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Objectives: Dose-response meta-analysis (DRMA) is widely employed to establishing the potential dose-

response relationship between continuous exposures and disease outcomes. However, no method is

readily available for exploring the relation between a discrete exposure and a binary or continuous

outcome. We proposed a piecewise linear (PL) DRMA model as a solution to this issue.

Methods: We illustrated the methodology of PL model in both one-stage DRMA approach and two-stage

DRMA approach. The method by testing the equality of slopes of each piecewise was employed to judge

if there is “piecewise effect” against simple linear trend. We then used sleep (continuous exposure) and

parity (discrete exposure) data as examples to illustrate how to apply PL model in DRMA using the Stata

code attached. We also empirically compared the slopes of PL model with simple linear as well as

restricted cubic spline (RCS) model.

Results: Both one-stage and two-stage PL DRMA model fitted well in our examples, and the results were

similar. Obvious “piecewise effects” were detected in both the two examples by the method we used. In

our example, the PL model showed better fitting effect and practical reliable results compared to simple

linear model, while similar results for to RCS model.

Conclusion: Piecewise linear function is a simple and valid method for DRMA and can be used for

discrete exposures. It also represents a superior model to linear model in DRMA and may be an

alternative model to non-linear model.
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24 Abstract

25 Objectives: Dose-response meta-analysis (DRMA) is widely employed to establishing the 

26 potential dose-response relationship between continuous exposures and disease outcomes. 

27 However, no method is readily available for exploring the relation between a discrete exposure 

28 and a binary or continuous outcome. We proposed a piecewise linear (PL) DRMA model as a 

29 solution to this issue.

30 Methods: We illustrated the methodology of PL model in both one-stage DRMA approach and 

31 two-stage DRMA approach. The method by testing the equality of slopes of each piecewise was 

32 employed to judge if there is “piecewise effect” against simple linear trend. We then used sleep 

33 (continuous exposure) and parity (discrete exposure) data as examples to illustrate how to apply 

34 PL model in DRMA using the Stata code attached. We also empirically compared the slopes of 

35 PL model with simple linear as well as restricted cubic spline (RCS) model. 

36 Results: Both one-stage and two-stage PL DRMA model fitted well in our examples, and the 

37 results were similar. Obvious “piecewise effects” were detected in both the two examples by the 

38 method we used. In our example, the PL model showed better fitting effect and practical reliable 

39 results compared to simple linear model, while similar results for to RCS model.

40 Conclusion: Piecewise linear function is a simple and valid method for DRMA and can be used 

41 for discrete exposures. It also represents a superior model to linear model in DRMA and may be 

42 an alternative model to non-linear model.

43

44 Keywords piecewise linear function, dose-response meta-analysis, discrete exposure
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46 Introduction

47 In epidemiological research, one of the important tasks is the investigation of potential dose-

48 response relationship between exposures and disease outcomes. In order to establish the evidence 

49 of dose-specific effects, dose-response meta-analysis (DRMA) may be used [1]. In recent years, 

50 DRMA has gained increasing attention and has been put in practice in evidence-based medicine. 

51 A survey has found that there were nearly 400 DRMAs were published by alone over the past 

52 five years, and the number continues increasing [2]. 

53 One critical methodological issue remains in DRMA is how to fit dose-specific effects. Both 

54 continuous and discrete variables may be used as the exposure in DRMA. Several regression 

55 methods have been developed for exploring relationship between continuous exposures and 

56 binary outcomes in DRMA, including the simple linear model [3], the natural quadratic model 

57 [4], the flexible polynomial model [5], and the restricted cubic spline model [6]. These models, 

58 covering both simple linear and non-linear trend approximation, have been proven to be valid. 

59 However, no model is readily available for investigating dose-response relation for discrete 

60 exposures due to their nature of discontinuous. Some have used non-linear DRMA model to 

61 assess the relationship between discrete exposure and disease outcomes [7, 8]. Although their 

62 results tend to be correct, the method is questionable because discrete variable cannot be directly 

63 smooth as a curve (but can be line) between two specified points due to the disjoint nature and 

64 nonconvex property [9]. Simple linear model is an alternative. However, in many cases, simple 

65 linear model tend to be at risk of under fit and wrong prediction. For example, for J-shaped or U-

66 shaped curves, simple linear model may lead to unrealistic conclusion since the slopes differ 

67 across piecewise [10]. 

68 In this article, we described piecewise linear (PL) model, which can be fitted in both one-stage 

69 and two-stage approach, to solve the problem. The model may represent a valid solution to 

70 establish dose-specific relation between discrete exposures and binary outcomes. In the 

71 following sections, we firstly describe the expression of PL function and the methodology of 

72 pooling interested estimators; we subsequently use the parity and sleep data for illustration of 

73 discrete and continuous variables and compare them with simple linear and nonlinear spline 

74 model; we finally offer an extension of the model and include our discussion. The main 
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75 command using for model implementation in Stata is presented in the supplementary file.

76

77 Methods

78 Piecewise linear regression model

79 A collection of  is assumed as included studies and  as the knots  𝒋 (1, 2, 3…,𝑛) 𝒌(1, 2, 3…, 𝒊 ‒ 1)

80 assigned for the data distribution within a study. Then the data can be divided to  pieces. The 𝒊
81 expression of the model within each study can be written as 

82  (1)𝒍𝒐𝒈𝒀 = 𝜶 + 𝜷𝒊𝑿 + 𝜺
83 Where  is the intercept (not always needed),  are slopes or regression coefficients of  𝜶 𝜷

i

84 assigned pieces ( ) cut by knots.  is the random error.  is the relative risk of interested i 𝜺 𝒀
85 outcome, including odds ratio (OR), relative risk (RR), or hazard ratio (HR) [6]. A natural 

86 logarithm transformation is made to achieve an approximate normal distribution. For continuous 

87 outcomes,  is the mean difference (MD) or the standard mean difference (SMD), and the log-𝒀
88 transformation is not usually needed.  is the exposure, referring to continuous or discrete 𝑿
89 variables. If we insert one knot (50th) of the distribution of , the slope would be divided into 𝑿
90 two pieces: 0~50th on the left side of the knot and 50th~100th on the right side. The integers 

91 should be chosen as cut points if  is a discrete variable. When  equals zero (generally forced 𝑿 𝜶
92 to be zero in binary outcome DRMA [6]), the expression (1) changes to 

93  (2)𝒍𝒐𝒈𝒀 = 𝜷
i
𝑿 + 𝜺

94 In such situation, the function is expected to go through the origin. The mathematical 

95 expectation of  is the estimator of interested, as ( ) in formula (1) and  in 𝒍𝒐𝒈𝒀 𝜶 + 𝜷𝒊𝑿 𝜷𝒊𝑿
96 formula (2). The key problem of the function is the estimation of . Generally, ordinary least 𝜷
97 squares (OLS) estimation can reach the best linear unbiased evaluation (BLUE) for . However, 𝜷
98 in meta-analysis of dose-response data, correlations between logRRs cannot be ignored. Orsini et 

99 al [13] proposed a generalized least square (GLS) method to satisfy BLUE property for  in 𝜷
100 DRMA. With the OLS method, the estimation of ,  could be estimated using the following 𝜷 𝜷𝑶
101 formula:

102  (3)𝜷𝑶 = (𝑿'𝑿) ‒ 𝟏(𝑿'𝒀)
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103 While in the GLS method, the formula for estimation of ,  is𝜷 𝜷𝑮
104  (4)𝜷𝑮 = (𝑿'𝑪 ‒ 𝟏𝑿) ‒ 𝟏(𝑿'𝑪 ‒ 𝟏𝒀)

105 Where  is the covariance matrix of , which generally needed to be estimated according to 𝑪 𝒀
106 group sizes information——that is, numbers of cases and controls/total of category levels within 

107 each study [4]. When the group size information is missing, the GLS approach is hard to be 

108 applied. An alternative way in this situation is to use the weighted least squares (WLS) 

109 estimation [11]. Likewise, the WLS estimation of ,  could be conducted as below𝜷 𝜷𝑾
110  (5)𝜷𝑾 = (𝑿'𝑾 ‒ 𝟏𝑿) ‒ 𝟏(𝑿'𝑾 ‒ 𝟏𝒀)

111  is the weight and is usually set as inverse variance in meta-analysis. The variance can be 𝑾
112 generally written as

113  (6)𝑽𝒂𝒓 = (𝑿'𝜴 ‒ 𝟏𝑿) ‒ 𝟏
114 With  indicates the identity matrix for OLS, covariance matrix for GLS, and weighted 𝜴
115 variance matrix for WLS of Y.

116

117 Synthesis methods of piecewise relationship

118 Two methods are available to pool the regression estimators ( ), which refer to, the one-stage 𝜷
119 approach and the two-stage approach. For the one-stage approach, all studies were treated as a 

120 whole while each study was treated as a cluster [11]. This method was first described by Doi and 

121 Chang [11], which based on WLS for the estimation and refers to random effect model, and 

122 known as the robust-error meta-regression (REMR).. We did slight modification on it that forced 

123 the intercept as zero in this model. Under the REMR model, the estimation of variance becomes:

124  (7)𝑽𝒂𝒓 = (𝑿'𝑾𝑿) ‒ 𝟏
 (∑𝒏𝒋 = 𝟏∑𝒊 ∈ 𝒄𝒋𝑿'𝑾𝚺𝑾𝑿)(𝑿'𝑾𝑿) ‒ 𝟏

125 The synthesis of  in one-stage model is the actually the estimation of  of the regression due 𝜷 𝜷
126 to the nature of one-stage approach. Details were illustrated elsewhere [11].

127 The two-stage approach, which based on GLS, is first described by Orsini and known as 

128 GLST [6]. It estimate the regression coefficients within each study first and then combine the 

129 coefficients in fixed-, random-effect, or other weighting schemes. Let us assume one knot of the 

130 function as illustration of two-stage method; consequently, we could obtain two piece of slopes (
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131 ) in each study produced by the knot. Then formulaβ1 𝑎𝑛𝑑 β2

132  (
𝛃𝟏𝒋𝛃𝟐𝒋)~𝑵((

𝜽𝟏𝜽𝟐), 𝚺 + 𝜱);𝚺 = ( 𝝈𝟏𝒋𝟐 𝝈𝟏𝝈𝟐𝝆𝟏𝝈𝟏𝝈𝟐𝝆𝟏 𝝈𝟐𝒋𝟐 ); 𝚽 = ( 𝝉𝟏𝟐 𝝉𝟏𝝉𝟐𝝆𝟐𝝉𝟏𝝉𝟐𝝆𝟐 𝝉𝟐𝟐 )(8)

133 indicate the fixed- ( ) or random-effect model ( ) of the two-stage DRMA. Here  𝚽 = 𝟎 𝚽 ≠ 𝟎 𝜽𝟏
134 and  are the summarized estimators of  and .  is the within-study variance matrix 𝜽𝟐 𝛃𝟏𝒋 𝛃𝟐𝒋 𝚺𝒋
135 while  is the between-study variance matrix which need to be estimated.  and  are 𝚽 𝝆𝟏 𝝆𝟐
136 correlation coefficients within  ( , ) and  ( , ) respectively. Details of the algorithm 𝝈 𝝈𝟏𝒋 𝝈𝟐𝒋 𝝉 𝝉𝟏 𝝉𝟐
137 have been illustrated by White [12] and Matteo [5]. 

138

139 Examples 

140 We used both the GLST approach (two-stage) and the REMR approach (one-stage) for PL 

141 DRMA as examples. We tested the equality of the slopes (e.g. ) of each piecewise as a β1 𝑎𝑛𝑑 β2

142 judgment of whether there is “piecewise effect” against the simple linear effect, and considered P 

143 < 0.1 was statistical significance due to the lower power of the test. Random-effect model were 

144 used due to the potential heterogeneity. All the analyses were illustrated in Stata/SE 14 (Stata 

145 Corp, College Station, TX, USA). The code we used was presented in Table 1.

146 Dose-response meta-analysis for continuous data

147 In a large cohort-based dose-response meta-regression, Liu et al [13] has investigated the 

148 relationship between sleep duration and all-cause mortality. We used their data as an example 

149 but since we knew that sleep duration tends to have a grossly non-linear association with 

150 mortality the dose needed to be centred but this time keeping the reference dose conceptually 

151 constant. A look at the range of reference values for sleep duration revealed that in most cases 

152 this was between 4.5 and 5.5 h with a mean of 5 h and thus we excluded all studies with a 

153 reference of 6+ h (five studies). We also excluded a sixth study with an error that did not allow 

154 computation of covariance required for the GLST model. Although the reference varied slightly 

155 in the remaining studies, they were all assumed to have conceptually constant reference duration 

156 of sleep at 5h. We centred by subtracting the actual reference dose from each non-reference dose 
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157 and thus modelled increments but considered all these increments to conceptually start from the 

158 5h sleep duration baseline. 

159 Our meta-analysis showed that, based on GLST approach, significant “piecewise effect” was 

160 observed (P < 0.01), the relative risk (RR) of all-cause mortality was 1.02 (95%CI: 1.00, 1.04) 

161 for every 1-hour reduction of sleep duration among people who slept less than 7 hours; the RR 

162 was 1.09 (95%CI: 1.09, 1.10) for every 1-hour increase of sleep duration among people who 

163 slept more than 7 hours (Figure 1a); based on REMR approach, the “piecewise effect” test was 

164 significant (P < 0.01) and the RRs were 1.01 (95%CI: 1.01, 1.02) for each hour reduction when 

165 sleep less than 7 hours and 1.08 (95%CI: 1.05, 1.10) for each hour increase when sleep more 

166 than 7 hours, respectively (Figure 1b). 

167 Dose-response meta-analysis for discrete data

168 Epidemiological studies suggested parity (number of birth) may relate to the risk of rheumatoid 

169 arthritis. We searched PubMed and Embase and crudely included 4 case-control or cohort studies 

170 about parity and risk of rheumatoid arthritis. We then used the parity data as an example of 

171 analyzing response of a discrete exposure with an outcome in DRMA (Table S2). We choose 3 

172 as the cut point of number of birth refers to evidence from previous similar publications [14, 15]. 

173 This not need centered since all the studies with “doses” start from zero.

174 Our results showed that, based on GLST approach, for women with 3 or less births, the RR of 

175 rheumatoid arthritis was 0.94 (95%CI: 0.87, 1.01) for every 1-birth increment (P for “piecewise 

176 effect” was 0.03); for women with 3 or more births, the RR of rheumatoid arthritis was 1.13 

177 (95%CI: 1.01, 1.26) for every 1-birth increment (Figure 2a). Based on REMR approach, the RRs 

178 were 0.92 (95%CI: 0.83, 1.03) for every 1-birth increment for women with 3 or less births (P for 

179 “piecewise effect” was 0.06), and 1.15 (95%CI: 1.10, 1.32) for women with 3 or more births 

180 (Figure 2b).

181 Results

182 Comparison to simple linear model

183 A simple linear model was used to fit the dose-response relationship of the sleep duration and 
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184 all-cause mortality and compared it with the PL model. The results by simple linear model 

185 showed that RR for each-hour increment of sleep duration was 1.00 (95%CI: 0.97, 1.03) based 

186 on GLST approach and 0.99 (95%CI: 0.99, 1.00) based on REMR approach, respectively (Table 

187 2). Compared to PL model, these results obviously under fit and failed to in line with clinical 

188 practice. 

189 Comparison to non-linear spline model

190 We used the restricted cubic spline (RCS) model [6] to fit a non-linear trend for sleep duration 

191 and all-cause mortality and compared it with the PL model. We insert 3 knots of the distribution 

192 of sleep duration in the RCS model. For non-linear relationship between sleep duration and risk 

193 of all-cause mortality, the slopes of PL model fitted well to RCS curve for both GLST and 

194 REMR approaches. The dose-specific results were similar for PL model and RCS model of the 

195 two approaches (Table 2). 

196

197 Discussion

198 In this article, we proposed a new model for dose-response meta-analysis exploring relation 

199 between discrete variables and outcomes. To the best of our knowledge, few previous articles 

200 clearly address summarized dose-specific effects on discrete exposures. In our examples, this 

201 model fitted well and the results were reasonable. Our PL model is useful when non-linear 

202 association cannot be directly employed and linear association is not sufficient. 

203 Previous models for DRMA have been well developed for continuous exposures, but are 

204 limited when discrete exposures are used. In practice, however, discrete variables are often used 

205 as exposures in DRMAs. While such types of exposure were usually misused. A cross-sectional 

206 study showed that 5.7% of published DRMAs inappropriately used discrete exposures to fit non-

207 linear association [2]. This fact may result from the absence of usable model. Our model thus 

208 offers a solution for discrete exposures in DRMAs.

209 Generally, in a dose-response meta-analysis, the doses (e.g. 1-5 cup/day) were extracted from 

210 source publications and have to be changed into an acceptable form [6, 16]. Briefly, for closed 
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211 interval, the median or mean value of each exposure level is assigned to a corresponding relative 

212 risk [17]; for the open-ended interval (e.g. >5 cup/day), the assigned dose is estimated by 

213 multiplying 1.2 of cut-off point [18] or by assuming the range to be the same as the adjacent 

214 interval. However, these approaches are inappropriate for discrete variables because of which 

215 would result in decimals that are not allowed for discrete variables – the assigned doses for 

216 discrete variables are expected to be integer. Future studies are needed to focus this problem.

217 In DRMAs, it is important to decide a best-fit model among non-linear, piecewise linear, and 

218 simple linear procedures. For linear and non-linear association, the common approach often sets 

219 the coefficients of non-linear term as zero and test the probability of this null hypothesis. If P < 

220 0.1 (assuming 𝛼=0.1), we have reasonable evidence to reject the null hypothesis and treat the 

221 potential trend as non-linear. A linear model would be chosen, otherwise. When non-linear 

222 association is not significant or cannot be directly used, it is reasonable to consider the piecewise 

223 or the simple linear model. We use the method of testing the equality of the slopes, which allows 

224 us to detect if there is “piecewise effect” against simple linear model. And the piecewise linear 

225 model should be chose when there is obvious “piecewise effect”. 

226 In our examples, we presented the application of one-stage approach as were as the two-stage 

227 approach based on the PL model. We found that the results were mostly similar between one-

228 stage and two-stage approach. One advantages of one-stage approach is it do not need the group 

229 size information of included studies while still allows a valid estimation; another advantages of 

230 one-stage approach is the exempt assumption of normal distribution of the regression coefficients. 

231 While for two-stage approach allows for the estimation of heterogeneity between studies and 

232 correlation between regression coefficients. Both these two approaches can be easily applied by 

233 the STATA code we attached. 

234 The proposed method has a few limitations. First, the piecewise linear model is a special type 

235 of linear function; the results are less precise and flexible compared to higher order function (e.g. 

236 third order). Although adding more knots may improve precision, the results remain to be at risk 

237 of under fit when a non-linear association is significant. Second, inverse variance or other 

238 weighting schemes according to sample sizes were used in current methods; such methods, 

239 however, do not address the issue of study quality. Suhail A.R et al [19] proposed a quality effect 
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240 (QE) model that included study quality for adjusting pooled effect estimates from meta-analysis 

241 of observational studies may serve as a potential solution. Third, a valid approach to determining 

242 the best cut point of the distribution of exposure has yet to be established, although adjusted R-

243 squared may offer some suggestions.  

244 In conclusion, piecewise linear function is a simple and valid method for DRMA. It is useful 

245 for assessing relation between discrete exposures and outcomes, and represents an alternative 

246 model to the non-linear model, and it may also be a superior model to linear model in DRMA. 

247 Further studies should focus on improving the precision of cut point selection as well as the 

248 flexibility of PL model.  

249
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314 Figure legends

315 Figure 1. Piecewise linear prediction for sleep duration and risk of all-cause mortality: a) based 

316 on random-effect GLST approach (P < 0.01 for “piecewise effect” test); b) based on REMR 

317 approach (P < 0.01 for “piecewise effect” test).

318 Figure 2. Piecewise linear prediction for parity and risk of rheumatoid arthritis: a) based on 

319 random-effect GLST approach (P = 0.03 for “piecewise effect” test); b) based on REMR 

320 approach (P = 0.06 for “piecewise effect” test).

321

322
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Figure 1

Figure 1. Piecewise linear prediction for sleep duration and risk of all-cause mortality:

a) based on random-effect GLST approach (P < 0.01 for “piecewise effect” test);

b) based on REMR approach (P < 0.01 for “piecewise effect” test).
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Figure 2

Figure 2. Piecewise linear prediction for parity and risk of rheumatoid arthritis: a) based on

random-effect GLST approach (P = 0.03 for “piecewise effect” test); b) based on REMR

approach (P = 0.06 for “piecewise effect” test)

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27277v1 | CC BY 4.0 Open Access | rec: 15 Oct 2018, publ: 15 Oct 2018



0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

R
el

at
iv

e 
ri

sk
s 

o
f 

rh
eu

m
at

o
id

 a
rt

h
ri

ti
s 

0 1 2 3 4 5 6 7 8 
Figure 2a.Number of birth 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

R
el

at
iv

e 
ri

sk
s 

o
f 

rh
eu

m
at

o
id

 a
rt

h
ri

ti
s 

0 1 2 3 4 5 6 7 8 
Figure 2b.Number of birth 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27277v1 | CC BY 4.0 Open Access | rec: 15 Oct 2018, publ: 15 Oct 2018



Table 1(on next page)

Table 1

Table 1. Stata commands for piecewise linear DRMA for sleep data.
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1 Table 1. Stata commands for piecewise linear DRMA for sleep data.  

GLST approach-random effect 

***Data centering(if needed)

bysort id: gen dosec =(dose- dose[1])+5

*** Weighting

gen wt=1/(se^2)

***Regression

mkspline linsp_dose1 7 linsp_dose2 = dosec, 

marginal displayknots

glst logrr linsp_dose*, cov(n case) se(se) 

pfirst(id studytype) r eform

***test for piecewise effect

test linsp_dose1= linsp_dose2

***Get linear results of each pieces

lincom linsp_dose1*-1, eform

lincom linsp_dose2*1, eform

***Dose-specific results and plots

quietly levelsof dosec, local(levels)

xblc linsp_dose* , covname (dosec) at(`r(levels)') 

ref (7) eform line

REMR approach without intercept

***Data centering(if needed)

bysort id: gen dosec =(dose- dose[1])+5 

***Weighting

gen wt=1/(se^2)

bysort id: egen maxwt=max(wt) 

replace wt = maxwt if  wt==.

***Regression

mkspline linsp_dose1 7 linsp_dose2 = dosec, 

marginal displayknots

regress logrr linsp_dose* [aweight=wt], nocons 

vce(cluster author) eform (exp beta)

***test for piecewise effect

test linsp_dose1 =linsp_dose2

***Get linear results of each pieces

lincom linsp_dose1*-1, eform

lincom linsp_dose2*1, eform

***Dose-specific results and plots

quietly levelsof dosec, local(levels)

xblc linsp_dose* , covname (dosec) at(`r(levels)') 

ref (7) eform line
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Table 2

Table 2. Comparison between piecewise linear and linear as well as cubic spline model.
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1 Table 2. Comparison between piecewise linear and linear as well as cubic spline model.

Examples GLST REMR

Sleep duration Piecewise linear Simple linear Piecewise linear Simple linear

 <7, 1-hour decrease 1.02 (1.004, 1.04) ─ 1.01 (1.01, 1.02) ─

 >=7, 1-hour increase 1.09 (1.09, 1.10) ─ 1.08 (1.05, 1.10) ─

1-hour increase ─ 1.00 (0.97, 1.03) ─ 0.99 (0.99, 1.00)

Sleep duration(continuous) Piecewise linear Cubic spline Piecewise linear Cubic spline

  5 h 1.04 (1.01-1.07) 1.01 (0.99-1.04) 1.04 (1.03-1.05) 1.01 (1.00-1.02)

  6 h 1.02 (1.00-1.03) 0.99 (0.98-1.01) 1.02 (1.02-1.02) 0.99 (0.99-1.00)

  7 h Reference Reference Reference Reference

  8 h 1.08 (1.06-1.09) 1.05 (1.03-1.06) 1.08 (1.06-1.10) 1.05 (1.03-1.06)

  9 h 1.16 (1.12-1.20) 1.14 (1.10-1.17) 1.17 (1.12-1.22) 1.13 (1.09-1.17)

2
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