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We obtained a white-peel eggplant (L6-5) by EMS mutation in our previous study, whose
total anthocyanin content was significantly decreased as compared with that of wild-type (
WT). To analyse the anthocyanin biosynthesis mechanism in eggplants, we analysed the
eggplant peel by RNA-seq in this study. The transcript results revealed upregulation of 465
genes and downregulation of 525 genes in L6-5 as compared with the WT eggplant. A total
of 11 anthocyanin biosynthesis structure genes were significantly downregulated in L6-5
as compared with that in WT. Meanwhile, on the basis of the RT-PCR results of four natural
eggplant cultivars, the expression pattern of 11 anthocyanin biosynthesis structure genes
was consistent with the anthocyanin content. Thus, we speculated the anthocyanin
biosynthesis pathway in eggplant peel. The transcript and RT-PCR results suggested
positive regulation of MYB1, MYB108 and TTG8 and negative regulation of bHLH36 in
anthocyanin biosynthesis. This study enhanced our cumulative knowledge about
anthocyanin biosynthesis in eggplant peels.
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ABSTRACT

We obtained a white-peel eggplant (L6-5) by EMS mutation in our previous study, whose
total anthocyanin content was significantly decreased as compared with that of wild-type (WT).
To analyse the anthocyanin biosynthesis mechanism in eggplants, we analysed the eggplant peel
by RNA-seq in this study. The transcript results revealed upregulation of 465 genes and
downregulation of 525 genes in L6-5 as compared with the WT eggplant. A total of 11
anthocyanin biosynthesis structure genes were significantly downregulated in L6-5 as compared
with that in WT. Meanwhile, on the basis of the RT-PCR results of four natural eggplant
cultivars, the expression pattern of 11 anthocyanin biosynthesis structure genes was consistent
with the anthocyanin content. Thus, we speculated the anthocyanin biosynthesis pathway in
eggplant peel. The transcript and RT-PCR results suggested positive regulation of MYBI,
MYBI08 and TTGS and negative regulation of bHLH36 in anthocyanin biosynthesis. This study
enhanced our cumulative knowledge about anthocyanin biosynthesis in eggplant peels.

Key words: Anthocyanin biosynthesis pathway; Eggplant; EMS mutant; Transcriptomics.
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INTRODUCTION

An eggplant (Solanum melongena L.) is an important vegetable across the world. Several
researches have indicated that the colour of an eggplant is determined by the type and content of
anthocyanin in it (Nothmann et al. 1976). Anthocyanin makes the eggplant not only colourful
(Nifio-Medina et al. 2017) but also beneficial for human health when consumed (Jing et al. 2015).

There are six types of anthocyanin in plants, namely, pelargonidin, cyanidin, delphinidin,
peonidin, petunidin and malvidin (Chaves-Silva et al. 2018). However, the anthocyanin
biosynthesis pathway is conserved. The key anthocyanin biosynthesis structure gene had been
identified in several plants such as potato (Liu et al. 2015b; Zhang et al. 2017) and litchi (Zhang
et al. 2016a). After the catalysis of phenylalanine by phenylalanine ammonia lyase (PAL), the
biosynthesis was catalysed by chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-
hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H),
dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and 3-O-glycosyltransferases
(UFGT) step-wise in the cytoplasm (Bowles et al. 2005; Chaves-Silva et al. 2018; Tanaka &
Ohmiya 2008; Tanaka et al. 2008). Finally, anthocyanin is transported into the vacuole by GST-
ABC transport (Goodman et al. 2004), vesicle-mediated mass transport (Zhang et al. 2006) or
toxic compound extrusion transport (Marinova et al. 2007).

The anthocyanin biosynthesis structure genes were regulated by the MBW ternary complex
(R2R3-MYB, bHLH and WD40) (Liu et al. 2015a). In Arabidopsis, most of the R2ZR3-MYB
positive molecules regulated the structure gene expression. AtMYB75 regulated the expression of
PAL, C4H and 4 CL. AtMYB12, AtMYBI11 and AtMYB111 regulated the expression of AtCHS,
AtCHI and AtF3H (Liu et al. 2015a; Stracke et al. 2007). However, several MYBs were reported
to negatively regulate or repress the expression of anthocyanin biosynthesis structure genes. In
Arabidopsis, the MYBs can negatively regulate the DFR and UFGT expression (Matsui et al.
2008). The other way in which MYBs negatively regulate the expression of biosynthesis
structure genes was through the inhibition of the formation of the MBW complex (Matsui et al.

2008).
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Delphinidin-3-rutinoside was identified as the major anthocyanin in eggplant peels (Li et al.
2017; Todaro et al. 2009; Zhang et al. 2014). Several researches have indicated that the
anthocyanin biosynthesis structure genes CHS, DFR and ANS were involved in eggplant peel
anthocyanin biosynthesis. However, PLA may not be involved in anthocyanin biosynthesis (Xi-
Ou et al. 2017; Zhang et al. 2014). A total of 73 R2R3MYB genes were identified in eggplant
genome, and only SmMYBI and SmMYB6 positively regulated anthocyanin biosynthesis (Wang
et al. 2016). The overexpression of SmMYBI resulted in the significant accumulation of
anthocyanin, with most anthocyanin structural genes being dramatically upregulated (Zhang et al.
2016b). A recent study suggested that light can positively regulate the anthocyanin structural
genes and the R2R3-MYB expression and lead to anthocyanin biosynthesis (Li et al. 2018; Li et
al. 2017).

In our previous study, we obtained a white eggplant (L6-5) by EMS mutation (Xi-Ou et al.
2017). Meanwhile, the EMS-induced mutation in the L6-5 genome was analysed, with the results
showing that the Sme2.5 06210.1 g00004.1 (UFGT) nonsynonymous mutations may result in a
decrease in eggplant anthocyanin content (unpublished). In this study, the EMS mutant L6-5
(white) and the WT eggplant (purple) were used to analyse the anthocyanin biosynthesis
mechanism through transcriptome analysis. Our results showed that the anthocyanin structural
genes were dramatically downregulated in L6-5 and that the MYB and bHLH transcription
factors were also involved in the regulation of anthocyanin biosynthesis. This study identified the
key structure gene and regulation factors involved in eggplant peel anthocyanin biosynthesis and
provided a good foundation for breeding anthocyanin-rich eggplant cultivar.

MATERIAL AND METHODS
Plant material

The L6-5 eggplant was an EMS-induced mutant showing a white peel, and the WT eggplant
had a purple peel (Figure 1a). The four natural eggplant cultivar included one white peel (WS),
two purple peels (PS1 and PS2) and one purple black peel (PBS) (Figure 2a). The eggplants were
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97 transplanted in the field located in South Subtropical Crop Research Institute, Chinese Academy

98 of Tropical Agricultural Sciences.

99
100  Analysis of the total anthocyanin content
101 Total anthocyanin was detected by UV-Visible Spectroscopy according to a method
102  described elsewhere (Xi-Ou et al. 2017).
103 RNA extraction, library construction and transcriptome sequencing
104 The eggplant peel was collected at 15 days after self-pollination and then immediately
105 frozen in liquid nitrogen and stored at —80°C. Then, the total RNA was extracted using the
106 Column Plant RNAout2.0 Kit (Tian Enze Beijing). A total amount of 1 pg qualified RNA per
107 sample was used as the input material for the library preparation. The sequencing libraries were
108  generated using the VAHTS mRNA-seq v2 Library Prep Kit for Illumina® (Vazyme, NR601)
109 following the manufacturer’s recommendations. Clustering of the index-coded samples was
110 performed on the cBot Cluster Generation System (Illumina) according to the manufacturer’s
111 instructions. After cluster generation, the library preparations were sequenced on the Illumina
112 Hiseq X Ten Platform and 150-bp paired-end module.
113 Function annotation
114 After the low-quality reads were filtered, the clean reads were aligned to the eggplant
115 reference genome (Hirakawa et al. 2014) (http://eggplant.kazusa.or.jp/index.html) using TopHat
116  (v2.1.1) (Kim et al. 2013). The FPKM was calculated using Cuffdiff (v1.3.0) (Trapnell et al.
117 2012) to normalise the gene expression. Genes with the corrected p values of <0.05 and the
118 absolute value of log2 (fold change) <1 were assigned to be significantly differentially expressed.
119 The GO terms and KEGG pathway with corrected p values of <0.05 were considered to be
120 significantly enriched among the differentially expressed genes.
121 RT-PCR analysis
122 Approximately 1 pg of RNA was synthesised into cDNA with Oligo dT18 according to the

123  manufacturer’s instructions (Takara Dalian). Gene expression was analysed using Roche
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LightCycler 480 Thermal Cycler. About 10 pL of the reaction mixture contained 5 pL of 2X
Maxima SYBR Green RT-PCR Master Mix (ThermoFisher), 2 uL of primers, 1 uL of cDNA
and 2 puL of RNase-free water. The amplification programme was as follows: 95°C for 3 min,
95°C for 15 s, 60°C for 30 s and 72°C for 15 s, 45 cycles. The primers used in this study were
suggested by Zhang et al. (2014b), which are listed in Table S1. qRT-PCR analyses were
performed in three biological and two technical replications.

RESULTS

Anthocyanin content decreased significantly in the L6-5 mutant

The L6-5 mutant fruit is white, and WT is purple. The total anthocyanin content in the L6-5
mutant fruit peel was significantly decreased in comparison with that in the WT eggplant (Figure
1b). In addition, the total anthocyanin content of four natural eggplant cultivar was PBS > PS1 =
PS2 > WS (Figure 2b).

Differential expression genes (DEGs) between WT and L6-5

About 44—54 million clean reads of each sample were obtained, and 88%—-90% clean reads
were mapped to the reference genome (Table S2). A total of 465 genes were upregulated, and
525 genes were downregulated in L6-5 in comparison with that in WT (Figure 3 and Table S3).
There were a total of 381, 496 and 146 DEGs classified as ‘biological process’, ‘molecular
function’ and ‘cellular component’ (Figure 4). In ‘biological process’, the largest subcategory
was single-organism metabolic process (146 genes). In ‘molecular function’, the largest
subcategory was catalytic activity (275 genes). In ‘cellular component’, the largest subcategory
was extracellular region (30 genes).

A total of 657 DEGs were mapped to 107 pathways. The largest pathway was a metabolic
pathway containing 211 genes (Figure 5), followed by the biosynthesis of secondary metabolites
pathway (149 genes). The anthocyanin biosynthesis pathway contained four genes, the flavone
and flavonol biosynthesis pathway contained 19 genes, and ABC transporters pathway contained
eight genes.

The anthocyanin biosynthesis structure genes were downregulated in the L6-5 mutants
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A total of 11 structure genes were identified in the DESs, including 4 CL, CHI, CHS(2),

F3H, F3'5'H, DFR, ANS and UFGT(2) (Table 1). The 11 structure gene expressions were all
downregulated in L6-5 as compared with that in WT. Moreover, the expression level was
validated by RT-PCR (Figure 6). However, except that the 4 CL expression was not significantly

downregulated at P < 0.05, the other 10 gene expressions were significantly downregulated.

Furthermore, the 11 structure gene expression levels were analysed in the four natural

eggplant cultivars. The results revealed that those 11 structure gene expression levels were PBS >
PS1=PS2 > WS (Figure 7).

Transcription factors

The expression level of 45 transcription factors changed in L6-5 than in WT (Table 2). In

addition, the expressions of 19 of the 45 transcription factors were downregulated in L6-5,
whereas that of the other 26 transcription factors were upregulated when compared with that in
WT. The largest transcription factor was the ethylene-responsive transcription family, which
contained 11 numbers, followed by the bHLH transcription factor family, which contained eight
genes. There were a total of seven MYB transcription factors involved.

MYB transcription factor

A total of seven MYB transcription factors were up- or downregulated in L6-5 in

comparison with that in WT. The MYBI (Sme2.5 05099.1 g00002.1), MYBI08
(Sme2.5 00155.1_g00001.1), EFM (Sme2.5 06702.1_g00005.1) and MYBS5
(Sme2.5 07055.1 _g00007.1) expressions were downregulated in L6-5. However, the
expressions of APL (Sme2.5 03242.1 g00007.1), MYB 330 (Sme2.5 00805.1 g00004.1) and
MYBI12 (Sme2.5 11221.1 g00002.1) were upregulated in L6-5 than in WT (Figure 8).

The seven MYB protein sequences were aligned to the known MYBs, which were related to

anthocyanin synthesis (Liu et al. 2015a). The results showed that EFM, APL and MYB12 were
classified as negative regulators. However, MYBI, MYB108, MYB 330 and MYB5 were classified

as positive regulators (Figure 9).

To further analyse the MYB factor function in anthocyanin biosynthesis. The MYB
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expression levels were detected in four natural eggplant cultivars of different peel colours. The
results showed that the expressions of MYBI1, MYB108, EFM and MYBI2 were upregulated in
coloured eggplants (PS1, PS2 and PBS) than in colourless eggplants (WS). The MYB330
expression was PBS > PS2 = WS > PS1. The MYB expression was PBS > WS > PS1 = PS2. All
seven MYB expressions in PBS were higher than those in PS1, PS2 and WT (Figure 10).

bHLH transcription factor

There were eight bHLH transcription factors in the DEGs (Table 2). However, the RT-PCR
results  revealed  that  only TT8  (Sme2.5 29845.1 g00001.1) and T7TGI
(Sme2.5 00747.1_g00013.1) significantly decreased in L6-5 than in WT (Figure 11).

The expression of TT8 was upregulated in coloured eggplants when compared with that in
colourless  eggplants. = However, the expressions of 77G!/ and bHLH36
(Sme2.5 00735.1_g00008.1) in coloured eggplants were downregulated as compared with that
in  colourless eggplants. The bAHLHIS (Sme2.5 00407.1 g00003.1), bHLHY3
(Sme2.5 13712.1 _g00
001.1) and PHLH49 (Sme2.5 01808.1 g00003.1) expressions were WS = PBS > PS1 = PS2.
The expression of bHLH94 (Sme2.5 04383.1 g00001.1) was PBS > WS = PBS2 > PBSI,
whereas that of bDHLH71 was PBS > WS > PS1 > PS2 (Figure 12).

DISCUSSIONS

In the present study, the EMS mutant L6-5 (white) and the WT eggplants (purple) were
used to analyse the eggplant anthocyanin biosynthesis pathway. As compared with the natural
cultivar or other treatments, such as bagging, the eggplant material used in this study could
significantly eliminate the influence of the genetic background and environmental factors.

The anthocyanin biosynthesis pathway in plants is known (Tanaka & Ohmiya 2008; Tanaka
et al. 2008), and the structure gene and regulation factor had been cloned and analysed,
respectively (Dubos et al. 2010; Liu et al. 2015a). In the present study, 11 anthocyanin
biosynthesis structure genes were identified, including CHS (Sme2.5 01077.1_g00016.1 and
Sme2.5 02154.1_g00001.1), CHI (Sme2.5 01193.1_g00009.1), F3H
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(Sme2.5 00015.1_g00020.1), F3'5'"H (Sme2.5_04313.1_g0000

1.1), DFR (Sme2.5 01401.1 g00004.1), ANS (Sme2.5 01638.1 g00005.1) and UFGT
(Sme2.5 06210.1 _g00004.1 and Sme2.5 00228.1 g00013.1). The RNA-seq and RT-PCR
results revealed significantly decreased expressions in L6-5 than in WT. The RT-PCR of the
natural eggplant cultivar also revealed that these gene expression levels were on the order of
purple black > purple > white. Although upregulation of 11 structure genes was noted in
coloured eggplants than in colourless eggplants, the expressions of F3'5'H, DFR, ANS and
UFGTI (Sme2.5 06210.1 g00004.1) in coloured eggplants were strongly upregulated. This
result suggested that F3'5'H, DFR, ANS and UFGT (Sme2.5 06210.1 g00004.1) played more
important roles in the anthocyanin biosynthesis pathway. In our previous study, the SNP between
L6-5 and WT was analysed by whole genome re-sequencing, and the results revealed that only
UFGT (Sme2.5 06210.1 g00004.1) possessed a nonsynonymous mutation among the
abovementioned 11 structure genes (data unpublished). Thus, we speculated that the
nonsynonymous mutation of Sme2.5 06210.1 g00004.1 may result in decreased production of
anthocyanin.

Furthermore, anthocyanin biosynthesis of eggplants is reportedly affected by several
environmental factors, such as light (Li et al. 2018; Li et al. 2017). The RNA-seq results showed
that the 11 abovementioned anthocyanin biosynthesis structure genes were upregulated during
light-induced anthocyanin biosynthesis in eggplants (Li et al. 2018; Li et al. 2017). In conclusion,
we speculated the anthocyanin biosynthesis pathways in eggplants as shown in Figure 13 based
on literature review.

A total of 73 R2ZR3MYB genes were identified in the eggplant genome (Wang et al. 2016).
The MYBs played a key role in the regulation of anthocyanin biosynthesis (Dubos et al. 2010).
In the present study, only seven MYB genes were differentially expressed between WT and L6-5,
which may regulate eggplant anthocyanin biosynthesis. The RT-PCR results of the mutant and
four  natural  eggplant cultivars  suggested  upregulation of only MYBI
(Sme2.5 05099.1 g00002.1) and MYB108 (Sme2.5 00155.1 g00001.1) in coloured eggplants
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as compared with that in colourless eggplants. These results suggested that MYBI and MYB108
may positively regulate anthocyanin biosynthesis. MYBI1 positively regulates anthocyanin
biosynthesis, which was identified by the overexpression experiment (Jiang et al. 2016; Li et al.
2017; Zhang et al. 2016b; Zhang et al. 2014). Moreover, MYBI positively regulated the
expression of anthocyanin biosynthesis structural genes (Zhang et al. 2016b), and further
research showed that MYBI1 binds to the promoters of CHS and DFR (Jiang et al. 2016).
However, the function of MYB108 in the regulation of anthocyanin biosynthesis has not yet been
reported.

BHLH is another key transcription factor that regulates anthocyanin biosynthesis. MYBs-
TT8-TTG1 is well-known to form MBW for regulating the expression of anthocyanin
biosynthesis structure gene (Chaves-Silva et al. 2018). In the eight hHLH genes, only the
expression of 778 (Sme2.5 29845.1 g00001.1) was found to be upregulated in coloured
eggplants as compared with that in colourless eggplants. Moreover, TT8 was upregulated during
light-induced eggplant anthocyanin biosynthesis (Li et al. 2017). However, overexpression
anther 778-like (Sme2.5 00592.1 g00005.1) gene in tobacco leaves cannot accumulate
anthocyanin (Li et al. 2017). It has been indicated that 778-like (Sme2.5 00592.1 g00005.1)
may not be involved in eggplant anthocyanin biosynthesis. These results suggest that 778
(Sme2.5 29845.1 g00001.1) may positively regulate eggplant anthocyanin biosynthesis.
Interestingly, the expressions of 777G/ (Sme2.5 00747.1 g00013.1) and bHLH36
(Sme2.5 00735.1 _g00008.1) were downregulated in coloured eggplants than in colourless
eggplants of four natural eggplant cultivars. Moreover, 77G/ was upregulated in the transcript
date. Therefore, PHLH36 may negatively regulate anthocyanin biosynthesis.

CONCLUSIONS

The total anthocyanin content of L6-5 was significantly decreased when compared with that
of WT. A total of 465 genes were upregulated, and 525 were downregulated in L6-5 as compared
with that in WT. According to the transcript date and the RT-PCR results, we believe that the

anthocyanin biosynthesis pathway in eggplant peel and the MYBI, MYBI0S and TTGS8
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transcription factors positively regulate anthocyanin biosynthesis and that PHLH36 negatively
regulates anthocyanin biosynthesis.
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Figure 1

Figure 1 The phenotype and total anthocyanin content of WT and L6-5
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Figure 2

Figure 2 The phenotype and total anthocyanin content of four natural eggplant cultivars

A) The fruit colour of four natural eggplant cultivars and B) the total anthocyanin content of

four natural eggplant cultivars
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Figure 3

Figure 3 The volcano figure of a differentially expressed gene
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Figure 4

Figure 4 The GO analysis of a differentially expressed gene
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Figure 5

Figure 5 The KEGG pathway analysis of a differentially expressed gene
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Figure 6

Figure 6 The QT-PCR results of 11 anthocyanin synthesis structure genes between WT
and L6-5
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Figure 7

Figure 7 The QT-PCR results of 11 anthocyanin synthesis structure genes in four natural
eggplant cultivars
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Figure 8

Figure 8 The QT-PCR results of the MYB transcription factor between WT and L6-5
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Figure 9

Figure 9 The polygenetic tree of MYBs involved in anthocyanin biosynthesis
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Figure 10

Figure 10 The QT-PCR results of the MYB transcription factor in four natural eggplant
cultivars
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Figure 11

Figure 11 The QT-PCR results of the bHLH transcription factor between WT and L6-5
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Figure 12

Figure 12 The QT-PCR results of the bHLH transcription factor in four natural eggplant
cultivars
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Figure 13

Figure 13 Simplified scheme related to anthocyanin biosynthesis in eggplant peels
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Table 1(on next page)

Table 1 The anthocyanin biosynthesis structure genes
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Table 1 The anthocyanin biosynthesis structure genes

Gene ID Log2(fold change) Description Symbol
Sme2.5 00843.1 g00005.1 -1.71241 4-coumarate--CoA ligase 2-like [Solanum pennellii] 4CL
Sme2.5 01077.1_g00016.1 -2.33431 chalcone synthase [lochroma cyaneum] CHS1
Sme2.5 02154.1 g00001.1 -2.17678 chalcone synthase [lochroma cyaneum] CHS2
Sme2.5 01193.1 g00009.1 -5.72024 chalcone--flavonone isomerase 2-like [Nelumbo nucifera] CHI
Sme2.5 00015.1 g00020.1 -2.08458 flavanone 3-hydroxylase [Solanum melongena] F3H
Sme2.5 04313.1 g00001.1 -9.46718 Flavonoid3',5'-hydroxylase; Short=F3'5'H; F3'S'H
Sme2.5 01401.1 g00004.1 -9.71117 dihydroflavonol 4-reductase [Solanum melongena] DFR
Sme2.5 01638.1 g00005.1 -9.97277 anthocyanin synthase [Solanum melongena] ANS
-10.6575 anthocyanidin 3-O-glucosyltransferase [Solanum UFGT1
Sme2.5 06210.1 g00004.1 tuberosum]
Sme2.5 00228.1 g00013.1 -7.34178 Anthocyanidin 3-O-glucosyltransferase; UFGT2
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Table 2(on next page)

Table 2 Transcription factor of the DEGs
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Table 2 Transcription factor of the DEGs

Gene ID

Log2(fold

change)

Description

Sme2.5_29845.1_g00001.1
Sme2.5 00747.1 g00013.1
Sme2.5_12868.1_g00001.1
Sme2.5 00641.1 g00006.1
Sme2.5_05942.1 g00005.1
Sme2.5 03302.1 g00002.1
Sme2.5_00211.1_g00009.1

Sme2.5_00787.1_g00017.1
Sme2.5 06802.1 g00002.1

Sme2.5_00250.1 g00015.1

Sme2.5_03441.1 g00007.1

Sme2.5_00346.1 g00021.1

0
-1.82426
1.56121
-1.41013
1.94131
-1.92613
-2.1073

1.24563
1.20428

1.28785

1.388

1.70497

anthocyanin-related transcription factor TT8 [Solanum melongena]
anthocyanin-related transcription factor TTG1 [Solanum melongena]
ethylene-responsive transcription factor RAP2-3 [Solanum tuberosum]

NAC domain transcription factor [Solanum lycopersicum]

PREDICTED: bZIP transcription factor 11-like [Nicotiana attenuata]

PREDICTED: bZIP transcription factor 27-like [Capsicum annuum]

PREDICTED: ethylene-responsive transcription factor 1B-like [Solanum
tuberosum]

PREDICTED: ethylene-responsive transcription factor 8-like [Solanum tuberosum]
PREDICTED: ethylene-responsive transcription factor ERFO11-like [Solanum
tuberosum]

PREDICTED: ethylene-responsive transcription factor ERF027-like [Solanum
tuberosum]

PREDICTED: ethylene-responsive transcription factor ERFO038-like [Solanum
lycopersicum]

PREDICTED: ethylene-responsive transcription factor ERFO038-like [Solanum
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Sme2.5 00713.1 g00012.1

Sme2.5 07921.1 g00003.1
Sme2.5 03438.1 g00003.1

Sme2.5 01314.1_g00005.1
Sme2.5_00159.1 g00006.1
Sme2.5_03242.1 g00007.1

Sme2.5 06702.1 g00005.1
Sme2.5 00514.1 g00007.1

Sme2.5_11618.1_g00002.1
Sme2.5 00556.1 g00018.1
Sme2.5 00009.1 g00017.1
Sme2.5 00708.1_g00006.1
Sme2.5 00407.1 g00003.1
Sme2.5 00735.1_g00008.1

2.15341

1.57856
1.28349

-1.72305
-1.34469
1.36091

-1.06999
1.00619

-1.17939
2.96067
-1.25591
2.63227
-1.71587
1.37478

pennellii]

PREDICTED: ethylene-responsive transcription factor ERF110-like isoform X1
[Solanum tuberosum]

PREDICTED: ethylene-responsive transcription factor WIN1 [Solanum pennellii]
PREDICTED: ethylene-responsive transcription factor WINI-like [Solanum
tuberosum]

PREDICTED: heat stress transcription factor A-4c-like [Solanum tuberosum]
PREDICTED: heat stress transcription factor B-3 [Solanum tuberosum]
PREDICTED: myb family transcription factor APL isoform X1 [Solanum
tuberosum]

PREDICTED: myb family transcription factor EFM [Solanum lycopersicum]
PREDICTED: nuclear transcription factor Y subunit A-10 isoform X2 [Solanum
tuberosum]

PREDICTED: nuclear transcription factor Y subunit B-3-like [Solanum pennellii]
PREDICTED: probable WRKY transcription factor 40 [Solanum tuberosum]
PREDICTED: probable WRKY transcription factor 53 [Solanum tuberosum]
PREDICTED: probable WRKY transcription factor 70 [Solanum tuberosum]
PREDICTED: transcription factor bHLH18-like [Solanum pennellii]

PREDICTED: transcription factor bHLH36-like [Capsicum annuum]
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Sme2.5 01808.1 g00003.1
Sme2.5 05426.1 g00001.1
Sme2.5 13712.1 g00001.1
Sme2.5 04383.1 g00001.1
Sme2.5 02186.1 g00004.1

Sme2.5_00584.1 g00015.1
Sme2.5_29204.1 g00001.1
Sme2.5_04464.1 g00002.1
Sme2.5_02639.1 g00008.1

Sme2.5 03969.1 g00004.1
Sme2.5 00155.1 g00001.1
Sme2.5 11221.1 g00002.1
Sme2.5 02073.1_g00002.1
Sme2.5 03511.1_g00006.1
Sme2.5 05245.1 g00004.1
Sme2.5 08464.1 £00002.1
Sme2.5 07178.1 _g00001.1

1.23941
1.65182
1.7215
2.81124
-2.00871

-1.62938
inf
-1.3253
-2.83798

1.54828
-1.82995
2.50601
1.32049
1.10684
1.93606
-1.72959
1.68574

PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
pennellii]
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
tuberosum]
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:
PREDICTED:

transcription factor bHLH49-like [Solanum tuberosum]
transcription factor bHLH71-like [Capsicum annuum]
transcription factor bHLH93-like [Solanum pennellii]
transcription factor bHLH94-like [Solanum lycopersicum]

transcription factor CYCLOIDEA-like isoform X1 [Solanum

transcription factor DIVARICATA-like [Capsicum annuum]
transcription factor DIVARICATA-like [Solanum pennellii]
transcription factor JUNGBRUNNEN 1 [Solanum tuberosum]
transcription factor JUNGBRUNNEN 1-like isoform X2 [Solanum

transcription factor LUX [Solanum tuberosum]

transcription factor MYB108-like [Solanum lycopersicum]
transcription factor MYB12 [Solanum tuberosum]

transcription factor MY C2-like [Solanum tuberosum]

transcription factor MY C2-like [Solanum tuberosum]

transcription factor PCL1-like [Solanum tuberosum]

transcription factor TGA4-like isoform X1 [Solanum lycopersicum]|

transcription factor WER-like [Solanum pennellii]
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Sme2.5 02680.1 g00006.1 -4.67357 PREDICTED: WRKY transcription factor 44 [Solanum tuberosum]
Sme2.5 11773.1 g00001.1 1.70179 WRKY transcription factor 6 [Solanum tuberosum]

Inf,
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