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ABSTRACT 8!

 Much of Earth’s biodiversity is at the mercy of currents and physical turnover. Residence 

time (τ) is the average time that particles spend in a system and is estimated from the ratio of 10!

volume to flow rate. Here, we present a framework for how τ influences biodiversity by coupling 

dispersal and resource supply. We test a suite of predictions with >20,000 individual-based 12!

models that impose ecological selection and energetic costs. Altogether, 24 patterns of growth, 

productivity, abundance, diversity, turnover, commonness and rarity, and trait syndromes 14!

simultaneously emerged across six orders of magnitude in τ. Abundance, productivity, and 

species richness were greatest when dilution rate, i.e., 1/τ, approximated basal metabolic rate. 16!

The emergence of τ-based relationships alongside realistic patterns of biodiversity and metabolic 

scaling suggest that manifold influences of τ, from the individual to ecosystem-levels, are 18!

powerful and congruous with ecological paradigms. 

 20!

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2727v2 | CC BY 4.0 Open Access | rec: 5 May 2017, publ: 5 May 2017



! 3!

INTRODUCTION 22!

 Much of Earth’s biodiversity is at the mercy of currents and physical forces that drive the 

transport of resources and dispersal of organisms. In turn, these processes constrain the time that 24!

resources and individuals spend in an environment. Residence time (τ) is the average amount of 

time that particles spend in a system and is often estimated as the ratio of a system’s size or 26!

volume (V) to its rate of flow or physical turnover (Q), i.e., τ = V/Q (Smith and Waltman 1995; 

Schramski et al. 2015). Residence time can drive resource resupply and individual dispersal, and 28!

can equate the physical environment with growth and productivity (Smith and Waltman 1995; 

Crump et al. 2004). Residence time varies over eight orders of magnitude in natural ecosystems, 30!

from several minutes within some organisms to thousands of years in some lakes, glaciers, and 

soils (e.g., Dietrich and Dunne 1978; Bell et al. 2002; Friend et al. 2014; Dey et al. 2015; 32!

Schramski et al. 2015). However, the field of ecology has remained largely unfamiliar with τ and 

its potential to shape the structure of ecological communities, the diversity of traits and life 34!

history strategies, and the strength of ecological mechanisms such as competition and drift. 

 Residence time is a primary constraint on growth in natural, engineered, and 36!

experimental systems. In bioreactors, τ influences performance and stability while in 

experimental chemostats, τ is manipulated to control growth and to study eco-evolutionary 38!

dynamics (Smith and Waltman 1995; Henze 2000; Angenent et al. 2004). In both experimental 

and engineered systems the inverse of τ, i.e., dilution rate also known as turnover rate (1/τ), is 40!

used to approximate growth rate. In terrestrial and aquatic habitats, τ is measured with respect to 

the turnover of nutrients, removal of pollutants, development of algal blooms, and the global-42!

scale consequences of altered carbon cycling (Post et al. 1982; Valiela et al. 1997; Josefson et al. 

2000; Crump et al. 2004; Beaugrand et al. 2010; Friend et al. 2014). The concept of τ is also 44!
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studied in medicine and microbiome research to understand the effects of disease and 

microbiomes on the health of host organisms (Wu et al. 2011; Flint 2012, Dey et al. 2015; 46!

Waldron 2015). Despite the importance of τ across a spectrum of natural, experimental, and 

engineered systems, it is surprisingly rare for τ to be integrated into general ecological theory 48!

(Schramski et al. 2015). Few, if any, studies predict how τ influences biodiversity or ask whether 

the equivalence of 1/τ to species vital rates can hold outside ideal systems. 50!

 In this study, we develop a conceptual framework for how τ should influence abundance 

and diversity of traits and taxa, and how τ should act as a basis of selection for groups of traits 52!

that promote growth or persistence. We integrate established ecological relationships with 

resource-limited growth and the energetics of physiological maintenance to test whether the 54!

predictions of our τ-based framework should hold for ecological communities within stochastic 

and fluctuating environments. To do this, we used a platform that builds and runs thousands of 56!

stochastic individual-based models (IBMs) and leverages the power of ecological patterns that 

emerge in unison, i.e., simultaneously emerging relationships. This IBM platform draws from 58!

bodies of ecological theory and simulates energetically constrained life history among thousands 

to hundreds of thousands of individuals belonging to as many as a thousand or more ecologically 60!

unique species within spatially-explicit environments that are characterized by resource 

heterogeneity, ecological selection on high degrees of trait variation, and fluctuating rates of 62!

flow, resource supply, and immigration. 

 64!

RESIDENCE TIME PREDICTIONS 

Total abundance and productivity — The number of individual organisms (i.e., total abundance; 66!

N) is the primary descriptor of population or community size. We predict that τ influences N 
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through interactions of growth, metabolic maintenance, and resource supply. First, τ can be short 68!

enough that individuals are removed before they can reproduce, i.e., “washout”. Second, τ can be 

long enough that resource supply is too low to fuel growth or to offset metabolic maintenance 70!

(Pirt 1965; Droop 1983). Between these extreme values, resource resupply can be sufficient to 

fuel growth and flow can be slow enough to prevent washout or local extinction. In idealized 72!

systems (e.g., well-mixed, passive dispersal, constant rate of flow or turnover, negligible effects 

of metabolic maintenance), N and productivity are expected to be greatest when dilution rate 74!

(1/τ) equals maximum growth rate (Smith and Waltman 1995). However, natural systems are 

characterized by the sporadic resupply of growth-limiting resources while aspects of individual- 76!

to ecosystem-level dynamics often scale with maintenance respiration (i.e., basal metabolic rate) 

(e.g., Brown et al. 2004, Schramski et al. 2014). In this way, N and productivity might relate 78!

more closely to basal metabolic rate than to maximum growth rate. 

 80!

Species richness (S) — The number of species in a community (i.e., richness, S) is the foremost 

component of species diversity (Magurran and McGill 2011). We predict that τ affects S in two 82!

ways. While S often tends to scale with N (e.g., Locey and Lennon 2016), we expect τ to further 

constrain S by placing selective pressure on species to resist washout at short τ or resist 84!

starvation at long τ. A decreasing number of species should be able to maintain viable 

populations when τ becomes especially short or long. Based on this, we predict a humped-shaped 86!

relationship of S to τ. 

 88!

Species evenness (E) — Similarity in abundance among species (i.e., evenness, E) is the second 

primary component of species diversity (Magurran and McGill 2011). We predict that τ affects E 90!
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in two ways. First, decreases in E often scale with greater N (e.g., Locey and Lennon 2016). 

While this can be expected based on numerical constraints (Locey and White 2013), a more 92!

ecologically meaningful reason is found in the study of species abundance models. Specifically, 

models of exceptionally low E such as the dominance preemption and geometric series models 94!

result from strong competitive interactions (Magurran and McGill 2011). Because intermediate τ 

may allow enough time for competitive dynamics to emerge among physiologically distinct 96!

species, we expect intermediate τ to allow for the assembly of communities with low E. As a 

result, we predict a U-shaped relationship of E to τ. 98!

 

Species turnover (β) — Temporal changes in community composition reveal how quickly the 100!

membership of a community changes. We predict that τ should drive β and produce two potential 

patterns. Short τ should produce high rates of β through a combination of low N, low S, and high 102!

rates of immigration and emigration. Turnover should then decrease with longer τ, reflecting the 

dynamics of a slower moving system. However, turnover may then increase at extremely long τ 104!

because the loss of a single species can substantially influence β at low S. As a result, we predict 

a J- to U-shaped relationship of β to τ. 106!

 

A growth syndrome – We predict that τ acts as a force of selection on life history traits that 108!

promote growth at short τ. To maintain viable populations, organisms should either grow and 

reproduce before being washed out, or be physically adapted to prevent removal. Rapid rates of 110!

growth and active dispersal, as well as the capacity for physical attachment and the ability to 

actively forage should all contribute to the ability of individuals to grow and reproduce within 112!

environments of rapid turnover. While rapid growth can be energetically inefficient (Russell and 
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Cook 1995, Carlson et al. 2007, Lipson 2015) and though active dispersal and physical 114!

attachment carry energetic investments, these shortcomings may be compensated for by high 

rates of resource resupply and the ability to consume resources at high efficiency. 116!

 

A persistence syndrome – Slow moving systems with low rates of resource resupply are 118!

characteristic of long τ. In these conditions, organisms are pressured to persist in the absence of 

resources. Persistence should increase if metabolic maintenance energy can be decreased, if 120!

species do not invest in energetically wasteful life history strategies, and if populations do not 

outgrow available resources. Additionally, the ability to enter a reversible state of decreased 122!

metabolic activity (i.e., dormancy) is a widely used life history strategy that greatly contributes 

to persistence. We expect organisms at long τ to more grow slowly, to use resource more 124!

efficiently (i.e., via resource specialism), to have greater capacities for decreasing metabolic 

maintenance, and to have greater capacities for dormancy. As transitioning between dormancy 126!

and activity is not energetically free, we expect that organisms able to persist at high τ will 

resuscitate less readily. 128!

 

Congruence with primary ecological relationships – The predictions of a novel ecological 130!

framework should be compatible with universal or law-like ecological patterns. Examples are the 

hollow-curve nature of species abundance distributions (McGill et al. 2007), the ¾ power scaling 132!

of metabolic rate with body size (Brown et al 2004), the 0 to 0.5 scaling of species richness with 

area (Lomolino 2000), and the 1st to 2nd power scaling of population variance with mean 134!

population size, i.e., Taylor’s Law (Xiao et al. 2015). 

 136!
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METHODS 

Overview – We tested the predictions of our residence time framework using a stochastic 138!

individual-based modeling (IBM) platform (i.e., Locey and Lennon 2017). IBMs simulate the 

behaviors of individual elements (e.g., individual organisms, resource particles) and allow 140!

ecological relationships to emerge from individual-level interactions (Grimm et al. 2005). IBMs 

can integrate process-based rules, analytical formulas, and random sampling while providing 142!

initial testing grounds for synthetic ecological frameworks (e.g., Rosindell et al. 2015). The 

platform we used was designed for studying the simultaneous emergence of ecological patterns 144!

under ecological selection, energetic constraints, and complex dynamics. 

 146!

Randomized model parameterization – The modeling platform we used parameterizes IBMs 

with random combinations of parameters for physical conditions, resource conditions, and 148!

species traits (Locey and Lennon 2017). Once assembled, each IBM is populated with 1,000 

individuals whose species identities are drawn at random from a uniform distribution. These 150!

randomized starting conditions allowed our τ-related predictions as well as realistic patterns of 

biodiversity to emerge from initially unrealistic community structures (e.g., highly even 152!

distributions of abundance) and unrealistic trait combinations (see Locey and Lennon 2017, 

Locey et al. 2017). 154!

 

Resource-limited life history – At each time step, every individual has a probability of 156!

consuming a resource particle and of undergoing growth, active dispersal, passive dispersal, 

reproduction, death, and transitions between dormancy and metabolic activity. The rate at which 158!

an individual undergoes a given life history process is determined, in part, by the amount of an 
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individual’s endogenous resources. Individuals with a low endogenous resources are more likely 160!

to go dormant, less likely to reproduce, and less likely to actively disperse. Consumption of 

exogenous resources increases an individual’s endogenous resources according to the product of 162!

their current resources and the species-specific ability to convert a given resource to biomass. 

Individuals become dormant once their level of endogenous resources decreases below the 164!

species-specific active maintenance energy. Dormancy is defined here as a non-reproductive 

state of zero consumption and growth, where individuals incur a decreased basal metabolic rate 166!

(BMR) and hence, decreased metabolic maintenance. Dormant individuals experienced a 

species-specific reduction in maintenance costs. Individuals die once their level of endogenous is 168!

too low to maintain a dormant basal metabolic rate. 

 170!

Congruence with iconic ecological relationships – The predictions of a novel ecological 

framework should be compatible with universal or law-like ecological patterns. In addition to 172!

testing the influence of τ on aspects of abundance and diversity in traits and taxa, we ensured that 

our IBMs produced realistic patterns of biodiversity. This included realistic species abundance 174!

distributions (SADs) and diversity-abundance scaling relationships (Locey and Lennon 2016). 

We also asked whether our IBMs produced realistic forms of three well-known scaling laws. 176!

First, the species-area relationship (SAR) describes the rate at which species are discovered with 

increasing area (A), often taking form of S = cAz, where often 0 ≤ z ≤ 0.5 (Lomolino 2000, Zinger 178!

2014). Second, Taylor’s law is a scaling relationship that describes how variance in population 

size varies with average population size, σ2 = µz, where typically 1 ≤ z ≤ 2 (Xiao et al. 2015). 180!

Third, metabolic theory predicts that basal metabolic rate (B) relates to whole organisms body 

mass (M) through a 3/4 power law, i.e., B = B0M3/4 (Brown et al. 2004). 182!
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Simulations – We ran more than 20,000 randomly parameterized IBMs to test the robustness of 

our predictions. Each IBM could simulate as many as 105 individuals belonging to as many as a 184!

10,000 thousand species, and 104 resource particles belonging to as many as 10 resource types. 

Time series analysis revealed that 500 generations (tens of thousands of time steps) was enough 186!

to lose the initial signal of the starting conditions, i.e., burn-in. Each IBM was run for a total of 

4,500 generations after burn-in. 188!

 

Quantifying abundance and diversity – We recorded aspects of abundance, activity, 190!

productivity, and trait and taxa diversity at every 10 generations after burn-in. We quantified 

species evenness using Simpson’s evenness index (D-1/S), where D-1 is the inverse of Simpson’s 192!

diversity measure (Magurran and McGill 2011). Simpson’s evenness is among the most robust 

evenness measures, being highly independent of S and giving nearly equal weight to rare and 194!

abundant species (Smith and Wilson 1996). We quantified species turnover using Whittaker's 

index (!!), which quantifies the number of times that species composition changes completely 196!

between two samples (Magurran and McGill 2011). We quantified rarity using the log-modulo 

transformation of the skewness of the SAD as in Locey and Lennon (2016). 198!

 

RESULTS 200!

Realistic patterns of diversity — More than 20,000 stochastic, highly variable, and randomly 

parameterized IBMs with no hard constraints on abundance, richness, or body size produced 202!

several realistic patterns of biodiversity (Figure 1, Table 1). These included Poisson lognormal 

species abundance distributions (SADs), realistic nested species-area relationships, the mean-204!

variance relationship known as Taylor’s Law, the ¾ power law of metabolic scaling theory, and 
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four recently documented diversity-abundance scaling relationships. Consequently, our IBMs 206!

were, at least, realistic enough to reproduce established patterns of biodiversity that have rarely, 

if ever, been simultaneously generated from the same models. 208!

 

Abundance, productivity, and diversity — Residence time had strong effects on many 210!

community attributes in our simulations, including total abundance (N), individual productivity 

(P), species richness (S), species evenness, species temporal turnover, and metabolic activity 212!

related to τ as predicted (Figure 2). Each relationship was robust but also reflected the degrees of 

variability that were possible due to extensive randomization, different species compositions, 214!

varying environmental conditions, and three orders of magnitude in both flow rate and system 

size. Rather than producing strict monotonic relationships, τ appeared to place upper constraint 216!

on N, S, and P. Across all IBMs, N ranged between 1 and 90,000, P ranged between 0 and 

90,000, and S ranged between 1 and 1,200. Species evenness, temporal turnover, and percent 218!

dormancy took values within the full range of possible outcomes, i.e., 0 to 100%. 

   220!

The similarity of active metabolic rate to 1/τ placed exponential upper constraints on N, P, and S. 

We found that N, P, and S were greatest when average per capita active basal metabolic rate was 222!

most similar to dilution rate (1/τ) (Figure 3). We did not observe similar correspondence for any 

other species trait. 224!

 

Trait syndromes — Species-specific maximum rates of growth, dispersal, and BMR were 226!

greatest at low τ, a syndrome of traits that prevented washout. Species-specific maxima for these 

trait values decreased monotonically with increasing τ, a result of decreased selection on these 228!
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energetically costly traits and increased selection for the ability to persist in increasingly sparse 

resource conditions (Figure 4). As τ increased, species showed greater resource generalization, 230!

reflecting a trade-off between rapidly growing on a single resource in a highly competitive and 

rapidly flowing environment, versus opportunistically growing on whatever resource is 232!

encountered in a sparse environment of relatively few species. In addition to decreased rates of 

active dispersal, growth, and BMR, increased τ selected for other traits that promoted 234!

persistence, including an increasingly strong dormancy response, i.e., a greater decrease of BMR 

when transitioning to dormancy and a smaller probability of randomly resuscitating from 236!

dormancy (Figure 4). 

 238!

DISCUSSION 

 In this study, we proposed that residence time (τ) affects biodiversity by placing 240!

constraints on growth, abundance, metabolic activity, and diversity. Residence time (τ) couples 

resource supply and individual dispersal, equates the physical environment with aspects of life 242!

history, and varies over eight orders of magnitude in natural systems. Although often used to 

manage engineered and experimental systems, τ has gone largely unrecognized in ecological 244!

studies. Using tens of thousands of ecologically complex individual-based models (IBMs) that 

simulated the life histories of up to one hundred thousand individual organisms, we found that τ 246!

can constrain the abundance and diversity of taxa and traits in ways that are expected from the 

synthesis of physiological and macroecological principles. These relationships emerged 248!

alongside some of ecology’s strongest and most iconic patterns of biodiversity. 

 In idealized systems where actively growing and passively dispersing organisms occupy 250!

well-mixed resource-rich environments, total abundance (N) and individual productivity (P) 
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should be greatest when 1/τ equals maximum specific growth rate (Smith and Waltman 1995). 252!

However, most natural systems are unlikely to obey such ideal conditions. In contrast, and 

despite orders of magnitude of variation in species traits, system size, flow rate, and resource 254!

supply, we found that N, P, and S were greatest when 1/τ approximated the average per capita 

basal metabolic rate (BMR). Deviations of 1/τ from BMR produced exponentially lower N, S, 256!

and P. The importance of BMR is well-recognized as underpinning the life histories and vital 

rates of all organisms (Brown et al. 2004). BMR can also drive the residence times of nutrients 258!

within ecosystems, resulting in strong scaling relationships (Schramski et al. 2014). Our findings 

suggest that, in ecosystems where the movement of individuals and resources are influenced by 260!

physical turnover, the magnitude of τ should be a strong selective force on BMR and, in turn, the 

many physiological and ecological processes that BMR determines. 262!

 Residence time was a strong driver on the emergence of growth and persistence related 

trait syndromes, which were initiated from random conditions. In this way, τ acted as a force of 264!

ecological selection on traits that underpin general life history strategies, e.g., r/K selection. We 

expect that the strength of τ depends on how greatly it couples resource supply and individual 266!

dispersal, and whether populations and species have the capacity and diversity to adapt. We did 

not explore the point at which the driving influence of τ on species traits breaks down. This 268!

threshold may arise through the lack of sufficient trait diversity or via the decoupling and 

independence of resource supply and individual dispersal. Though we did not model scenarios 270!

where resource supply and individual dispersal are decoupled or independent of τ, there are 

conditions and systems where this occurs. For example, sessile occupants of intertidal zones 272!

experience a flow through of resources and highly motile occupants of swamps, marshes, and 

open aquatic environments can actively forage. However, traits that allow certain organism (e.g., 274!
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sessile crustaceans) to attach, filter feed, and achieve larval dispersal are perhaps adaptive 

responses to τ. That is, such traits would seem to allow organisms to simultaneously overcome 276!

wash-out, to take advantage of planktonic resources, and produce planktonic larvae or gametes.  

 Residence time should be relevant at all levels of the ecological hierarchy, from 278!

individuals to ecosystems. At the individual-scale, τ is defined in terms of body mass and the rate 

at which resources flow through organisms (Schramski et al. 2014). At the scale of populations, τ 280!

should influence population size, and hence, effective population size and the strength of drift 

versus selection. Among ecological communities, mechanisms of spatial dynamics such as mass 282!

effects, rescue effects, and source-sink effects are driven by individual dispersal and are central 

to the metacommunity paradigm (Leibold et al. 2004). Recent metacommunity work also 284!

suggests that the dispersal of individuals and resources should often be studied as coupled 

processes (Haegeman and Loreau 2014). At the scale of trophic dynamics, the influence of τ is 286!

similar to that of “donor control”, where the supply of allochthonous resources constrains 

consumer growth but where consumers have little-to-no effect on resource resupply (Polis et al. 288!

1997). We suspect that changes in τ may couple or decouple trophic interactions (e.g., predator-

prey, host-parasite) by either washing out particular members at short τ or by exhausting 290!

endogenous resources at long τ. 

 In our study, we focused on τ as a variable of the physical ecosystem that can shape 292!

biodiversity and even approximate metabolic rates. However, both τ and metabolic rates can be 

influenced by other variables of the physical ecosystem. For example alterations in hydrological 294!

processes (e.g., melting permafrost and variable precipitation) can increase flow rate and volume, 

which changes τ. These alterations can be driven by temperature, which also directly influences 296!

metabolic rates and the breakdown of nutrients. Physical factors that influence both τ also apply 
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to host organisms, where changes in diet and the occurrence of disease can alter τ in ways that 298!

change host health (Molla et al. 1983). Examples are bacterial overgrowth resulting from an 

increase in τ driven by Crohn’s disease (Castiglioni et al. 2000) and the removal of microbiota 300!

and nutrients resulting from a decrease in τ driven by Cholera (Sack et al. 1978). In this way, 

understanding the influences of τ on abundance, activity, productivity, and the diversity of traits 302!

and taxa also begs for an understanding of the physical factors that drive the magnitude and 

variability of τ and its relationship to metabolic rate. 304!
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FIGURE CAPTIONS 414!
 

Figure 1. Over 20,000 stochastic, highly variable, and randomly parameterized individual based 416!

models (IBMs) with no hard constraints on abundance, richness, or body size produced realistic 

patterns of biodiversity. Top left: The Poisson lognormal (PLN) explained >80% of variation in 418!

abundance among taxa. Simulated data were less similar to the log-series distribution. Top right: 

Species-richness often scaled with system size at rates (z) similar to nested species-area 420!

relationships (i.e., 0 < z < 0.5). Bottom left: Basal metabolic rate (BMR) scaled to the ¾ power 

of body size. BMR includes the percent by which BMR decreases in dormancy. Bottom right: 422!

Taylor’s Law predicts that variance (σ2) in abundance scales with mean abundance, 1 < z < 2. 

Different colors represent systems of different orders of magnitude in residence time (τ), with red 424!

being smallest and violet being greatest. 

 426!
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Figure 2. More than 20,000 stochastic and randomly parameterized IBMs with no hard 

constraints on abundance or richness reveal how residence time (τ) influenced total abundance 428!

(N), individual productivity (P), species richness (S), species evenness, species turnover (β), and 

the percent of N individuals that were metabolically inactive or dormant. System size and flow 430!

rate both varied over three orders of magnitude. The form of each relationship matches our 

conceptual predictions. Different colors represent systems of different size, with red being 432!

smallest and violet being greatest.  

 434!

 

 436!
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Figure 3. Scatter plots of results from more than 2Ŋ104 IBMs that were initialized with 1000 

individuals from a regional pool of 10,000 species, each with randomly chosen basal rates of 438!

active metabolism (BMR). The dashed line represents the point where BMR equals dilution rate 

(1/τ). That is, if BMR = 1/τ, then log(BMR)/log(τ) = -1. This is the point where overall greatest 440!

total abundance (N), productivity (P), and species richness (S) occurred and away from which N, 

P, and S, appear to exponentially decrease, i.e., nearly linear on log-scale. Different colors 442!

represent systems of different orders of magnitude in residence time (τ), with red being smallest 

and violet being greatest. 444!

 

 446!
 

  448!
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Figure 4. Scatter plots for >2Ŋ104 IBMs that were parameterized with random combinations of 

species traits and no explicitly enforced trade-offs. The value of each trait could vary across two 450!

orders of magnitude. Residence time (τ) influenced specific growth rate, maintenance energy, 

rate of active dispersal, the probability of random resuscitation from dormancy, resource 452!

specialization, and the strength of the dormancy response (i.e., factor by which maintenance 

energy was reduced by the transition to dormancy). The form of each relationship matches our 454!

conceptual predictions. Different colors represent systems of different size, with red being 

smallest and violet being greatest. 456!
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Table 1. The scaling of species rarity, dominance, evenness, and richness with total community 460!

abundance (N) from 2Ŋ104 stochastic and randomly parameterized IBMs with no hard constraints 

on abundance or richness. These simulation-based scaling relationships are similar to those 462!

previously documented in a study using tens of thousands of community level data on 

microorganisms and macroscopic plants and animals (Locey and Lennon 2016). 464!

 

Relationship Locey and Lennon (2016) Current Study 

Rarity vs. N R ≈ N0.21 R ≈ N0.14 

Dominance vs. N Nmax ≈ N0.96 Nmax ≈ N1.04 

Evenness vs. N E ≈ N-0.35 E ≈ N-0.36 

Richness vs. N S ≈ N0.44 S ≈ N0.33 
 466!
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