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Abstract

The emergence of new replicating entities from the union of1
simpler entities represent some of the most profound events2
in natural evolutionary history. Such transitions in individu-3
ality are essential to the evolution of the most complex forms4
of life. As such, understanding these transitions is critical5
to building artificial systems capable of open-ended evolu-6
tion. Alas, these transitions are challenging to induce or de-7
tect, even with computational organisms. Here, we intro-8
duce the DISHTINY (DIStributed Hierarchical Transitions9
in IndividualitY) platform, which provides simple cell-like10
organisms with the ability and incentive to unite into new11
individuals in a manner that can continue to scale to subse-12
quent transitions. The system is designed to encourage these13
transitions so that they can be studied: organisms that co-14
ordinate spatiotemporally can maximize the rate of resource15
harvest, which is closely linked to their reproductive ability.16
We demonstrate the hierarchical emergence of multiple levels17
of individuality among simple cell-like organisms that evolve18
parameters for manually-designed strategies. During evolu-19
tion, we observe reproductive division of labor and close co-20
operation among cells, including resource-sharing, aggrega-21
tion of resource endowments for propagules, and emergence22
of an apoptosis response to somatic mutation. Many repli-23
cate populations evolved to direct their resources toward low-24
level groups (behaving like multi-cellular individuals) and25
many others evolved to direct their resources toward high-26
level groups (acting as larger-scale multi-cellular individu-27
als).28

Introduction29

Artificial life researchers design systems that exhibit prop-30
erties of biological life in order to better understand their31
dynamics and, often, to apply these principles toward en-32
gineering applications such as artificial intelligence (Bedau,33
2003). Studies of evolution have been of particular inter-34
est to the community, especially in regard to how organisms35
are produced with increasing sophistication and complex-36
ity (Goldsby et al., 2017). This particular issue is often de-37
scribed as “open-ended evolution.” Although precise defi-38
nitions and measures of open-ended evolution are still be-39
ing established, this term is generally understood to refer40
to evolving systems that exhibit the continued production41
of novelty (Taylor et al., 2016). Evolutionary transitions in42

individuality, which are key to the complexification and di-43
versification of biological life (Smith and Szathmary, 1997),44
have been highlighted as key research targets with respect to45
the question of open-ended evolution (Ray, 1996; Banzhaf46
et al., 2016). In an evolutionary transition of individuality,47
a new, more complex replicating entity is derived from the48
combination of cooperating replicating entities that have ir-49
revocably entwined their long-term fates (West et al., 2015).50
In particular, we focus on fraternal transition in individual-51
ity, events where closely-related kin come together or stay52
together to form a higher-level organism (Queller, 1997).53
Eusocial insect colonies and multicellular organisms exem-54
plify this phenomenon (Smith and Szathmary, 1997). Like55
the definition of open-ended evolution, the notion of what56
constitutes an evolving individual is not concretely estab-57
lished. Commonly indicated features include: close coor-58
dination and cooperation, reproductive division of labor, re-59
productive bottlenecks, and loss of ability to replicate inde-60
pendently (Ereshefsky and Pedroso, 2015; Bouchard, 2013).61

Our appreciation of fraternal transitions in individuality62
benefits from experimental work probing the origins of mul-63
ticellularity. In the biological domain, Ratcliff et al. have64
demonstrated evolution of multicellularity in yeast, deriv-65
ing fraternal clusters of cells that cling together in order to66
maximize their settling rate (Ratcliff et al., 2012). The con-67
tributions of Goldsby and collaborators are particularly no-68
table among computational Artificial life work on the origins69
of multicellularity. Their evolutionary experiments track a70
population composed of demes, distinct spatial domains in-71
habited by clonal colonies of cells. Two distinct types of re-72
production occur: (1) cells reproduce within demes and (2)73
deme reproduction, where a target deme is sterilized then74
re-innoculated with genetic material from the parent deme.75
With such methods, Goldsby et al. have studied division76
of labor (Goldsby et al., 2010, 2012), the origin of soma77
(Goldsby et al., 2014), and the evolution of morphological78
development (Goldsby et al., 2017). We aspire to com-79
plement deme-based approaches with a framework where80
higher level individuality unfolds via cellular reproductions81
within a single unified space. In particular, we are interested82
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in the potential for such a system to undergo nested hierar-83
chical transitions.84

Major challenges in studying evolutionary transitions in85
individuality include (1) determining the environmental con-86
ditions that will promote such a transition and then (2) rec-87
ognizing that a transition has occurred. In order to begin88
exploring transitions in individuality, we must devise a sys-89
tem in which we expect such transitions to occur repeatably90
and in a detectable manner. Once we can consistently in-91
duce and observe evolutionary transitions in individuality,92
we may subsequently proceed to relax aspects of such a sys-93
tem to explore in greater detail what conditions are neces-94
sary to induce transitions and how transitions can be de-95
tected. For now, we will focus on these initial goals in the96
context of fraternal transitions in individuality.97

To this end, we introduce the DISHTINY (DIStributed98
Hierarchical Transitions in IndividualitY) platform, which99
seeks to achieve the evolution of transitions in individual-100
ity by explicitly registering organisms in cooperating groups101
that coordinate spatiotemporally to maximize the harvest of102
a resource. Detection of such a transition in DISHTINY103
is accomplished by identifying resource-sharing and repro-104
ductive division of labor among organisms registered to the105
same cooperating group. We designed this system such that106
hierarchal transitions across an arbitrary number of levels of107
individuality can be selected for and meaningfully detected.108
We have focused this system on a rigid form of major tran-109
sition using simple organisms, but the underlying principles110
can be applied to a wide range of artificial life systems. Fur-111
thermore, DISHTINY is decentralized and amenable to mas-112
sive parallelization via distributed computing. We believe113
that such scalability — with respect to both concept and im-114
plementation — is an essential consideration in the pursuit115
of artificial systems capable of generating complexity and116
novelty rivaling that of biological life via open-ended evolu-117
tion (Ackley and Cannon, 2011; Ackley, 2016).118

Methods119

In order to demonstrate that the DISHTINY platform selects120
for detectable hierarchical transitions in individuality, we121
performed experiments where cell-like organisms evolved122
parameters to control manually designed behaviors such as123
resource-sharing, reproductive decision-making, and apop-124
tosis. We will first cover the design of the DISHTINY plat-125
form and then describe the simple cell-like organisms we126
used to evaluate the platform.127

DISHTINY128

DISHTINY allows cell-like organisms to replicate across a129
toroidal grid. Over discrete timesteps (“updates”), the cells130
can collect a continuous-valued resource. Once sufficient131
resource has been accrued, cells may pay 8.0 resource to132
place a daughter cell on an adjoining tile of the toroidal grid133
(i.e., reproduce), replacing any existing cell already there.134

As cells reproduce, they can choose to include offspring in135
the parent’s cooperating “signaling channel” group or force136
offspring to create a new cooperating “signaling channel”137
group.138

As shown at the top of Figure 1, resources appear at139
a single point then spread outwards update-by-update in a140
diamond-shaped wave, disappearing when the expanding141
wave reaches a predefined limit. Cells must be in a costly142
“activated” state to collect resource as it passes. The cell at143
the starting position of a resource wave is automatically ac-144
tivated, and will send the activate signal to neighboring cells145
on the same signaling channel. The newly activated cells,146
in turn, activate their own neighbors registered to the same147
signaling channel. Neighbors registered to other signaling148
channels do not activate. Each cell, after sending the acti-149
vation signal, enters a temporary quiescent state so as not150
to reactivate from the signal. In this manner, cells sharing151
a signaling channel activate in concert with the expanding152
resource wave. As shown Figure 1a, b, the rate of resource153
collection for a cell is determined by the size and shape of154
of its same-channel signaling network; small or fragmented155
same-channel signaling networks will frequently miss out156
on resource as it passes by.157

Each cell pays a resource cost when it activates. This cost158
is outweighed by the resource collected such that cells that159
activate in concert with a resource wave derive a net benefit.160
Recall, though, that resource waves have a limited extent.161
Cells that activate outside the extent of a resource wave or162
activate out of sync with the resource wave (due to an in-163
direct path from the cell that originated the signal) pay the164
activation cost but collect no resource. Cells that frequently165
activate erroneously use up their resource and die. In our im-166
plementation, organisms that accrue a resource debt of −11167
or greater are killed. This erroneous activation scenario is168
depicted in Figure 1c.169

In this manner, “Goldilocks” — not to small and not170
too big — signaling networks are selected for. Based on171
a randomly chosen starting location, resource wave start-172
ing points (seeds) are tiled over the toroidal grid such that173
the extents of the resource waves touch, but do not overlap.174
All waves start and proceed synchronously; when they com-175
plete, the next resource waves are seeded. This process en-176
sures that selection for “Goldilocks” same-channel signaling177
networks is uniformly distributed over the toroidal grid.178

Cells control the size and shape of their same-channel sig-179
naling group through strategic reproduction. Three choices180
are afforded: whether to reproduce at all, where among the181
four adjoining tiles of the toroidal grid to place their off-182
spring, and whether the offspring should be registered to183
the parent’s signaling channel or be given a random chan-184
nel ID (in the range 1 to 222). No guarantees are made about185
the uniqueness of a newly-generated channel ID, but chance186
collisions are rare.187

Hierarchical levels are introduced into the system through188
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Figure 1: Activation signaling, and net resource collection for three different-sized same-channel networks during a
resource wave event. At the top, a resource wave is depicted propagating over three updates and then ceasing for four updates
(left to right). In row a, a small two-cell channel-signaling group (far left, in green) is activated; tracking the resource wave
(top) yields a small net resource harvest (far right). In row b, an intermediate-sized 13-cell channel-signaling group yields a
high net resource harvest. Finally, in row c, a large 29-cell channel-signaling group incurs a net negative resource harvest. In
rows a, b, and c, dark purple indicates the active state, light purple indicates the quiescent state, and white indicates the ready
state.

multiple separate, but overlaid, instantiations of this re-189
source wave/channel-signaling scheme. We refer to each190
independent resource wave/channel-signaling system as a191
“level.” In our experiments, we allowed two resource192
wave/channel-signaling levels, identified here as level one193
and level two. On level one, resource waves extended a ra-194
dius of three toroidal tiles. On level two they extended a195
radius of 24 toroidal tiles. On both levels, activated cells196
netted +1.0 resource from a resource wave, but suffered an197
activation penalty of −5.0 if no resource was available. Due198
to the different radii of resource waves on different levels,199
level one selects for small same-channel signaling networks200
and level two selects for large same-channel signaling net-201
works.202

Cells were marked with two separate channel IDs, one203
for level one and another for level two. We enforced hier-204
archical nesting of same-channel signaling networks during205
reproduction: daughter cells may inherit neither channel ID,206
just the level-two channel ID, or both channel IDs. Daugh-207
ter cells may not inherit only the level-one channel ID while208
having a different level-two channel ID. The distribution of209
IDs across the level-two and level-one channels can be envi-210

sioned by analogy to political countries and territories. Each211
country (i.e., level-two channel network) may have one or212
many territories (i.e., level-one channel network). However,213
no territory spans more than one country. Figure 2 depicts214
hierarchically nested channel states at the end of three evo-215
lutionary runs.216

Channel IDs enable straightforward detection of an evolu-217
tionary transition in individuality. Because common channel218
IDs may only arise systematically through inheritance, com-219
mon channel IDs indicate a close hereditary relationship in220
addition to a close cooperative relationship. Because new221
channel IDs arise first in a single cell, same-channel sig-222
naling networks are reproductively bottlenecked, ensuring223
meaningful reproductive lineages at the level of the same-224
channel signaling network. To recognize an evolutionary225
transition in individuality, we therefore evaluate226

1. Do cells with the same channel ID choose to share re-227
sources (e.g., cooperate)?228

2. Is there division of reproductive labor between members229
of the same channel (e.g., do cells at the interior of a net-230
work cede reproduction to those at the periphery?)231

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27275v2 | CC BY 4.0 Open Access | rec: 16 Oct 2018, publ: 16 Oct 2018



DRAFT

If these conditions are met among cells sharing the same232
level-one channel, a first-level transition in individuality233
may have occurred. Likewise, if these conditions are met234
among cells sharing the same level-two channel, a second-235
level transition in individuality may have occurred. In either236
case, observation of altruistic behavior, such as an apoptosis237
response to mutation, would further evidence a transition.238

Organisms239

We performed our experiments using cell-like organisms240
composed of 15 floating-point parameters, each controlling241
a specific strategy component pertinent to transitions in indi-242
viduality (i.e., reproductive division of labor, resource pool-243
ing, apoptosis, propagule generation, and propagule endow-244
ment). These particular cell-like organisms are in no way245
inherent to the DISHTINY platform, but were merely de-246
veloped to study transitions using as simple a model system247
as feasible. On reproduction, we applied mutation to each248
parameter independently with probability 0.00005.249

The aversion parameters (A1 and A2) allow cells to250
avoid reproducing over neighbors sharing the same signal-251
ing channel. Specifically, they control the probability that a252
cell declines to supplant a neighbor sharing the same level-253
one (A1) or level-two (A2) channel ID. If a cell declines254
to place its offspring in all four adjoining tiles, it does not255
reproduce. Mutation is performed by a redraw from the uni-256
form distribution U(−0.5, 1.5) clamped to the range [0, 1].257

The resource allocation parameters control the propor-258
tion of resources that go to the cell’s stockpile (Pc), its level-259
one channel’s resource pool (P1), or its level-two channel’s260
resource pool (P2). These parameters are initialized by a261
draw from U(−1.0, 2.0) clamped to the range [0, 1] and mu-262
tated by addition of a normal value drawn from N(0.0, 0.2)263
with the result clamped to the range [0, 1]. The set Pc, P1, P2264
is always normalized to sum to 1.265

Channel resource pools are identical to an organism’s266
individual stockpile, except that any deficit is distributed267
evenly among the individual organism’s stockpile. On ev-268
ery update, cells can spend from their individual stockpile269
to reproduce or from a channel pool, with priority given to270
cells nearest to the centroid of that pool’s members. As such,271
pool-funded reproduction fills in a same-channel signaling272
network from the inside out and help produce diamond-273
shaped same-channel signaling networks. (Distance is mea-274
sured using the taxicab metric.)275

Channel cap parameters C1 and C2 regulate the size276
of same-channel signaling networks. When an organism re-277
produces, it checks the size of its level-one signaling net-278
work against C1 and the size of its level-two signaling group279
against C2. If neither cap is met or exceeded, then the or-280
ganism will produce an offspring sharing both of its chan-281
nel IDs. If only the C1 cap is exceeded, then the organism282
will produce an offspring with new level-one channel ID but283
identical level-two channel ID. Finally, if the C2 cap is ex-284

ceeded, then the organism will produce an offspring with285
new IDs for both channels. For level-one caps, these pa-286
rameters are initialized by a draw from U(0.0, 16.0). For287
level-two caps, these parameters are initialized by a draw288
from U(0.0, 128.0). Both are mutated by addition of a value289
drawn from N(0.0, 24.0) with the result clamped to be non-290
negative.291

The endowment parameters Ec, E1, and E2 deter-292
mine the amount of resource provided to offspring. This293
endowment is paid as an additional cost by the cell stock-294
pile (or same-channel resource pool) funding a reproduc-295
tion. The full amount of the received endowment is di-296
vided between the daughter cell’s stockpile, level-one same-297
channel resource pool, and level-two same-channel resource298
pool according to the offspring’s resource allocation param-299
eters. Ec is the endowment amount paid to an offspring300
that shares both channel IDs of the parent; E1 is the en-301
dowment paid to an offspring that shares just the level-two302
channel ID of the parent; and E2 is the endowment paid to303
an offspring that shares neither the level-one nor the level-304
two channel ID of the parent. Endowed resources help new-305
channel propagules to rapidly grow their signaling network306
in order to begin collecting resource at a rate competitive307
to other well-established same-channel signaling networks.308
In order that adequate resource remain to ensure parental309
stability, endowment was paid out only after twice the en-310
dowment amount had been accrued (leaving an amount of311
resource equal to the endowment remaining with the par-312
ent). Cell level endowments are initialized by a draw from313
U(0.0, 5.0). Level-one endowments are initialized by a314
draw from U(0.0, 80.0). Level-two endowments are initial-315
ized by a draw from U(0.0, 405.0). All endowments are mu-316
tated by addition of a value drawn from N(0.0, 10.0) with317
the result clamped to be non-negative318

Parameters Mc, M1, and M2 control the apoptosis re-319
sponse to mutation. Each time that a mutation occurs320
during reproduction, the mutated offspring attempts suicide321
with probability Mc if it shares both channel IDs of its322
parent, probability M1 if it shares just the level-two chan-323
nel ID of its parent, and probability M2 if it shares nei-324
ther channel ID of the parent. The Mx value applied is325
from the offspring’s genotype after mutation. Attempted326
suicide succeeds 90% of the time. This capacity enables327
first- or second-level individuals to combat somatic muta-328
tion. Initialization and mutation each of these parameters is329
performed by a redraw from the distribution U(−0.5, 1.5)330
clamped to the range [0, 1].331

Finally, parameters S1 and S2 fine-tune site choice for332
offspring placement. If an organism is placing an off-333
spring with identical channel IDs, with probability S1 the334
four possible sites for offspring placement are considered in335
order of increasing distance from the centroid of the par-336
ent’s level-one signaling network. If an organism is placing337
an offspring with identical level-two channel ID but differ-338
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ent level-one channel ID, with probability S2 the four possi-339
ble sites for offspring placement are considered in order of340
increasing distance from the centroid of the parent’s level-341
two same-channel signaling network. Otherwise, the four342
possible sites for offspring placement are considered in a343
random order. Initialization and mutation are performed by344
a draw from the distribution U(−0.5, 1.5) clamped to the345
range [0, 1].346

Treatments347

Our standard treatment was designed to assess the evolu-348
tionary trajectories of populations in DISHTINY. We seeded349
each tile on the 120 × 120 toroidal grid with a randomized350
organism and ran the simulation for 20 million updates. In351
order to facilitate turnover, we culled the population inter-352
mittently. Starting at update 500,000, and every 50,000 up-353
dates thereafter, we randomly selected second-level channel354
IDs and killed all cells with that channel ID, continuing un-355
til at least 5% of grid tiles were empty. We performed 50356
replicates within this treatment. On average, each cellular357
generation took just over 500 updates. Across all succes-358
sive 10,000 update segments of all replicates, the mean num-359
ber of cellular generations elapsed per 10,000 updates was360
19.2 with a standard deviation of 2.7 cellular generations per361
10,000 updates.362

In order to detangle the impact of same-channel signaling363
networks with respect to kin recognition versus cooperation364
to increase resource collection rate, we performed control365
evolutionary trials where same-channel signaling networks366
did not affect cellular resource collection rate. Under con-367
trol conditions, same-channel signaling networks just helped368
cells recognize other related cells. In our implementation,369
this treatment corresponded to a constant per-update inflow370
of 0.02 resource units into all cells. All cells were activated371
(in order to take up the resource) at all updates and no cost372
for activation was assessed. We chose this resource inflow373
rate in order to approximately match the cellular generation374
rate of the control treatment to that of the standard treat-375
ment. In control runs, each cellular generation took around376
450 updates. Across all successive 10,000 update segments377
of all replicates, the mean number of cellular generations378
elapsed per 10,000 updates was 22.0 with a standard devia-379
tion of 2.0 cellular generations per 10,000 updates. Due to380
checkpoint-restart failures on our compute cluster, control381
experiments were curtailed at 3 million updates. All other382
aspects of control runs, including culling and the function-383
ality of all lifestyle parameters, were otherwise identical to384
standard conditions. We performed 50 replications of the385
control treatment.386

In standard evolutionary runs, we observed a spectrum of387
evolved resource-caching strategies. To assess the relative388
fitness of these evolved organisms, we ran competitions be-389
tween the most common genotype from three standard evo-390
lutionary runs. The first genotype allocated resource ex-391

clusively to its first-level same-channel resource pool (i.e.,392
P1 = 1.0), the second split resource evenly between its first-393
level and second-level resource pool (i.e., P1 = P2 = 0.5),394
and the third allocated resource primarily to the second-level395
resource pool (i.e., P2 > P1). (No most-common genotypes396
allocated resource exclusively to the second-level resource397
pool.) We seeded each competition with three copies of each398
genotype, uniformly spaced over the 120×120 toroidal grid399
with random arrangement. Each competition lasted 2 mil-400
lion updates. We performed 50 runs in this experiment.401

Implementation402

We performed our computational experiments at the Michi-403
gan State University High Performance Computing Cen-404
ter. Each replicate of standard evolutionary experiments405
required approximately six days of compute time to reach406
20 million updates. Each replicate of control evolutionary407
experiments expended approximately two days of compute408
time to reach 3 million updates. Control runs were some-409
what slower than standard runs, perhaps due to increased410
computational overhead associated with bookkeeping for the411
larger same-channel groups that evolved under the control412
conditions. Each replicate of competition experiments con-413
sumed approximately ten hours of compute time. For stan-414
dard evolutionary experiments, data processing required ap-415
proximately four hours of compute time per run. Other data416
processing was computationally negligible.417

We implemented our experimental system using the418
Empirical library for scientific software development in419
C++, available at https://github.com/devosoft/420
Empirical. The code used to perform and analyze our421
experiments, our figures, data from our experiments, and a422
live in-browser demo of our system is available via the Open423
Science Framework at https://osf.io/ewvg8/.424

Results and Discussion425

Standard Evolutionary Experiments426

A spectrum of resource allocation strategies ranging from427
purely allocation to level-one same-channel resource pools428
to primarily allocation to level-two same-channel resource429
pools were observed at the conclusion of different runs430
of our evolutionary simulation (mean cellular generation431
37,168 with standard deviation 4,684). We interpret these432
outcomes as ranging between individuality at the level of433
first-level same-channel groups to individuality at the level434
of second-level same-channel groups. Figure 2 shows the435
level-one and level-two signaling networks at the end of436
runs where first-, split-, and second-level resource alloca-437
tion evolved, respectively. First-level allocators form some-438
what irregular level-two amalgamations of diverse level-439
one networks. Second-level allocators form highly regu-440
lar diamond-shaped level-two signaling networks. Split-441
allocation individuals exhibit a level-two phenotype of inter-442
mediate regularity. Figure 3 shows a time series of signal-443
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Control Pop

Competitors Mean Dominant (±S.D.) Pop Mean (±S.D.) Mean (±S.D.)
P1 = 1.0 P2 = P1 P2 > P1 P1 = 1.0 1.0 > P1 > P2 P2 ≥ P1 all all all

Cell
Gen. 29920 33852 47507 30841± 3183 35346± 3444 39315± 3346 6670± 729 6069± 672 6626± 377
Upd. 20M 20M 20M 20M 20M 20M 3.3M 3M 3M
n 1 1 1 9 7 34 50 50 50
A1 0.00 0.00 0.89 0.23± 0.35 0.50± 0.47 0.57± 0.46 0.53± 0.37 0.53± 0.35 0.56± 0.34
A2 1.00 1.00 1.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.01
Pc 0.00 0.00 0.00 0.00± 0.00 0.00± 0.00 0.03± 0.05 0.02± 0.03 0.02± 0.02 0.00± 0.00
P1 1.00 0.50 0.00 1.00± 0.00 0.60± 0.07 0.28± 0.16 0.42± 0.25 0.42± 0.24 0.56± 0.37
P2 0.00 0.50 1.00 0.00± 0.00 0.40± 007 0.69± 0.14 0.56± 0.24 0.56± 0.24 0.44± 0.37
C1 3.13 3.45 2.04 3.90± 0.60 3.38± 0.33 3.03± 0.69 3.21± 0.63 3.21± 0.60 28.6± 21.7
C2 233.2 238.6 290.2 230.6± 71.1 192.7± 45.3 271.6± 73.6 201.5± 58.1 195.8± 55.3 484.0± 123.5
Ec 0.87 0.14 4.20 0.29± 0.37 0.44± 0.59 0.21± 0.75 1.14± 1.07 1.21± 1.05 1.50± 1.08
E1 33.4 11.7 4.80 47.2± 21.7 21.3± 12.0 4.62± 7.05 18.1± 16.2 19.2± 15.9 28.9± 22.2
E2 341.4 397.4 321.1 231.2± 94.3 283.1± 57.0 325.4± 68.9 303.0± 66.5 302.7± 65.2 317.3± 66.3
Mc 0.11 1.00 0.66 0.33± 0.41 0.74± 0.31 0.67± 0.35 0.39± 0.32 0.39± 0.31 0.18± 0.23
M1 0.00 1.00 0.40 0.52± 0.41 0.65± 0.46 0.68± 0.38 0.52± 0.37 0.51± 0.35 0.48± 0.33
M2 0.00 0.44 1.00 0.45± 0.39 0.52± 0.37 0.50± 0.42 0.47± 0.33 0.47± 0.32 0.53± 0.36
S1 0.00 1.00 1.00 0.65± 0.38 0.55± 0.40 0.47± 0.42 0.39± 0.36 0.40± 0.34 0.47± 0.34
S2 0.00 0.01 0.46 0.51± 0.43 0.35± 0.39 0.45± 0.39 0.47± 0.34 0.46± 0.34 0.55± 0.34

Table 1: The leftmost two table segments enumerate genotypes used as seeds for competition experiments (“Competitors”)
and the mean values of the most abundant genotype at the end of evolutionary runs (“Mean Dominant“), both partitioned
by resource-caching strategy. The rightmost table segments enumerate the population mean genotype values for standard
evolutionary trials (“Pop Mean”) and control treatments (“Control Pop Mean”), matched at both absolute update count and
(approximately) elapsed cellular generations.
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(a) Mean Pc=0.03, P1=0.75, P2=0.23; cell gen. 29920
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(c) Mean Pc=0.08, P1=0.01, P2=0.90; cell gen. 47507

Figure 2: End state of same-channel signaling networks in repli-
cates where resource was exclusively allocated to first-level
channel pools (2a), was split evenly between first- and second-
level channel pools (2b), and was primarily allocated to second-
level channel pools (2c). Level-one channels are coded by color
saturation and level-two channels are coded by color hue. A sin-
gle cell-like organism occupies each grid tile except for black
tiles, which are empty.
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(f) Update 2000000; cell gen. 4974

Figure 3: Progression of of same-channel level-one and level-two signaling networks states in an evolutionary run where level-
two resource sharing evolved. Level-one channels are coded by color saturation and level-two channels are coded by color hue.
A single cell-like organism occupies each grid tile except for black tiles, which are empty.
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ing network snapshots in an evolutionary run where second-444
level individuality evolved.445

Table 1 summarizes most-common genotypes observed446
at the end of our evolutionary simulations. In the standard447
treatment, all evolved genotypes had A2 fixed at 1.0. So,448
reproduction over cells sharing the same level-two channel449
was universally avoided; genotypes evolved so that cells de-450
clined to reproduce when they were located at the interior of451
level-two same-channel signaling networks.452

However, a variety of resource-caching strategies evolved.453
Most-abundant genotypes at the end of nine evolutionary454
runs exclusively cached resource in organisms’ level-one455
signaling network’s pool (i.e., P1 = 1.0). We observed456
strategies where resource was primarily, but not entirely,457
cached in an organism’s level-one signaling network pool458
(i.e., 1.0 > P1 > P2) as the most-abundant genotype at459
the end of seven evolutionary runs. In one run, the most-460
abundant final genotype split resources evenly between an461
organism’s level-one and level-two signaling network pool462
(P1 = P2 = 0.5). Finally, we observed strategies where463
resource was primarily, but not entirely, cached in an organ-464
ism’s level-two signaling network pool (i.e., 1.0 > P2 >465
P1) as the most-abundant genotype at the end of 33 evolu-466
tionary runs.467

We suspect that a trade-off between growth rate and long-468
term stability prompted the universal allocation of at least469
some resource to level-one pools and/or cell stockpiles.470
Cell- and level-one resource caching might function some-471
thing like saving for a rainy day. Because reproduction472
over level-two channel-mates was universally avoided, cells473
and level-one same-channel networks situated at the inte-474
rior of a larger level-two same-channel network do not ex-475
pend their resource pools unless that larger level-two same-476
channel network is damaged, exposing them to directly-477
adjacent cells of a different level-two channel. Thus, re-478
source accumulates in cell stockpiles and level-one pools un-479
til the level-two same-channel network comes under stress.480
Split allocation might also represent hedging against defec-481
tion of a second-level channel-mate by via somatic mutation.482

Indeed, we did observe selection for apoptosis in the 41483
replicates where the dominant genotype employed second-484
level resource caching. In these replicates, the average pop-485
ulation mean value of Mc was 0.68 with standard devia-486
tion 0.33, significantly greater than the value Mc = 0.5 we487
would expect in the absence of a selective pressure on apop-488
tosis response to mutation (p < 0.001, bootstrap test).489

To assess whether heavy second-level resource alloca-490
tors, which we characterize as higher-level individuals, were491
more likely to employ apoptosis to mitigate somatic mu-492
tation, we examined the relationship between first- and493
second-level resource pooling and cellular apoptosis at the494
conclusion of our 50 replicate evolutionary trials. We ob-495
served a significant negative correlation between dominant496
genotype P1 and Mc (p < 0.05; bootstrap test; Figure497

4a) and a significant positive correlation between dominant498
genotype P2 and Mc (p < 0.05; bootstrap test; Figure 4b).499
This result suggests that second-level individuals, in partic-500
ular, relied on apoptosis to mitigate somatic mutation.501

We also assessed whether higher-level individuals pro-502
vided larger resource endowments to their second-level503
propagules (offspring sharing neither the level-one nor the504
level-two channel ID with the parent). We examined the re-505
lationship between first and second-level resource pooling506
and dominant genotype second-level propagule endowment507
at the conclusion of our 50 replicate evolutionary trials. We508
observed a significant negative correlation between domi-509
nant genotype P1 and E2 (p < 0.05; bootstrap test) and a510
significant positive correlation between dominant genotype511
P2 and E2 (p < 0.05; bootstrap test). Second-level individ-512
uals might provide larger endowments to propagules simply513
due to a greater capacity to collect resource or perhaps be-514
cause of stronger selection for well-endowed offspring when515
competing against other second-level individuals.516

This result prompts the reverse question: do lower-level517
individuals provide larger resource endowments to first-level518
propagules (offspring that do not share level-one channel ID519
with the parent but may or may not share level-two chan-520
nel ID with the parent)? Indeed, we observed a significant521
positive correlation between first-level resource sharing and522
first-level endowment (p < 0.0001; bootstrap test) and a sig-523
nificant negative correlation between second-level resource524
sharing and first-level endowment (p < 0.0001; bootstrap525
test). Cells that pool resource with their smaller level-one526
same-channel group tend to invest more heavily into the di-527
rect offshoots of their level-one same-channel group than528
cells that pool resource with their larger level-two same-529
channel group. This observation suggests that, although530
cells do not directly displace their level-one channel-mates,531
competitive dynamics between may be at play.532

Competition Experiments533

Next, we wanted to compare first-, second-, and split-level534
allocators to determine which genotype was the most fit.535
We ran competition experiments between dominant geno-536
types from evolutionary runs representative of each of these537
strategies. To prevent further evolution, we disabled mu-538
tation for these experiments. To represent first-level allo-539
cators, we selected randomly from the nine pure first-level540
allocator dominant genotypes we observed. To represent the541
split-level allocators, we selected the single dominant geno-542
type where resource was partitioned exactly evenly between543
first- and second-level channel pools. To represent second-544
level allocators, we selected the dominant genotype with the545
largest second-level allocation proportion. Table 1 enumer-546
ates the three representative genotypes used. Figure 5 shows547
a time series of signaling network snapshots in an competi-548
tion experiment run. Colonies of each genotype can be seen549
to grow from each seed and then clash, ultimately yielding a550
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(a) Correlation plot of dominant genotype P1 and dominant geno-
type Mc.
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(b) Correlation plot of dominant genotype P2 and dominant geno-
type Mc.

Figure 4: Plots of dominant resource caching strategies and dominant apoptosis strategies. A bootstrapped 95% confidence
interval for the fit is shaded. Both correlations are statistically significant (p < 0.05; bootstrap test).

population dominated by second-level allocators.551
Indeed, the second-level resource caching strategy be-552

came most abundant in all 50 trials. Across the 50 replicates,553
at update 1.5 million (cellular generation 3489 with stan-554
dard deviation 40) the second-level resource caching strat-555
egy constituted 90.2%, with standard deviation 3.8%, of the556
competing population of cells. In the absence of mutation,557
second-level allocators tend to exhibit greater fitness than558
split- and first-level allocators (p < 0.0001; two-tailed exact559
test).560

In competition experiments, however, higher-level indi-561
viduals likely benefited from elimination of somatic muta-562
tion. To assess the relative fitness of first- and second-level563
individuals without mutation disabled, we examined the re-564
lationship between first- and second-level resource pooling565
and the rate of cellular reproduction at the end of each of566
the 50 replicate evolutionary trials performed. We observed567
a significant negative correlation between mean P1 and cel-568
lular reproduction rate (p < 0.0001; bootstrap test; Figure569
6a) and a significant positive correlation between mean P2570
and cellular reproduction rate (p < 0.0001; bootstrap test;571
Figure 6b). This result suggests that second-level allocators572
tend to collect resource more effectively than split- and first-573
level allocators.574

Control Evolutionary Experiments575

Under control conditions where resource was distributed576
evenly to all cells regardless of same-channel group con-577
figuration, split-level resource caching also evolved. Split-578
level allocation was the most common strategy at update 3579
million in all replicates. Strategies where resource was pri-580
marily, but not entirely, cached in an organism’s level-one581

signaling network pool (i.e., 1.0 > P1 > P2) were most-582
abundant at the end of 33 evolutionary runs and strategies583
where resource was primarily, but not entirely, cached in584
an organism’s level-two signaling network pool (i.e., 1.0 >585
P2 > P1) were most-abundant at the end of 17 evolution-586
ary runs. As shown in Table 1, the average population mean587
of P1 is greater in the control treatment than in the standard588
treatment at time-points matched by absolute elapsed update589
count and approximate elapsed cellular generations, but this590
difference is not statistically significant.591

Consistent with the standard treatment, we observed592
strong selection against direct reproductive competition be-593
tween channel-mates at update 3 million in the control594
treatment. Nearly all most-common genotypes completely595
avoided reproducing over level-two channel-mates (i.e.,596
A2 = 1.0), except for a single most-common genotype597
where a very slim probability of reproducing over level-two598
channel-mates was allowed (A2 = 0.996).599

The emergence of resource-sharing and competition600
avoidance under control conditions suggests kin recognition601
alone can prompt some aspects of higher-level individual-602
ity. However, we observed selection against the apoptosis603
response to mutation, Mc, under control conditions. Across604
50 replicates of the control treatment, the average population605
mean value of Mc was 0.18 with standard deviation 0.23 —606
significantly less than the value Mc = 0.5 expected with-607
out selective pressure against apoptosis response to mutation608
(p < 0.0001, two-tailed t test). Indeed, population mean Mc609
for control runs was also significantly reduced compared to610
the standard treatment at time-points matched by absolute611
elapsed update count (p < 0.001; two-tailed t test) and by612
approximate elapsed cellular generations (p < 0.001; two-613
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(f) Update 1500000; cell gen. 3511

Figure 5: Progression of of same-channel level-one and level-two signaling networks states in a competition run. We seeded the
grid with three copies of each of three champion genotypes from evolutionary trials. Then, with mutation disabled to prevent
further evolution, the genotypes competed. Level-one channels are coded by color saturation and level-two channels are coded
by color hue. A single cell-like organism occupies each grid tile except for black tiles, which are empty.PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27275v2 | CC BY 4.0 Open Access | rec: 16 Oct 2018, publ: 16 Oct 2018
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(a) Correlation plot of population mean P1 and population net re-
production rate.
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(b) Correlation plot of population mean P2 and population net re-
production rate.

Figure 6: Mean resource caching strategies and net reproduction rate across populations. A bootstrapped 95% confidence
interval for the fit is shaded. Both correlations are statistically significant (p < 0.0001; bootstrap test).
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Figure 7: End state (update 3000000, cell gen. 6916) of
same-channel signaling networks evolved under the control
treatment. Level-one channels are coded by color saturation
and level-two channels are coded by color hue. A single
cell-like organism occupies each grid tile except for black
tiles, which are empty.

tailed t test). Perhaps under control conditions, the apoptosis614
response to mutation is disfavored because kin groups stand615
to lose less from mutant members (i.e., the resource penalty616
for excessive same-channel network expansion is absent). It617
appears that, at least in our system, kin recognition alone618
does not suffice to prompt full-fledged fraternal transitions619
in individuality.620

In the absence of resource penalties for erroneous acti-621
vation under control conditions, we also observed the evo-622
lution of larger same-channel groups. At update 3 million,623
most-common genotypes encoded a level-two same-channel624
cap C2 of 484.0 cells with standard deviation of 123.5.625
Compared to the standard treatment, control runs exhibited626
larger mean level-two same-channel caps C2 at time-points627
matched by absolute elapsed update count (p < 0.0001;628
two-tailed t test) and approximate elapsed cellular genera-629
tions (p < 0.0001; two-tailed t test). Even at 20 million up-630
dates, when evolution had elapsed around six times as many631
cellular generations in the standard treatment compared to632
the control treatment at update 3 million, mean level-two633
same-channel caps C2 reached only 262.9 with standard de-634
viation 72.2 under the standard treatment. This is signifi-635
cantly smaller than mean C2 under the control treatment at636
update 3 million (p < 0.0001; two-tailed t test). Figure 7 de-637
picts the comparatively large same-channel level two groups638
present at the end of a control run. Table 1 summarizes most-639
common genotypes observed under the control treatment.640

Conclusion641

Using simple organisms that evolve parameters for a set642
of manually-designed strategies, we have demonstrated that643
DISHTINY selects for genotypes that exhibit high-level in-644
dividuality. We observed a spectrum of first- and second-645
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level individuality among evolutionary outcomes. Specifi-646
cally, we observed647

1. reproductive division of labor among members of the648
same channel (i.e., individuals enveloped in a same-649
channel signaling network ceded reproduction to those at650
the periphery),651

2. cooperation between members of the same channel (i.e.,652
pooling of resource on same-channel signaling networks),653

3. reproductive bottlenecking (i.e., groups of cells sharing a654
channel ID descend from a single originator of that chan-655
nel ID), and656

4. suppression of somatic mutation via apoptosis coincident657
with second-level individuality.658

Competition experiments revealed that second-level in-659
dividuals usually outcompete lower-level individuals. The660
magnitude of resource endowment for propagules was also661
correlated with second-level individuality.662

Although shifts in individuality to level-one and level-663
two signaling networks were both observed, the question of664
whether these transitions were truly hierarchical in nature is665
debatable. That is, it is not clear whether level-one individ-666
uality was to some extent preserved in or necessary for the667
emergence of level-two individuality. Given the nature of668
the manually-designed strategies for resource-pooling and669
reproductive division of labor, level-two resource pooling670
and division of labor could readily leapfrog over level-one671
resource pooling and division of labor and, in many ways,672
seemed to completely supersede those level-one efforts.673

We believe that this is a shortcoming of the manual design674
of behaviors for which simple cell-like organisms evolved675
parameters, not the DISHTINY platform itself. We have676
nevertheless demonstrated that DISHTINY ultimately se-677
lects for high-level individuality. We are eager to work678
with more sophisticated cell-like organisms capable of arbi-679
trary computation via genetic programming in order to pur-680
sue more open-ended evolutionary experiments. We will681
also test the implications of relaxing current arbitrary re-682
strictions that artificially promote transitions, such as the hi-683
erarchical nesting of same-channel signaling networks and684
the explicitly-defined signaling networks themselves, leav-685
ing these details to evolution to figure out. Further work686
will provide valuable insight into scientific questions relat-687
ing to major evolutionary transitions such as the role of pre-688
existing phenotypic plasticity (Clune et al., 2007; Lalejini689
and Ofria, 2016), pre-existing environmental interactions,690
pre-existing reproductive division of labor, and how transi-691
tions relate to increases in organizational (Goldsby et al.,692
2012), structural, and functional (Goldsby et al., 2014) com-693
plexity.694

We believe that such an approach also provides a unique695
opportunity to fundamentally advance Artificial life with re-696
spect to open-ended evolution. Fundamental to this goal is697

scale. The DISHTINY platform trivially scales to select for698
an arbitrary number of hierarchical levels of individuality699
(not just the two hierarchical levels explored in these exper-700
iments). Importantly, the platform is implemented in a de-701
centralized manner and can comfortably scale as additional702
computing resources are provided. Parallel computing is703
widely exploited in evolutionary computing, where subpop-704
ulations are farmed out for periods of isolated evolution or705
single genotypes are farmed out for fitness evaluation (Lin706
et al., 1994; Real et al., 2017). DISHTINY presents a more707
fundamental parallelization potential: principled paralleliza-708
tion of the evolving individual phenotype at arbitrary scale709
(i.e., a high-level individual as a large collection of individ-710
ual cells on the toroidal grid). Such parallelization will be711
key to realizing evolving computational systems with scale712
— and, perhaps, complexity — approaching biological sys-713
tems.714
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