinced that HpNPV accords to the group II NPV's, encompassing a               |
| 265 | pristine and unique species of alphabaculovirus. The proportion of GC content ranges from 33 to      |
| 266 | 58.9% in group II NPV's whereas in group I NPV it varies from 36 to 55.9% [Miele et al.,2011].       |
| 267 | It is not essential that $pol h$ tree topologies should invariably replicate with the concatenated   |
| 268 | sequences topologies that entails complementation from the other gene phylogenies also               |
| 269 | [Jehle,2004; Jehle et al.,2006b]. Here, we report that HpNPV pol h phylogeny locales this virus      |
| 270 | among group II NPV's, which is staunchly bolstered by combined lef-8 and pif-2 sequence              |
| 271 | analysis. Moreover, the relatedness of baculovirus is materially resolved by colligating lef-8/pif-2 |
| 272 | amino acid sequences which are conserved in all baculoviruses sequenced till date [George,           |
| 273 | Martin & David, 2015]. As already mentioned, HpNPV is a part of the large family                     |
| 274 | baculoviridae. Core knowledge of nucleotide sequence helps in the enhancement of insecticidal        |
| 275 | activity of HpNPV. By unravelling the sequence information, phylogenetic analysis can be             |
| 276 | performed which sheds light into baculovirus evolution that infers in host-pathogen interactions [   |
|     |                                                                                                      |



| Jeme et al.,20000, Rommann,2011]. All these factors, undisputedly destow to the taxonomic           |
|-----------------------------------------------------------------------------------------------------|
| classification of the virus.                                                                        |
|                                                                                                     |
| Conclusion                                                                                          |
|                                                                                                     |
| In this study, we have shown that based on the three conserved gene sets, polh, lef-8 and pif-2,    |
| HpNPV can be clearly allocated to group II lineage of alphabaculovirus, with <i>H. armigera NPV</i> |
| as the close relative. These data sets were solidly underpinned by restriction enzyme analysis      |
| which was nearly cognate for HpNPV and Harmigera NPV. Knowledge of the taxonomic                    |
| position of HpNPV is a crucial element to promote its use in Integrated Pest Management (IPM).      |
| This study provided information for investigators focusing to enhance the potency of HpNPV          |
| against its natural host <i>H. puera</i> or expand viral host range of susceptible pests.           |
|                                                                                                     |
| Acknowledgements                                                                                    |
| All staff members of the Entomology Department in KFRI are acknowledged for their help and          |
| support throughout the project period. We especially thank Seema P Nair for critically reading      |
| the manuscript and Keith McIntosh for improving the use of English in the manuscript                |
|                                                                                                     |
| Competing interests                                                                                 |
| The authors declare that they have no conflict of interest.                                         |
|                                                                                                     |
| Author contributions                                                                                |
| Saranya Vijay Krishnan Conceived ad designed the experiments, performed the experiments,            |
| analyzed the data, wrote the paper, prepared tables and /or figures, Read and approved the          |
| manuscript.                                                                                         |
| TV Sajeev Conceived and designed the experiments, analyzed the data, Read and approved the          |
| manuscript.                                                                                         |
|                                                                                                     |
| DNA Deposition                                                                                      |
| The following information was supplied regarding data availability:                                 |
|                                                                                                     |



- 307 HpNPV Sequences were deposited in GenBank and available under the following accession
- 308 numbers: MH719085, MH2254886, MH254887 and MH362814.

309

310

311

#### References

- 1. Acharya A., Gopinathan K. 2002. Transcriptional analysis and preliminary characterization of
- 313 ORF Bm42 from *Bombyx mori* nucleopolyhedrovirus. Virology 299:213-224
- 2. Bideshi D. K., Bigot Y., Federici B. A.2000. Molecular characterization and phylogenetic
- analysis of the *Harrisina brillians* granulovirus granulin gene. Archives of Virology. 145:1933–
- 316 1945.
- 3. Bindu K. Jose, Sajeev T.V., Sudheendrakumar V.V. 2014. Role of protein and lipids in
- artificial diets of teak defoliator moth: Hyblaea puera. Journal of Entomology and Zoology
- 319 Studies 2(2): 97-100
- 4. Bulach D.M., Kumar C.A., Zaia A., Liang B., Tribe D.E. 1999. Group II
- 321 nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA
- polymerase gene sequences. Journal of Invertebrate Pathology 73: 59-73
- **5.** C.P.Biji, V.V.Sudheendrakumar, T.V.Sajeev. 2006. Quantitative estimation of *Hyblaea*
- 324 puera NPV production in three larval stages of the teak defoliator, Hyblaea puera (Cramer).
- Journal of Virological Methods 136(1-2):78-82 https://doi.org/10.1016/j.jviromet.2006.04.001
- 326 6.David K. Thumbi, Robert J. M. Eveleigh, Christopher J. Lucarotti, Renée Lapointe, Robert I.
- 327 Graham, Lillian Pavlik, Hilary A. M. Lauzon and Basil M. Arif. 2011. Analysis and
- Organization of the Orgyia leucostigma Nucleopolyhedrovirus Genome. Viruses 3: 2301-2327
- 329 doi: 10.3390/v3112301 ISSN 1999-4915
- 7. Garavaglia M.J., Miele S.A., Iserte J.A., Belaich M.N., Ghiringhelli P.D.2012. The ac53,
- ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae.
- 332 Journal of Virology 86: 12069–12079.
- 8. George F rohrmann, Martin A Erlandson, David A Theilmann .2015. A Distinct Group II
- Alphabaculovirus isolated from a peridroma species. Genome Announcement 3(2) e 00185-15
- 335 doi: 101128/ genome A.00185-15
- 9. Herniou E. A. 2003 Use of comparative genomics and phylogenetics to study the evolution of
- the Baculoviridae (PhD thesis). Centre for Ecology & Hydrology Imperial college London UK



- 10. Herniou E. A., Luque T., Chen X., Vlak J.M., Winstanley D., Cory J.S., O'Reilly D.R. 2001.
- Use of whole genome sequence data to infer baculovirus phylogeny. Journal of Virology 75:
- 340 8117-8126
- 11. Herniou EA, Olszewski JA, Cory JS, O'Reilly DR. 2003. The genome sequence and evolution
- of baculoviruses. Annual Review of Entomology 48:211–234
- 12. Herniou E.A, Olszewski J.A, O'Reilly D.R, Cory J.S. 2004. Ancient coevolution of
- baculoviruses and their insect hosts. Journal of Virology 78:3244-3251
- 13. Jakubowska A, Vlak J.M, Ziemnicka J. 2005. Characterization of a nucleopolyhedrovirus
- 346 isolated from the laboratory rearing of the beet armyworm spodoptera exigua in Poland. Journal
- 347 of Plant Protection Research 45: 4
- 14. Jehle J. A. 2004. The mosaic structure of the polyhedrin gene of the Autographa californica
- 349 nucleopolyhedrovirus (AcMNPV). Virus Genes 29: 5-8
- 350 15. Jehle J. A., Blissard G.W., Bonning. C., Cory J.S., Herniou E.A., Rohrmann G.F., Theilmann
- D.A., Theim S.M., Vlak J.M. 2006. On the classification and nomenclature of baculoviruses: a
- proposal for revision. Archives of Virology 151: 1257-1266
- 16. Jehle J.A., Lange M., Wang H., Hu Z., Wang Y., Hauschild R. 2006. Molecular
- 354 identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180-
- 355 193.
- 17. Lange M., Wang H., Zhihong H., Jehle J.A. 2004. Towards a molecular identification and
- classification system of lepidopteran specific baculoviruses. Virology 325: 36-47
- 18. Mathew G, Sudheendrakumar V.V., Mohandas K and Nair KSS.1990. An artificial diet for
- the teak defoliator Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Entomology 15(4): 159-
- 360 163
- 361 19. Miele S.A., Garavaglia M.J., Belaich M.N., Ghiringhelli P.D.2011.Baculovirus: molecular
- insights on their diversity and conservation. International Journal of Evolutionary Biology 2011:
- 363 379424.6
- 20. M.M. Van Oers, Elisabeth A. Herniou., Magda Usmany, Gerben J. Messelink, Just M. Vlak.
- 365 2004.Identification and characterization of a DNA photolyase- containing baculovirus from
- 366 chrysodeixis chalcites. Virology 330: 460-470
- 21. Monique M. van Oers, Just M. Vlak .2007. Baculovirus Genomics. Current Drug Targets Oct
- 368 8(10): 1051-1068



- 369 22. Moraes R. R., Maruniak J. E. 1997. Detection and identification of multiple baculoviruses
- using the polymerase chain reaction (PCR) and restriction endonuclease analysis. Journal of
- 371 Virological Methods 63: 209-217
- 372 23. N Chandrasekhar, TV Sajeev, VV Sudheendrakumar, Moinak Banerjee .2005. Population
- 373 dynamics of the Teak defoliator (Hyblaea puera Cramer) in Nilambur teak plantations using
- 374 Randomly Amplified Gene Encoding Primers (RAGEP). BMC Ecology. 5:1
- 375 https://doi.org/10.1186/1472-6785-5-1
- 24. Nair KSS, Sudheendrakumar V.V. 1986. The teak defoliator, *Hyblaea puera*: Defoliation
- 377 dynamics and evidence for short-range migration of moths. Proceedings of Indian National
- 378 Science Academy Part B Biological Science 95: 7-21
- 379 25. Parin Chaivisuthangkura, Chutithorn Tawilert, Thanawan Tejangkura, Sombat
- Rukpratanporn, Siwaporn Longyant, Weerawan Sithigorngul, Paisarn Sithigorngul. 2008.
- 381 Molecular isolation and characterization of a novel occlusion body protein gene from *Penaeus*
- 382 *monodon*nucleopolyhedrovirus. Virology. 381(2): 261-267
- 383 https://doi.org/10.1016/j.virol.2008.08.036
- 26. Peng K, van Lent J.W.M., Boeren S., Fang M., Theilmann D.A., Erlandson M.A., Vlak J.M.,
- Van Oers M.M. 2012. Characterization of Novel Components of the Baculovirus *Per*
- 386 Os Infectivity Factor Complex. Journal of Virology 86(9):4981-4988. doi:10.1128/JVI.06801-
- 387 11.
- 388 27. Pijilman G.P., Pruijssers A.J., Vlak J.M. 2003. Identification of pif-2, a third conserved
- baculovirus gene required for per os infection of insects. Journal of General Virology 84: 2041-
- 390 2049
- 391 28. Robin Van der Lee, Benjamin Lang, Kai Kruse, Jorg Gsponer, Natalia Sánchez de Groot,
- 392 Martijn.A. Huynen, Andreas Matouschek, Monika Fuxreiter, Madan.M. Babu. 2014. Intrinsically
- 393 Disordered Segments Affect Protein Half-Life in the Cell and during Evolution. Cell
- 394 Reports, 8(6), 1832–1844. http://doi.org/10.1016/j.celrep.2014.07.055
- 29. Rohrmann G. F. 1986. Polyhedrin structure. Journal of General Virology 67: 1499-1513
- 30. Rohrmann G.F. 2011. Baculovirus molecular biology, 2nd ed. NCBI, Bethesda, MD.
- 31. Sudheendrakumar V., Sajeev, T.V., and Biji C. 2008. A New Insect Rearing Container for in
- 398 vivo Mass Multiplication of NPV of Hyblaea puera. Journal of Biological Control, 22(1): 217-
- 399 219. doi:10.18641/jbc/22/1/40281



- 400 32. Sudheendrakumar V. V., Mohamed Ali M.I., Verma R.V. 1988. Nuclear polyhedrosis virus of
- the teak defoliator Hyblaea puera. Journal of Invertebrate Pathology 51: 307-308.
- 402 33. Swofford D L.2001.PAUP\*(Phylogenetic Analysis using Parsimony and other methods), 4<sup>th</sup>
- 403 ed. Sinauer Associates, Sunderland, MA.
- 404 34. V. C. Cibrián-Llanderal, H. González-Hernandez, D. Cibrián-Tovar, M. Campos-Figueroa,
- 405 H. de los Santos-Posadas, J. C. Rodríguez-Maciel and A. Aldrete .2015. Incidence of Hyblaea
- 406 puera (Lepidoptera: Hyblaeidae) in Mexico. Southwestern Entomologist. 40(2):441
- 407 doi:10.3958/059.040.0220
- 408 35. Woo S-D, Choi J.Y., Je Y. H and Jin B. R. 2006. Characterization of the Helicoverpa assulta
- 409 nucleopolyhedrovirus genome and sequence analysis of the polyhedrin gene region. Journal of
- 410 Biosciences 31: 329-338
- 36. Zanotto P. M., Kessing B. D., Maruniak J. E. 1993. Phylogenetic interrelationships among
- 412 baculoviruses: evolutionary rates and host associations. Journal of Invertebrate Pathology
- 413 62:147–164.
- 414 37. Zhu Z., Yin F., Liu X., Hou D., Wang J., Zhang L., Arif B., Wanh H., Deng F., Zhu Z. 2014.
- 415 Genome Sequence and Analysis of Buzura suppressaria Nucleopolyhedrovirus: A Group II
- 416 Alphabaculovirus. PLoS ONE 9(1): e86450.
- 417 doi: 10.1371/journal.pone.0086450



## Table 1(on next page)

PCR primer sequences used in this study.



### 1 Table 1: PCR primer sequences

| Name          | Oligonucleotide Sequence | <b>Product size</b> | Reference               |
|---------------|--------------------------|---------------------|-------------------------|
| Polyhedrin F1 | TAYGTGTAYGAYAACAAG       | 645 bp              | Moraes & Maruniak et al |
| Polyhedrin R1 | TTGTARAAGTTYTTCCAG       |                     |                         |
| Polyhedrin F2 | CAAGAATTCCATAATGTATACTCG | -                   | -                       |
| Polyhedrin R2 | TGTCTGCAGTAGGAACCAAACCG  |                     |                         |
| Polyhedrin F3 | TACTAAGTGGTGATTCGCGA     | -                   | -                       |
| Polyhedrin R3 | GTTGTCTAGGGGATCAGGA      |                     |                         |
| Lef-8 F1      | TTYTTYCAYGGNGARATGAC     | 704 bp              | Herniou et al           |
| Lef-8 R1      | GGNAYRTANGGRTCYTCNGC     |                     |                         |
| Pif-2 F1      | GGWNNTGYATNSGNGARGAYCC   | 480 bp              | Herniou et al           |
| Pif-2 R1      | RTYNCCRCANTCRCANRMNCC    |                     |                         |
| Poly G primer | TATAGGGGGGGGGGGG         | -                   | -                       |



# Table 2(on next page)

Outline of Baculovirus sequences used for phylogenetic analysis in this study



#### Table 2: Outline of Baculovirus sequences used for phylogenetic analyses in this study

| Name of Virus               | Abbreviation | polh        | lef-8        | pif-2       |
|-----------------------------|--------------|-------------|--------------|-------------|
| Adoxophyes honmai NPV       | AdNPV        | NP818648    | NP818698     | NP818742    |
| Adoxophyes orana NPV        | AdorNPV      | YP002300519 | YP002300564  | YP002300608 |
| Agrotis ipsilon NPV         | AgipNPV      | YP002268031 | YP0022680160 | YP002268072 |
| Agrotis segetum NPVA        | AgseNPVA     | YP529671    | YP529791     | YP529706    |
| Agrotis segetum NPVB        | AgseNPVB     | YP009112562 | YP009112680  | YP009112597 |
| Apocheima cinerarium NPV    | ApciNPV      | YP006607771 | YP006607790  | YP006607853 |
| Autographa californica MNPV | AcMNPV       | NP054037    | NP054079     | NP054051    |
| Bombyx mori NPV             | BmNPV        | AFJ06797    | AFN08967     | AIS92745    |
| Buzura suppressaria NPV     | BusuNPV      | YP009001778 | AIW63034     | AKN91074    |
| Busseola fusca NPV          | BufuNPV      | AAT10236    | -            | -           |
| Chrysodeixis chalcites NPV  | ChchNPV      | YP249605    | YP249641     | YP249752    |
| Clanis bilineata NPV        | ClbiNPV      | YP717539    | YP717570     | YP717645    |
| Ectropis obliqua NPV        | EcobNPV      | YP874194    | YP874225     | YP874299    |
| Euproctis pseudoconspersa   | EupsNPV      | YP002854611 | YP002854631  | YP002854731 |
| NPV                         |              |             |              |             |
| Helicoverpa armigera NPV    | HearNPV      | AC105102    | AEY77857     | AIG63176    |
| Hemileuca species NPV       | HeNPV        | YP008378219 | YP009165657  | YP008378325 |
| Hyphantria cunea NPV        | HycuNPV      | YP473189    | -            | -           |
| Lambdina fiscellaria NPV    | LafiNPV      | YP009134716 | YP009133306  | YP009133237 |
| Leucania separata NPV       | LeseNPV      | AAA99736    | YP758340     | YP758460    |
| Lymantria dispar MNPV       | LdMNPV       | -           | AIX47889     | AIX47957    |
| Malacosoma sp NPV           | MaspNPV      | -           | ANW12301     | ANW12330    |
| Malacosoma disstria NPV     | MadiNPV      | AAD00095    | -            | -           |
| Malacosoma neurista MNPV    | ManeNPV      | AAB31529    | -            | -           |
| Mamestra brassicae MNPV     | MabrNPV      | -           | AFP95852     | YP009011107 |
| Mamestra configurata NPVA   | MacoNPVA     | NP613084    | NP613224     | NP613131    |
| Mamestra configurata NPVB   | MacoNPVB     | NP689176    | NP689314     | NP689218    |
| Maruca vitrata NPV          | MaviNPV      | -           | YP950765     | YP950743    |
| Mythima unipuncta NPV       | MyunNPV      | AUV65260    | -            | -           |
| Operophtera brumata NPV     | OpbrNPV      | AUA60232    | AUA60270     | AUA60357    |
| Orgyia leucostigma NPV      | OrleNPV      | YP001650911 | YP001650955  | YP001651022 |
|                             |              |             |              |             |
| Peridroma NPV               | PeNPV        | YP009049827 | YP009049865  | YP009049856 |



| Plutella xylostella NPV      | PlxyNPV | ABE68393    | -           | -           |
|------------------------------|---------|-------------|-------------|-------------|
| Pseudoplusia includens SNPV  | PsinNPV | YP009116914 | -           | -           |
| Rachiplusia ou MNPV          | RoMNPV  | -           | AAN28015    | AAN28046    |
| Spodoptera exigua MNPV       | SpexNPV | NP037761    | CDG72453    | CDG72376    |
| Spodoptera frugiperda MNPV   | SpfrNPV | YP001036294 | ACA02670    | YP001036326 |
| Spodoptera litura NPVII      | SpliNPV | YP002332699 | YP002332815 | AAF72593    |
| Sucra jujuba NPV             | SujuNPV | YP009186692 | YP009186724 | YP009186804 |
| Thysanoplusia orichalcea NPV | ThorNPV | -           | YP007250419 | YP007250432 |
| Trichoplusia ni SNPV         | TnSNPV  | AAC64160    | YP308923    | YP309030    |
| Urbanus proteus NPV          | UrprNPV | YP009249983 | -           | -           |
|                              |         |             |             |             |

2



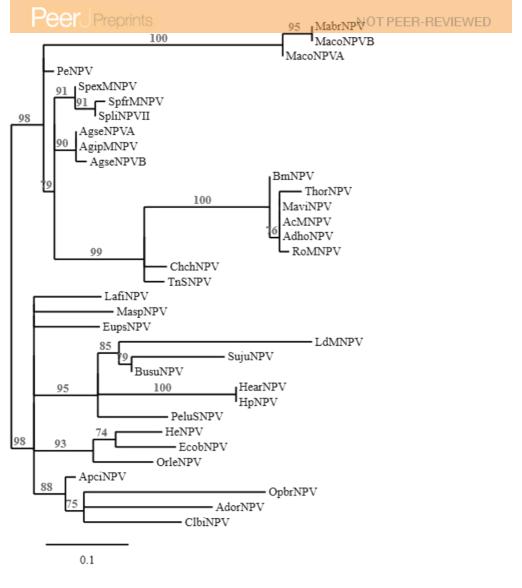
# Table 3(on next page)

Size of restriction fragments(kb) digested with Hind III.



#### 1 Table 3: Size of restriction fragments(kb) digested with Hind III

| Fragment | HpNPV | HearNPV |
|----------|-------|---------|
|          |       |         |
| A        | 23.1  | 23.1    |
| В        | 22.0  | 22.0    |
| C        | 14.2  | 15.2    |
| D        | 11.3  | 12.3    |
| E        | 9.4   | 9.4     |
| F        | 8.2   | 8.5     |
| G        | 8.0   | 8.0     |
| Н        | 7.5   | 7.5     |
| I        | 7.2   | 7.2     |
| J        | 7.0   | 7.0     |
| K        | 6.8   | 6.8     |
| L        | 6.5   | 6.5     |
| M        | 4.3   | 4.3     |
| N        | 2.0   | 2.0     |
| O        | 0.5   | -       |
|          |       |         |
| Total    | 138   | 139.8   |
|          |       |         |


2



### Figure 1(on next page)

Concatenated *lef-8* + *pif-2* tree.

The phylogenetic trees were based on the amino acid sequences obtained by Maximum Likelihood (ML) analysis for 1000 replicates. Numbers indicate bootstrap scores. Further, bootstrap scores lower than 50% are collapsed. GenBank accession numbers of virus sequences used are listed in the Table 2.





## Figure 2(on next page)

Polyhedrin (Pol h) tree.

Phylogenetic analysis based on the amino acid sequences obtained by ML method for 1000 replicates. Numbers indicate bootstrap scores. Bootstrap values less than 50% are collapsed. GenBank accession numbers of virus sequences used are listed in Table 2.



## Figure 3(on next page)

Restriction Digestion profile of HpNPV

Gel photograph showing Hind III digestion profiles of HpNPV and HearNPV; 1- HpNPV, 2- HearNPV; M- Marker  $\lambda$  DNA digested with Hind III digest. Electrophoresis carried out on a 0.6% agarose gel at 50V overnight to separate fragments.

