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ABSTRACT 8	
  

 Residence time (τ) is the average amount of time that particles spend in an ecosystem. 

Often estimated from the ratio of volume to flow rate, τ equates the physical environment with 10	
  

dynamics of growth. Here, we propose that τ is key to understanding relationships between 

biodiversity and the physical ecosystem. We hypothesize that τ acts as a force of selection on 12	
  

traits related to growth and persistence by coupling dispersal and resource supply. We test a suite 

of predictions using >10,000 stochastic individual-based models that simulate resource-limited 14	
  

life history among ecologically distinct species within complex environments. Predicted 

relationships between τ and abundance, productivity, and diversity emerged alongside realistic 16	
  

macroecological patterns. Abundance and productivity were greatest when τ equaled an 

emergent property ϕ, which captures energy-based trade-offs between growth and persistence. 18	
  

From individual metabolism to the dynamics of bioreactors, soils, lakes, and oceans, ecological 

systems should inherently be governed by τ. 20	
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INTRODUCTION 22	
  

 Much of Earth’s biodiversity is at the mercy of currents and physical forces that drive the 

transport of resources and dispersal of organisms. In turn, these processes constrain the time that 24	
  

resources and individuals spend in an environment. Residence time (τ) is the average amount of 

time that particles spend in a system, and is often estimated as the ratio of a system’s mass or 26	
  

volume (V), to its rate of flow or physical turnover (Q), i.e., τ = V/Q (Smith and Waltman 1995, 

Schramski et al. 2015). Residence time couples resource supply and individual dispersal, equates 28	
  

the physical environment with growth and productivity, and varies over eight orders of 

magnitude in natural ecosystems, from several minutes within some organisms to thousands of 30	
  

years in some lakes, glaciers, and soils (e.g., Dietrich and Dunne 1978, Bell et al. 2002, Crump et 

al. 2004, Friend et al. 2014, Dey et al. 2015, Schramski et al. 2015). However, the field of 32	
  

ecology has remained largely unfamiliar with τ and its potential to shape the abundance, 

function, and diversity of traits and taxa. 34	
  

 Residence time is a primary constraint on growth in natural, engineered, and 

experimental systems. In bioreactors, τ influences performance and stability while in 36	
  

experimental chemostats, τ is manipulated to control growth and to study eco-evolutionary 

dynamics (Smith and Waltman 1995, Henze 2000, Angenent et al. 2004). In both experimental 38	
  

and engineered systems, the inverse of τ, i.e., dilution rate (1/τ), is used to approximate growth 

rate. In terrestrial and aquatic habitats, τ is measured with respect to the turnover of nutrients, 40	
  

removal of pollutants, development of algal blooms, and the global-scale consequences of altered 

carbon cycling (Post et al. 1982, Valiela et al. 1997, Josefson et al. 2000, Crump et al. 2004, 42	
  

Beaugrand et al. 2010, Friend et al. 2014). The concept of τ is even studied in medicine and 

microbiome research to understand the effects of disease and microbiomes on the health of host 44	
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organisms (Wu et al. 2011, Flint 2012, Dey et al. 2015, Waldron 2015). Despite the importance 

of τ across a broad spectrum of natural, experimental, and engineered systems, it is surprisingly 46	
  

rare for τ to be integrated into general ecological theory (but see Schramski et al. 2015). Few, if 

any, studies have predicted how τ should shape the biodiversity of traits and taxa, and whether τ 48	
  

might approximate vital rates within complex ecological systems. 

 In this study, we developed a conceptual framework for how τ should influence 50	
  

abundance and diversity of traits and taxa, and how τ should act as a force of selection on groups 

of traits that promote growth or persistence, i.e., trait syndromes. We integrated established 52	
  

ecological relationships with resource-limited growth dynamics and the bioenergetics of 

physiological maintenance to test whether the predictions of our τ-based framework should hold 54	
  

for complex ecological systems. To do this, we developed a platform to use thousands of 

stochastic individual-based models (IBMs). These IBMs are capable of simulating many 56	
  

ecologically and physiologically unique species within spatially heterogeneous environments 

that are characterized by environmental gradients, resource heterogeneity, and fluctuating 58	
  

properties of flow, resource supply, and immigration. 

 60	
  

PREDICTIONS  

Total abundance and productivity — The number of individual organisms (i.e., total abundance; 62	
  

N) is the primary descriptor of population or community size. We predict that τ influences N 

through interactions of growth, metabolic maintenance, and resource supply. First, τ can be short 64	
  

enough that individuals are removed before they can reproduce, i.e., “washout”. Second, τ can be 

long enough that resource supply is too low to fuel growth or to offset metabolic maintenance 66	
  

(Pirt 1965, Droop 1983). Between these extreme values, resource resupply can be sufficient to 
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fuel growth and flow can be slow enough to prevent washout. In simplified systems, N and 68	
  

productivity are expected to be greatest when dilution rate (1/τ) equals maximum growth rate 

(µmax) (Smith and Waltman 1995). In this way, we predict hump-shaped relationships of N and 70	
  

productivity to τ, the modes of which should occur when µmax equals 1/τ. 

	
  72	
  

Species richness (S) — The number of species in a community (i.e., richness, S) is the foremost 

component of species diversity (Magurran and McGill 2011). We predict that τ affects S in two 74	
  

ways. While S often tends to scale with N (e.g., Locey and Lennon 2016), we expect τ to further 

constrain S by placing selective pressure on species to resist washout at short τ or resist 76	
  

starvation at long τ. Fewer species should maintain viable populations as τ becomes increasingly 

short or long. Based on this, we predict a humped-shaped relationship of S to τ, the mode of 78	
  

which should occur when µmax equals dilution rate (1/τ). 

 80	
  

Species evenness (E) — Similarity in abundance among species (i.e., evenness, E) is the second 

primary component of species diversity (Magurran and McGill 2011). We predict that τ affects E 82	
  

in two ways. First, decreases in E often scale with greater N (e.g., Locey and Lennon 2016). 

While this can be expected based on numerical constraints (Locey and White 2013), a more 84	
  

ecologically meaningful reason is found in the study of species abundance models. Specifically, 

models of exceptionally low E such as the dominance preemption and geometric series models 86	
  

result from strong competitive interactions (Magurran and McGill 2011). Because intermediate τ 

may allow enough time for competitive dynamics to emerge, we expect intermediate τ to allow 88	
  

for the assembly of communities with low E. As a result, we predict a U-shaped relationship of E 

to τ, the lowest point of which should occur when µmax equals dilution rate (1/τ). 90	
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Species turnover (β) — Temporal changes in community composition reveal how quickly the 92	
  

membership of a community changes. We predict that τ should drive β and produce two potential 

patterns. Short τ should produce high rates of β through a combination of low N, low S, and high 94	
  

rates of immigration and emigration. Turnover should then decrease with longer τ, reflecting the 

dynamics of a slower moving system. However, turnover may then increase at extremely long τ 96	
  

because the loss of a single species can substantially influence β at low S. As a result, we predict 

a J- to U-shaped relationship of β to τ. 98	
  

 

Growth syndrome at short τ – We predict that τ should act as a force of selection on life history 100	
  

traits that promote growth at short τ. To maintain viable populations, organisms should either 

grow and reproduce before being washed out, or be physically adapted to prevent removal (e.g., 102	
  

active dispersal). Though rapid growth can be inefficient and though active dispersal carries 

additional energetic costs, these shortcomings may be compensated for by high rates of resource 104	
  

supply and the ability to consume a variety of resources (i.e., generalism). As τ increases, 

competition among greater S may promote greater resource specialization. 106	
  

 

Persistence syndrome for long τ – Slow moving systems with low rates of resource resupply are 108	
  

characteristic of long τ. In these conditions, organisms are pressured to persist in the absence of 

resources. Persistence should increase if metabolic maintenance energy can be decreased, if 110	
  

populations do not grow outgrow available resources, and if organisms are capable of entering a 

reversible state of decreased metabolic activity (i.e., dormancy). We expect organisms at long τ 112	
  

to more grow slowly and have a greater capacity for dormancy. As transitioning between 
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dormancy and activity is not energetically free, we expect that organisms able to persist at high τ 114	
  

will resuscitate less readily. 

 116	
  

METHODS 

Overview – We explored the influence of residence time (τ) on abundance, diversity, and activity 118	
  

using individual-based models (IBMs). IBMs simulate the interactions and behaviors of 

individual elements (e.g., individual organisms, resource particles) and provide a way to study 120	
  

how ecological relationships emerge from individual-level interactions (Grimm et al. 2005). 

IBMs allow bodies of theory to be incorporated through process-based rules, analytical formulas, 122	
  

and random sampling (Locey et al. 2017). We constructed an IBM platform that parameterized 

IBMs from random combinations of physical and flux-based, resource-related, community-level, 124	
  

and energy-based physiological parameters (Table 1). These IBMs allowed realistic dynamics to 

emerge from ecological selection on random variation in species traits over thousands of 126	
  

generations (sensu Locey et al. 2016). 

 128	
  

Randomized model parameterization –  The IBM source code chose parameter values at random 

within ranges that established limits on species-specific energetic constraints (e.g., metabolic 130	
  

maintenance) and vital rates (e.g., growth, dispersal) along with upper limits on the number, size, 

and diversity of inflowing resource particles (Table 1). Once assembled, each IBM was 132	
  

populated with 1,000 individuals whose species identities were drawn at random to maximize the 

starting diversity of trait combinations and to allow trait-syndromes and trade-offs to emerge 134	
  

over generations of ecological selection. In this way, our IBMs allowed the influences of τ to 

simultaneously emerge as robust and mutually inclusive outcomes. 136	
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Simulating individuals, species, and resources – Individuals were distinguished by collections 138	
  

of elements within lists, where the same position in each list corresponded to the same 

individual. For example: IndIDs = [1, 2, 33]; SpeciesIDs = [8, 13, 1]; IndX = [45, 23, 456]; IndY 140	
  

= [765, 87, 21]; IndZ = [132, 68, 249]. Here, the individual with ID of 1 belongs to species 8 and 

is located at position x = 45, y = 765, z = 132. In addition to lists for individual IDs, species IDs, 142	
  

and the geographic coordinates of individuals, our IBMs also held individual-level lists for 

resource-specific cell quotas and whether individuals were active or dormant (Table 1). Like 144	
  

individuals, resource particles were also distinguished by elements within lists. When resource 

particles entered the system, they were assigned an individual identity, a resource identity at 146	
  

random, a size value between 100 and 1000, and three-dimensional spatial coordinates. 

 148	
  

Resource-limited life history – At each time step, every individual had a probability of 

undergoing growth, dispersal, reproduction, and transitions between dormancy and metabolic 150	
  

activity. The probability (pp) of undergoing these life history processes was determined by the 

product of endogenous resources (i.e., cell quota; 0 ≤ qi ≤ 1) and species-specific trait values (ts), 152	
  

where pp = qi * ts. In this way, individuals with a low cell quota were more likely to enter 

dormancy, were less likely to reproduce, and were less likely to actively disperse as far as 154	
  

individuals that were replete with resources. Consumption of resources increased qi according to 

the combination of species-specific maximum growth rate (µmax), the ability for an individual of 156	
  

a specific species to convert a particular resource to biomass (i.e., efficiency), and the present 

value of qi. Individuals became dormant once their value of qi decreased below the species-158	
  

specific value for maintenance energy and died once qi reached 0. 
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 160	
  

Energetic costs – Life history processes and active metabolism were accompanied by energetic 

costs that depleted qi. Our IBMs simulated these costs according to dynamics underpinned by 162	
  

ecological theory. Specifically, the tendency for ecological processes to be multiplicative and 

stochastic (Putnam 1993, Hubbell 2001), and the tendency for body size to influence vita rates 164	
  

(Brown et al. 2004). For example, energetic costs of active dispersal should be multiplied across 

distance and, within a species, should be greater for organisms that transport a larger mass. 166	
  

Dormant individuals, which were unable to consume or reproduce, experienced a species-

specific reduction in maintenance costs, which decreased the value of qi at which death occurred. 168	
  

 

Realistic patterns of diversity and community structure — We evaluated whether our IBMs 170	
  

produced realistic species abundance distributions (SADs), i.e., vectors of species abundances. 

The SAD is the first pattern that theories of biodiversity should predict (McGill et al. 2007). We 172	
  

fit two of the most successful SAD models (i.e., Poisson lognormal distribution, log-series 

distribution) to the SADs of our IBMs. Historically, the Poisson lognormal and the log-series 174	
  

provide the best fits to empirical SADs (White et al. 2012, Baldridge et al. 2015). As an 

additional test, we asked whether our IBMs reproduced diversity-abundance scaling 176	
  

relationships. Aspects of species diversity often scale with N (Locey and Lennon 2016). These 

aspects include species rarity (i.e., concentration of species at low abundances), evenness, 178	
  

absolute dominance (i.e., greatest species abundance), and richness. 

 180	
  

Running the models – We ran 10,000 IBMs to test the robustness of our predictions. Each IBM 

could result in thousands of individuals and thousands of resource particles being simulated, 182	
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where variables related to physiology, abundance, trait and taxa diversity, as well as variables of 

the physical ecosystem were tracked and recorded. This computationally intensive approach 184	
  

required τ-adjusted run times. While IBMs at shortest τ led to few individuals persisting for more 

than one time step, IBMs at longest τ led to ecological selection on the capacity for individuals to 186	
  

resist starvation. This latter case took many thousands of time steps. Consequently, running an 

IBM for 1000 time steps at short τ would waste compute time while running an IBM for 1000 188	
  

time steps at long τ would not allow enough time for selection to operate. We found that the 

minimum amount of time (t) that an IBM should run related to τ through an exponential 190	
  

relationship: t = 400+5τ. After discarding this burn-in period, we ran each model for 500 

additional time steps. Altogether, run times were as low as 1000 time steps for shortest τ and as 192	
  

high as 79,000 time steps for longest τ. 

 194	
  

Quantifying abundance and diversity – We recorded aspects of abundance, activity, 

productivity, and trait and taxa diversity at either each time step or for each point after the burn-196	
  

in period. We quantified species evenness using Simpson’s evenness index (D-1/S), where D-1 is 

the inverse of Simpson’s diversity measure (Magurran and McGill 2011). Simpson’s evenness is 198	
  

among the most robust evenness measures, being highly independent of S and giving nearly 

equal weight to rare and abundant species (Smith and Wilson 1996). We quantified species 200	
  

turnover using Whittaker's index (𝛽!), which quantifies the number of times that species 

composition changes completely between two samples (Magurran and McGill 2011). 202	
  

 

RESULTS 204	
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Realistic patterns of biodiversity — Species abundance distributions (SADs) from our IBMs 

were well-fit by the two most historically successful SAD models, i.e., Poisson lognormal and 206	
  

the log-series (Figure S1). Our IBMs also reproduced empirical diversity-abundance scaling 

relationships (Figure S2). These results suggest that our IBMs, while designed to test hypotheses 208	
  

related to τ, were realistic enough to reproduce empirical patterns of biodiversity. 

 210	
  

Abundance and diversity — Our IBMs produced each of our predicted relationships of 

abundance, productivity, diversity, and activity (Figure 1). These relationships were robust but 212	
  

also reflected the high degree of variability among models owing to different species 

compositions, differing degrees of environmental flux, and three orders of magnitude in both 214	
  

flow rate and system size. Contrary to our initial expectations, the modes of these relationships 

did not occur at the point where dilution rate (1/τ) equaled maximum growth rate (µmax). Instead, 216	
  

the modes occurred at the point where dilution rate equaled the product of persistence-promoting 

traits divided by the energy-corrected product of growth-promoting traits (Figure 2). This 218	
  

emergent property, which we refer to as the fundamental vital rate (ϕ) represents the energy-

adjusted trade-off between growth- and persistence-related vital rates. Average log-transformed 220	
  

values of ϕ (-3.66 ± 0.005) and 1/τ (-3.62 ±  0.008) from our 10,000 IBMs were extremely close; 

an average difference of 1.06%. 222	
  

 

Trait syndromes — Our IBMs also supported our predictions regarding the distribution of traits 224	
  

along a residence-time gradient. Trait variation was greatest at extreme values of τ (Figure 3). At 

longest τ, individuals with suboptimal traits were able to persist within seed banks comprised of 226	
  

dormant individuals. Otherwise, short τ selected for combinations of traits that promoted rapid 
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growth, reproduction, and the ability to find and use a multitude of resources (Figure 3). In 228	
  

contrast, long τ selected for combinations of traits that promoted persistence (Figures 3). The 

median range of τ produced the highest degree of resource specialization, a result of increased 230	
  

competition among greater numbers of individuals and species (Figure 3). 

 232	
  

DISCUSSION 

 Residence time (τ) is the average amount of time that particles spend in a system and is 234	
  

often estimated from the ratio of a system’s size to its rate of flow or physical turnover. Though 

often used to manage engineered and experimental systems, τ has gone unrecognized in most 236	
  

ecological studies. However, τ couples resource supply and individual dispersal, equates the 

physical environment with growth and productivity, and varies over eight orders of magnitude in 238	
  

natural ecosystems, from minutes within some organisms to millennia in some lakes, glaciers, 

and soils (e.g., Dietrich and Dunne 1978, Bell et al. 2002, Crump et al. 2004, Friend et al. 2014, 240	
  

Dey et al. 2015, Schramski et al. 2015). Based on thousands of stochastic and ecologically 

complex individual-based models (IBMs), we demonstrated that τ can be a primary constraint on 242	
  

the abundance and diversity of taxa and traits within complex and fluctuating ecological systems. 

Unlike some variables of the physical environment (e.g., area) that underpin theories of 244	
  

biodiversity, we suggest that τ plays multiple roles in shaping ecological systems. We found that 

τ time coupled the processes of resource supply and individual dispersal in ways that integrated 246	
  

the spatiotemporal environment with life history trade-offs. This equivalence between τ and life 

history traits marked transition points in abundance, activity, productivity, and diversity. 248	
  

 In idealized systems where passively dispersing organisms occupy well-mixed and 

nutrient-rich environments, total abundance (N) and productivity should be greatest when 250	
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maximum growth rate (µmax) equals dilution rate (1/τ). However, our models, which simulated 

thousands of complex ecological systems, suggest an analogous but more complex relationship. 252	
  

Specifically, N and productivity were greatest when 1/τ equals the ratio of persistence- to energy 

corrected growth-promoting traits, i.e., ϕ = persistence/(growth – energetic costs). When ϕ > 1/τ, 254	
  

growth was low compared to persistence, resulting in the accumulation of dormant individuals. 

In contrast, when ϕ < 1/τ, systems are dominated by individuals seeking to consume and 256	
  

reproduce. Only when 1/τ approaches ϕ is the combination of growth and persistence potentially 

optimized. 258	
  

 The connections between 1/τ and growth rate allows engineers to manage growth and 

optimize bioreactors, and also allows scientists to fine tune experimental chemostats, which are 260	
  

commonly used to study ecological and evolutionary dynamics among microbes, rotifers, and 

phytoplankton (Currie and Kalff 1984, Yoshida et al. 2003, Forde et al. 2004). Understanding the 262	
  

more complex relationship of ϕ to 1/τ should empower ecologists, engineers, and microbiome 

biologists in similar ways. Specifically, estimates of ϕ should indicate whether a percent change 264	
  

in τ should produce a particular degree of increase or decrease in abundance, productivity, 

activity, and the diversity of traits and taxa. Consequently, knowledge of ϕ could be crucial to 266	
  

understanding the manifold and interrelated consequences of changing the size and rate of flow 

or physical turnover within  terrestrial, aquatic, and host-related ecosystems. 268	
  

 Biological dynamics, from the scale of a cell to that of the world ocean should be 

influenced by τ. At the individual-scale, τ has been connected to organismal metabolism, where τ 270	
  

is defined in terms of body mass and the rate at which resource flow through organisms 

(Schramski et al. 2014). Continuing this analogy, an individual-based ϕ would represent the 272	
  

point where energetically based trade-offs in the life history traits of microbiota are optimized for 
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host metabolism. At the scale of ecological communities, mechanisms of spatial dynamics such 274	
  

as mass effects, rescue effects, and source-sink effects are driven by individual dispersal and are 

central to the metacommunity paradigm (Leibold et al. 2004). However, dispersal is often linked 276	
  

to resource resupply and recent metacommunity theory suggests that these processes should be 

studied as potentially coupled (Haegeman and Loreau 2014). At the scale of trophic dynamics, 278	
  

the influence of τ is similar to that of “donor control”, where the supply of allochthonous 

resources constrains consumer growth but where consumers have little-to-no effect on resource 280	
  

resupply (Polis et al. 1997). We suspect that changes in τ may couple or decouple trophic 

interactions (e.g., predator-prey, host-parasite) by either washing out particular members at short 282	
  

τ or by exhausting endogenous resources at long τ. Consequently, τ is relevant to all levels of the 

ecological hierarchy, from individual to ecosystems. 284	
  

 In our study, we focused on τ as the primary variable of the physical ecosystem and on ϕ 

as a multivariate property that capture trade-offs between traits related to persistence and growth. 286	
  

However, both τ and ϕ can be influenced by other variables of the physical ecosystem. For 

example alterations in hydrological processes (e.g., melting permafrost and variable 288	
  

precipitation) can increase flow rate and volume, which changes τ. Likewise, temperature 

influences metabolic rates and the breakdown of nutrients via chemical kinetics, hence changing 290	
  

the vital rates and energetic costs in ϕ. Physical factors that influence τ and ϕ also apply to host 

organisms, where changes in diet and the occurrence of disease can alter τ in ways that decrease 292	
  

host health (Molla et al. 1983). Examples are bacterial overgrowth resulting from an increase in τ 

driven by Crohn’s disease (Castiglioni et al. 2000), and the removal of microbiota and nutrients 294	
  

resulting from a decrease in τ driven by Cholera (Sack et al. 1978). In this way, understanding 
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the influences of τ on abundance, activity, productivity, and the diversity of traits and taxa also 296	
  

begs for an understanding of the factors that drive τ and ϕ. 

 298	
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FIGURE CAPTIONS 
 396	
  

Figure 1. Gray-scale heat maps for 10,000 IBMs that varied by 4 orders of magnitude in both 

volume and flow rate reveal how residence time (τ) influenced total abundance (N), individual 398	
  

productivity, species richness (S), species evenness, species turnover, and the percent of N 

individuals that were metabolically inactive (i.e., dormant). Each colored hexagon represents the 400	
  

average value (e.g., N, S, etc.) among one or more models. Darker colors representing a greater 

density of models. The form of each relationship matches our conceptual predictions. Black lines 402	
  

within plots N, productivity, and S are maximum likelihood fits of the double exponential curve 

(i.e., Laplace distribution) to the 99% percentile, revealing a strong exponential upper constraint. 404	
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Figure 2. Scatter plots for results of 10,000 IBMs that varied by seven orders of magnitude in 406	
  

residence time (τ). Greatest values of total abundance (N), species richness (S), and individual 

productivity coincided with the point where dilution rate (1/τ) and the fundamental vital rate (ϕ) 408	
  

were equal, i.e., where ϕ * τ = 1. In contrast, the equivalence between 1/τ and ϕ corresponded to 

the lowest values of species evenness, species turnover, and the percent of N represented by 410	
  

dormant individuals. The fundamental vital rate captures the trade-off between growth and 

persistence trait syndromes and at 1/τ = ϕ, represents a highly productive and stable system that 412	
  

is well-adapted to dilution rate, and hence τ. 

 414	
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Figure 3. Heat maps reveal how residence time (τ) influenced traits related to growth (e.g., high 416	
  

rates of growth and active dispersal) and traits related to persistence (e.g., lower maintenance 

energy, lower chance of randomly resuscitating from dormancy, greater decrease in maintenance 418	
  

energy while in dormancy). Colored heat maps are plotted over gray-scale heat maps. Each pixel 

in gray-scale heat maps is the average of one or more models, while each pixel in the colored 420	
  

heat map is the average among 50 or more models. Thus, gray-scale heat maps reveal the 

variation among all 10,000 models, while colored heat maps reveal the central tendency. The 422	
  

relationship of resource specialization was humped-shaped, revealing that highest specialization 

coincided with the point of highest richness and total abundance (see Figure 1). 424	
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