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Abstract	16	

Background	17	

Following	recent	advances	in	bioimaging,	high-resolution	3D	models	of	biological	structures	18	

are	now	generated	rapidly	and	at	low-cost.	To	utilise	this	data	to	address	evolutionary	and	19	

ecological	questions,	an	array of	tools	has	been	developed	to	conduct	3D	shape	analysis	and	20	

quantify	topographic	complexity.	Here	we	focus	particularly	on	shape	techniques	applied	to	21	

irregular-shaped	objects	lacking	clear	homologous	landmarks,	and	propose	the	new	‘alpha-22	

shapes’	method	for	quantifying	3D	shape	complexity.	23	

	24	

Methods	25	

We	apply	alpha-shapes	to	quantify	shape	complexity	in	the	mammalian	baculum	as	an	26	

example	of	a	morphologically	disparate	structure.	Micro-	computed-tomography	(µCT)	27	

scans	of	bacula	were	conducted.	Bacula	were	binarised	and	converted	into	point	clouds.	28	

Following	application	of	a	scaling	factor	to	account	for	absolute	differences	in	size,	a	suite	of	29	

alpha-shapes	was	fitted	to	each	specimen.	An	alpha	shape	is	a	formed	from	a	subcomplex	of	30	

the	Delaunay	triangulation	of	a	given	set	of	points,	and	ranges	in	refinement	from	a	very	31	

coarse	mesh	(approximating	convex	hulls)	to	a	very	fine	fit.	‘Optimal’	alpha	was	defined	as	32	

the	degree	of	refinement	necessary	in	order	for	alpha-shape	volume	to	equal	CT	voxel	33	

volume,	and	was	taken	as	a	metric	of	overall	shape	‘complexity’.		34	

	35	

Results	36	

Our	results	show	that	alpha-shapes	can	be	used	to	quantify	interspecific	variation	in	shape	37	

‘complexity’	within	biological	structures	of	disparate	geometry.	The	‘stepped’	nature	of	38	

alpha	curves	is	informative	with	regards	to	the	contribution	of	specific	morphological	39	
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features	to	overall	shape	‘complexity’.	Alpha-shapes	agrees	with	other	measures	of	40	

topographic	complexity	(dissection	index,	Dirichlet	normal	energy)	in	identifying	ursid	41	

bacula	as	having	low	shape	complexity.	However,	alpha-shapes	estimates	mustelid	bacula	as	42	

possessing	the	highest	topographic	complexity,	contrasting	with	other	shape	metrics.	3D	43	

fractal	dimension	is	found	to	be	an	inappropriate	metric	of	complexity	when	applied	to	44	

bacula.	45	

	46	

Conclusions	47	

The	alpha-shapes	methodology	can	be	used	to	calculate	‘optimal’	alpha	refinement	as	a	48	

proxy	for	shape	‘complexity’	without	identifying	landmarks.	The	implementation	of	alpha-49	

shapes	is	straightforward,	and	is	automated	to	process	large	datasets	quickly.	Beyond	50	

genital	shape,	we	consider	the	alpha-shapes	technique	to	hold	considerable	promise	for	51	

new	applications	across	evolutionary,	ecological	and	palaeoecological	disciplines.	52	
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Background	53	

The	morphology	of	an	organism	is	both	a	function	of	its	evolutionary	past	and	its	adaptation	54	

to	present	surroundings.	Quantifying	morphology	is	fundamental	to	the	study	of	ecology	55	

and	evolution.	Organisms	are,	quite	literally,	shaped	by	their	evolutionary	history.	And	56	

morphology	is	often	the	only	source	of	evidence	upon	which	phylogenetic	relationships	may	57	

be	reconstructed	through	deep	time.	Morphology	also	plays	important	role	in	linking	the	58	

phenotype	to	ecology,	by	establishing	causal	relationships	between	anatomy	and	59	

performance	[1].	Flexible	tools	for	quantifying	organismal	morphology	are	therefore	highly	60	

desirable	amongst	users	spanning	the	disciplines	of	ecology	and	evolutionary	biology	[2].	61	

More	broadly,	the	comparison	of	morphological	features	is	of	interest	to	applied	scientists	62	

from	a	diverse	array	of	background,	including	archaeology,	chemistry,	computer	science	and	63	

medicine.	64	

	65	

The	morphology	of	an	organism	and	its	component	parts	can	be	described	in	terms	of	size,	66	

shape,	structure,	colour	and	patterning.	Of	these,	shape	has	historically	been	difficult	to	67	

consistently	and	objectively	quantify,	and	this	challenge	forms	the	basis	of	the	field	of	68	

morphometrics.	‘Shape’	can	be	defined	as	all	the	geometric	information	contained	within	an	69	

object,	once	the	effects	of	rotation,	translation	and	scale	have	been	removed	[3].	70	

Traditionally	shape	has	been	quantified	as	a	series	of	single	measurements,	including		ratios	71	

[4]	and	angles	[5].	Such	measures	clearly	ignore	a	wealth	of	potential	shape	data	however.	72	

	73	

Shape	Variation	vs.	Shape	Complexity	74	

Associated	with	recent	advances	in	specimen	digitization,	a	suite	of	new	techniques	has	75	

been	developed	to	analyse	3D	biological	shape	data.	Chiefly,	these	methods	facilitate	the	76	
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quantification	of	variation	in	form	(size	and	shape)	among	specimens	using	multivariate	77	

methods,	allowing	for	either	the	study	of	covariation	between	shapes	or	between	shapes	78	

and	extrinsic	factors	[6].	Analyses	of	biological	shape	variation	most	often	fall	within	the	79	

paradigm	of	geometric	morphometrics	(GMM).	80	

	81	

GMM	studies	typically	proceed	via	the	identification	of	homologous	morphological	82	

landmarks	across	a	range	of	specimens,	and	subsequent	Procrustes	superimposition	to	83	

remove	the	effects	of	translation,	rotation	and	scale.	The	placement	of	landmarks	on	84	

sutures,	muscle	attachment	scars	and	tuberosities	is	therefore	common.	This	approach	has	85	

proved	effective	in	ecological	and	evolutionary	studies	across	a	range	of	biological	86	

structures,	including	vertebrate	skulls	[7],	insect	wings	[8]	and	tree	leaves	[9].	More	87	

problematic	is	the	landmarking	of	less	featured	objects,	such	as	the	diaphyses	of	long	bones	88	

[10],	the	body	of	ribs	[11],	otoliths	[12],	seeds	[13]	and	anthropological	artefacts	[14].		89	

	90	

A	class	of	related	outline-	or	surface-based	shape	analysis	tools	exist	however,	that	do	not	91	

necessarily	require	homologous	landmarks	to	be	defined	a	priori.	‘Eigenshapes’	[15],	92	

‘Eigensurfaces’	[16,	17],	‘Canonical	Sampling’	[18,19],	fully	automated	landmarking	93	

(‘auto3Dgm’)	[20,21],	‘Elliptical	Fourier	Analysis’	[22-25]	and	‘Spherical	Harmonics’ [26-29]	94	

are	all	important	contributions	to	the	morphometricians	toolbox	of	shape	analysis	95	

techniques.	In	all	such	cases,	the	principle	goal	of	the	analysis	remains	the	same:	to	describe	96	

the	shape	of	objects,	and	the	specific	ways	in	which	objects	differ	in	shape	between	97	

themselves	and	as	a	function	of	external	factors.	98	

	99	
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Yet	a	second	suite	of	morphometric	techniques	seeks	to	quantify	shape	complexity.	Within	100	

the	field	of	biology,	complexity	may	be	broadly	defined	as	the	number	of	‘parts’	comprising	101	

an	organism	or	a	landscape	(be	that	genes,	cell	types,	organ	systems	or	habitat	patches).	In	102	

the	context	of	shape	analysis,	here	we	focus	on	topographic	complexity.	Whilst	topographic	103	

‘complexity’	has	numerous	definitions	across	the	literature	(see	below),	complex	shapes	can	104	

intuitively	be	thought	of	as	those	formed	by	combining	parts,	or	the	entirety,	of	several	105	

simple	‘primitive’	shapes.	Complexity	indices	may	differ	in	the	specific	‘aspect’	of	shape	106	

complexity	captured,	ranging	from	the	degree	of	self-similarity	(fractal	architecture)	107	

displayed,	to	simpler	metrics	of	surface	rugosity.	Shape	complexity	has	found	numerous	108	

important	applications	within	the	disciplines	of	ecology	and	evolutionary	biology.	Root	109	

complexity	may	be	indicative	of	the	health	of	a	plant	[30],	whilst	tooth	complexity	has	been	110	

used	to	predict	the	palaeodiet	of	fossil	vertebrates	[31].	The	complexity	of	landscape	111	

patches	has	been	linked	to	habitat	quality	[32],	and	invertebrate	genital	complexity	has	112	

been	interpreted	in	the	context	of	sexual	selection	mechanisms	[22].	113	

	114	

It	is	important	to	reiterate	that	the	two	suites	of	morphometric	techniques	highlighted	115	

above	measure	two	very	different	aspects	of	form	(namely	shape	variation	vs.	complexity),	116	

such	that	two	objects	may	occupy	very	similar	GMM	morphospace	whilst	being	117	

characterised	by	different	values	of	shape	complexity.	Two	outwardly	similar	surface	118	

meshes	with	similar	landmark	configurations	may	differ	in	shape	complexity	if	the	surfaces	119	

deviate	in	terms	of	surface	rugosity,	for	example.	120	

	121	

Methods	for	Quantifying	Shape	Complexity	122	
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Several	metrics	have	been	advanced	for	the	quantification	of	spatial	or	topographic	123	

complexity	within	biological	systems:	124	

	125	

Dissection	Index	and	Relief	Index	126	

In	two	dimensions,	dissection	index	(DI)	is	the	ratio	of	an	object’s	perimeter	to	the	square	127	

root	of	its	area.	Dissection	index	is	therefore	a	dimensionless	number,	providing	an	128	

indication	of	the	extent	to	which	a	shape	is	more	complex	than	a	circle	[33].	In	three	129	

dimensions,	the	related	Relief	Index	(RFI)	is	calculated	as	the	ratio	of	an	object’s	surface	130	

area	to	its	planar	area	[34],	and	thus	provides	an	index	of	rugosity	(or	hypsodonty,	when	131	

most	frequently	applied	to	tooth	crown	shape).	Both	metrics	are	simple	to	calculate	and	132	

intuitive	to	understand,	and	represent	single-parameter	shape	descriptors	of	complexity.	A	133	

corollary	of	this	however,	is	neither	metric	provides	an	indication	of	the	distribution	of	134	

complexity	across	an	object.	Furthermore,	the	value	of	planar	area	incorporated	into	RFI	is	135	

necessarily	orientation-dependent	(total	planar	area	is	dependent	upon	on	the	orientation	136	

of	the	object	relative	to	the	observer	when	the	plan	view	is	taken).	When	applied	to	tooth	137	

complexity,	the	preferred	orientation	is	obvious;	planar	area	is	calculated	in	the	occlusal	138	

plane	when	RFI	is	taken	as	a	proxy	for	hysodonty	[34].	Should	RFI	be	extended	beyond	tooth	139	

crown	complexity	to	other	biological	structures	however,	the	orientation	of	planar	area	will	140	

need	further	consideration.	Additionally,	the	calculation	of	RFI	requires	a	mesh	from	which	141	

to	derive	surface	area,	involving	an	intermediate	processing	stage	for	point	clouds	or	voxel-	142	

based	data.	143	

	144	

Fractal Dimension	145	
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The	fractal	dimension	(FD)	is	a	measure	of	complexity	applicable	to	objects	that	are	self-146	

similar	(exhibiting	repetitive	patterns	across	scales)	[35].	FD	metrics	have	commonly	been	147	

applied	to	physical	landscapes	[36]	in	addition	to	biological	organisms	perceived	to	display	148	

self-similarity,	including	plant	roots	[37],	plant	leaves	[38],	stony	corals	[39],	and	brain	149	

structures	[40].	Simply	speaking,	the	fractal	dimension	captures	the	ability	of	an	object	to	fill	150	

the	Euclidean	space	within	which	it	is	located.	The	most	common	implementation	of	FD	151	

applies	a	‘box-counting’	approach,	in	which	a	regular	grid	of	boxes	of	side	length	s	is	152	

overlain	across	the	2D	data	and	the	number	of	occupied	boxes	counted	as	N(s).	This	process	153	

is	repeated	whilst	varying	the	size	of s.	log	N(s)	is	subsequently	plotted	as	a	function	of	log	154	

(1/s),	and	the	slope	of	this	graph	is	taken	as	an	estimate	of	FD	[41].	Whilst	originally	155	

implemented	on	2D	data,	fractal	analysis	has	since	been	extended	to	operate	in	3D	[39,40].	156	

	157	

Fractal	analysis	is	undoubtedly	a	powerful	tool	that	provides	an	objective	and	scale-158	

independent	single	metric	of	shape	complexity.	However,	numerous	caveats	have	been	159	

expressed	when	applying	FD	to	biological	datasets	[see	41	for	a	review].	Most	notably,	when	160	

an	object	or	pattern	is	not	obviously	self-similar,	the	application	of	fractal	dimensions	can	be	161	

problematic	[42].	Indeed,	rather	than	being	truly	self-similarity,	some	authors	have	gone	so	162	

far	as	to	suggest	that	most	‘complex’	structures	differ	in	their	extent	of	self-similarity	across	163	

spatiotemporal	scales,	and	are	actually	best	described	as	self-dissimilar	[43].	Furthermore,	164	

the	value	of	the	fractal	dimension	for	a	given	outline	is	a	function	of	several	‘somewhat	165	

arbitrary’	decisions,	including	the	location	of	the	grid	starting	point	and	the	selected	values	166	

of	minimum	and	maximum	s	[44].	Within	the	ecological	literature,	occupancy	is	typically	167	

calculated	across	s	values	spanning	~two	orders	of	magnitude,	yet	such	a	limited	scaling	168	

relationship	cannot	be	taken	as	strong	evidence	of	genuine	fractality	[41].	169	
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	170	

Dirichlet	Normal	Energy	171	

Dirichlet	normal	energy	(DNE)	effectively	quantifies	the	‘curviness’	of	a	mesh.	Most	simply	172	

“DNE	measures	the	deviation	of	a	surface	from	being	planar”	[45;	p249],	and	ranges	from	173	

zero	in	the	case	of	a	flat	plane,	to	higher	values	associated	with	steep	crests	and	troughs.	It	174	

is	calculated	as	the	sum	of	energy	values	across	all	faces	of	a	mesh	surface,	where	the	175	

energy	value	at	each	face	is	quantified	as	changes	in	the	normal	map.	The	process	does	not	176	

require	the	assignment	of	landmarks,	and	is	unaffected	by	scale	or	orientation.	Additionally,	177	

energy	is	calculated	for	every	face	of	the	mesh,	facilitating	energy	variation	to	be	visualized	178	

across	the	surface	of	the	object.	In	this	way,	DNE	allows	for	specific	regions	of	‘high’	and	179	

‘low’	complexity	to	be	identified	across	a	specimen.	Thus	far,	DNE	has	found	extensive	use	180	

in	the	mammal	tooth	literature	[45;	46;	47],	but	has	also	been	applied	to	quantify	the	shape	181	

complexity	of	developing	embryos	[48].	DNE	does	however,	require	a	mesh	a	priori,	and	has	182	

been	shown	to	be	sensitive	to	commonly-used	mesh	preprocessing	operations	such	as	183	

smoothing	and	decimating	[49].	184	

	185	

Alpha-shapes	186	

In	this	study,	our	objective	is	to	develop	a	straightforward	method	for	quantifying	three-187	

dimensional	shape	complexity	that	is	orientation-independent,	does	not	require	188	

assumptions	of	self-similarity	or	an	intermediate	meshing	stage,	and	is	capable	of	quantify	189	

topographic	complexity	across	multiple	scales.	Our	approach	is	based	on	the	concept	of	190	

‘alpha-shapes’.		191	

	192	
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An	alpha-shape	is	formed	from	the	boundary	of	an	alpha-complex,	which	is	itself	a	193	

subcomplex	of	the	Delaunay	triangulation	for	a	given	set	of	points	[50].	For	a	given	set	of	194	

points	in	space,	a	family	of	alpha-shapes	may	be	defined,	ranging	from	a	very	coarse	(a	195	

convex	hull)	to	very	fine	fit	around	said	points	(Figure	1).	The	parameter	‘alpha’	dictates	the	196	

level	of	refinement,	with	a	larger	alpha	resulting	in	coarser	fits	and	a	smaller	alpha	in	finer	197	

fits	[see	50	for	a	comprehensive	description	of	3-dimensional	alpha-shapes].	The	level	of	198	

refinement	necessary	in	order	for	an	alpha-shape’s	volume	to	match	that	of	the	original	199	

dataset	to	which	it	is	fitted	may	be	taken	as	a	measure	of	shape	complexity:	more	complex	200	

objects	will	require	a	more	refined	alpha-shape	fit	in	order	for	volumes	to	converge.	201	

	202	

For	an	intuitive	understanding	of	alpha-shapes,	imagine	a	large	mass	of	ice	cream	occupying	203	

a	volume,	with	solid	chocolate	‘pieces’	(our	point	cloud)	dotted	throughout.	Using	an	ice	204	

cream	scoop,	we	remove	all	areas	of	ice	cream	that	the	scoop	can	reach	without	bumping	205	

into	the	chocolate	pieces.	This	also	includes	regions	internal	to	the	block,	effectively	carving	206	

out	cavities	inside	the	volume.	Ultimately,	this	results	in	a	lump	of	ice	cream	with	solid	207	

‘pieces’	bounded	by	both	convexities	and	concavities	on	the	surface.	If	the	solid	‘pieces’	are	208	

then	joined	by	straight	lines,	rather	than	curves,	this	forms	the	characteristic	‘alpha-shape’	209	

for	the	given	set	of	chocolate	‘pieces’	and	ice	cream	scoop.	In	this	example,	‘alpha’	is	the	210	

radius	of	the	scoop;	a	larger	scoop	would	result	in	less	ice	cream	being	removed	and	a	211	

‘coarser’	resulting	alpha-shape.	212	

	213	

The	resulting	alpha-shape	fit	may	comprise	one	volume	(larger	alphas;	Figure	1C-E)	or	214	

multiple	smaller	volumes	(smaller	alphas;	Figure	1F).	Hence,	as alpha	decreases,	the	215	

refinement	of	the	fit	changes	from	a	convex	hull	(the	special	case	when	sphere	radius	is	216	
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infinite,	Figure	1B)	to	finer	fits	as	more	regions	are	removed	by	smaller	spheres	(Figure	1C-217	

E).	Eventually	the	radius	of	the	sphere	decreases	to	such	an	extent	that	no	points	are	218	

intersected	and	no	alpha-shape	is	created.		219	

	220	

The	convex	hull	(Figure	1B)	and	‘coarser’	alpha-shapes	(Figure	1C-D)	occupy	a	volume	equal	221	

to-	or	larger	than	that	of	the	underlying	object	(Figure	1A).	In	contrast,	very	fine	alpha-222	

shapes	(Figure	1F)	will	have	a	volume	smaller	than	the	original	structure.	At	some	‘optimal’	223	

level	of	refinement,	alpha-shape	volume	and	specimen	volume	will	be	equal	(Figure	1E),	and	224	

it	is	this	‘optimal’	alpha	upon	which	we	base	our	metric	of	3D	shape	complexity.		225	

	226	

Within	the	biological	sciences,	alpha-shapes	have	previously	been	used	to	describe	227	

characteristics	of	protein	surface	shape	[51],	to	segment	forested	areas	from	aerial	LiDAR	228	

data	[52]	and	to	describe	the	spatial	distribution	of	fish	within	schools	[53].	In	a	practical	229	

sense,	alpha-shapes	has	been	implemented	in	the	freeware	‘Meshlab’	[54]	as	a	means	of	230	

generating	surface	meshes	from	point	cloud	data.	The	authors	have	previously	applied	an	231	

alpha-shapes	approach	to	the	problem	of	body	mass	estimation	in	fossil	species	[55].	In	this	232	

implementation,	a	predictive	relationship	between	alpha	shape	volume and	body	mass	was	233	

derived	from	a	suite	of	articulated	modern	mammal	skeletons	digitised	using	LiDAR.	The	234	

predictive	model	was	subsequently	applied	to	extinct	mammal	taxa	and	their	fossil	body	235	

mass	estimated.	To	the	authors	knowledge,	alpha-shapes	has	not	previously	been	applied	to	236	

explicitly	quantify	shape	complexity	however.	237	

	238	

Genital	Shape	Complexity239	
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Within	the	field	of	evolutionary	biology,	genital	form	and	function	has	received	considerable	240	

attention,	albeit	with	a	heavy	bias	towards	invertebrates	[56].	Genitals	are	amongst	the	241	

most	diverse,	complex	and	rapidly	evolving	structures	observed	in	living	organisms	[57].	242	

Genital	shape,	rather	than	size,	is	often	used	by	taxonomists	as	a	means	of	distinguishing	243	

between	closely	related	species	[58,59],	implying	greater	divergence	in	genitalic	shape	than	244	

size	[22].	Indeed,	numerous	experimental	evolution	studies	have	found	direct	evidence	for	245	

sexual	selection	acting	on	genital	shape	across	a	range	of	taxa	[23,60,61].	246	

	247	

There	is	therefore	considerable	interest	in	developing	automated	methods	capable	of	248	

quantifying	shape	across	such	complex	and	diverse	structures	as	animal	genitalia.	In	some	249	

instances,	traditional	landmark-based	GMM	techniques	have	been	applied	[60,62-65].	Such	250	

studies	frequently	consider	genital	shape	variation	intraspecifically,	or	between	251	

morphologically	similar	sister	taxa	[66,67].	Yet	elsewhere,	GMM	methods	have	been	applied	252	

to	broader	interspecific	samples	of	genitalia	[65,	68,	69],	highlighting	the	applicability	of	253	

these	techniques	to	quantify	shape	change	in	rapidly	evolving	structures,	or	those	254	

comprised	entirely/predominantly	of	soft	tissue	[70].	255	

	256	

Here	we	use	the	mammalian	baculum	as	a	test	case	for	the	application	of	alpha-shapes	to	257	

qualifying	morphological	complexity.	In	the	past,	bacula	have	been	used	as	a	taxonomic	258	

character	to	differentiate	between	otherwise	indistinguishable	sister	taxa,	such	is	their	259	

morphological	disparity	between	closely	related	species.	Whilst	this	is	predominantly	true	260	

for	rodents	and	bats	[71],	baculum	morphometrics	have	also	been	developed	as	a	diagnostic	261	

tool	for	differentiating	between	species	of	carnivore	[72].	As	far	as	the	authors	are	aware,	a	262	

traditional	geometric	morphometric	analysis	of	baculum	shape	has	not	been	attempted	263	
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between	species	however,	potentially	due	to	difficulties	associated	with	the	identification	of	264	

discrete	homologous	landmarks.	The	development	of	a	simple	and	intuitive	method	for	265	

quantifying	‘complexity’	in	the	mammal	baculum	in	the	absence	of	homologous	landmarks	266	

therefore	has	the	potential	to	reinvigorate	the	study	of	mammal	genital	evolution.	In	267	

addition,	the	present	study	is	of	significance	for	both	ecologists	and	evolutionary	biologists	268	

(and	those	working	more	broadly	in	the	fields	of	archaeology	and	computer	science)	who	269	

will	benefit	from	a	new	tool	for	comparing	3D	shape	complexity	across	samples	of	extreme	270	

shape	diversity.271	
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Methods	272	

Raw	data	273	

Twelve	mammalian	bacula	were	scanned	as	an	example	dataset	using	micro-	computed	274	

tomography	(µCT).	The	taxa	include	three	families	of	modern	Carnivora	(Mustelidae,	275	

Canidae	and	Ursidae;	Table	1)	and	span	a	range	of	shapes	(Figure	2)	from	simple	rod-like	276	

bones	(Ursidae)	to	complex	curved,	grooved	and	notched	structures	(Mustelidae).		277	

	278	

CT	scans	were	conducted	at	Manchester	X-ray	Imaging	Facility	using	a	Nikon	320/225kV	279	

Custom	Bay	microCT	instrument,	and	the	Natural	History	Museum	London	using	a	Nikon	280	

225kV	microCT	instrument.	Raw	CT	scans	were	converted	to	binary	data	in	ImageJ	by	281	

automated	thresholding	according	the	histogram	of	raw	CT	grayscale	values.	Binarised	CT	282	

scans	were	read	into	MATLAB	R2017a	(The	MathWorks	Inc.,	Natick,	MA,	USA)	slice	by	slice,	283	

and	any	internal	cavities	present	were	filled	using	two	separate	automatic	gap	and	hole	284	

filling	algorithms,	(imclose.m	and	imfill.m)	from	MATLAB’s	Image	Processing	toolbox.	285	

imclose.m	performs	a	morphological	closing	on	each	binary	image	slice,	using	a	2D	disc	of	a	286	

given	radius.	In	this	instance,	6	pixels	was	found	to	be	the	minimum	radius	that	consistently	287	

closed	the	periosteal	contour	across	the	sample.	imfill.m	identifies	holes	as	being	288	

background	pixels	that	cannot	be	reached	from	the	edge,	and	subsequently	flood	fills	them	289	

with	foreground	pixels.	The	relative	‘hollowness’	of	bacula	has	not	previously	been	290	

described,	yet	all	specimens	included	in	the	present	study	did	possess	internal	void	spaces.	291	

Here	we	chose	to	focus	on	the	shape	complexity	of	the	external	morphology,	and	hence	292	

filled	any	internal	cavities.	Nevertheless,	the	alpha-shapes	technique	will	function	equally	293	

well	for	instances	when	the	internal	geometry	is	pertinent	to	the	research	question.		294	

	295	
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Having	filled	internal	void	spaces,	CT	data	were	converted	directly	to	point	clouds.	This	296	

highlights	an	important	advantage	of	the	alpha-shapes	approach	as	a	means	of	directly	297	

calculating	shape	‘complexity’	from	a	CT	dataset	via	the	process	of	surface	meshing,	rather	298	

than	requiring	a	surface	mesh	beforehand.	The	process	of	converting	CT	volumes	to	surface	299	

meshes	necessarily	involves	some	degree	of	smoothing	to	avoid	faceting	and	topological	300	

artefacts	resulting	from	image	artefacts	and	noise.	This	process	ought	to	be,	but	is	rarely,	301	

documented	in	the	metadata	[73]	and	the	effect	of	smoothing	on	subsequent	data	analysis	302	

is	seldom	explored.	Raw	point	clouds	were	generated	by	designating	the	x-y-z	coordinates	303	

of	every	voxel	in	the	CT	segmentation	associated	with	the	baculum	as	being	a		304	

single	point	in	space.	That	is,	unlike	surface-based	point	clouds	generated	by	other	popular	305	

digitisation	techniques	such	as	LiDAR	(light	detection	and	ranging)	or	photogrammetry,	here	306	

point	clouds	also	comprise	‘internal’	points	representing	the	solid	infilled	bone.	Raw	point	307	

clouds	were	randomly	downsampled	to	100,000	points	each,	ensuring	all	specimens	were	308	

represented	by	equally	sized	datasets	(but	see	‘Sensitivity	Analysis’	below).		309	

	310	

Alpha-shapes	311	

Alpha	and	reference	length	312	

Prior	to	fitting	alpha-shapes,	the	issue	of	scale	must	be	dealt	with.	Here	we	are	interested	in	313	

quantifying	shape	‘complexity’	in	the	absence	of	potential	size	signals.	Alpha	radii	are	314	

calculated	in	the	same	units	as	the	underlying	point	clouds,	therefore	an	alpha	radius	of	315	

100mm	may	entirely	enclose	one	smaller	specimen	yet	only	half	of	another	larger	specimen,	316	

for	example.	Size	normalisation	may	be	achieved	in	one	of	two	ways:	either	by	scaling	all	317	

point	clouds	to	the	same	size,	or	by	scaling	alpha	radii	(i.e.	the	size	of	the	‘scoop’	above)	to	318	

the	overall	size	of	each	specimen.		319	
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	320	

In	this	implementation	of	alpha-shapes,	we	choose	the	later.	In	doing	so,	the	underlying	321	

point	cloud	remains	the	same	scale	throughout.	A	specimen	with	a	maximum	length	of	322	

100mm	will	remain	represented	by	a	~100mm-long	point	cloud.	The	resulting	alpha	shapes	323	

mesh,	comprising	all	the	triangles	formed	when	the	points	contributing	to	the	alpha	shape	324	

are	connected,	will	likewise	remain	at	this	original	scale	and	may	then	be	used	in	325	

downstream	functional	analyses	(see	Discussion).	Therefore,	if	two	objects	are	identical	in	326	

shape	and	both	comprise	an	equal	number	of	points,	yet	one	is	twice	the	size,	the	larger	327	

specimen	requires	an	alpha	radius	(!)	twice	as	large	to	ensure	an	equal	refinement	of	fit.	To	328	

calculate	the	alpha	radius	for	each	specimen	we	use	the	following	equation:	329	

! = $ ∗ &'()	 (1)	330	

where	!	is	the	alpha	radii,	$	is	the	refinement	coefficient	and	&'()	is	the	point	cloud	331	

reference	length	(as	described	in	the	following	section).	Here	we	are	interested	in	332	

identifying	an	‘optimal’	level	of	alpha-shape	refinement	(see	below)	and	therefore	chose	333	

200	values	of	refinement	coefficient	k	that	result	in	alpha-shapes	ranging	from	coarse	fits	334	

(convex	hulls)	to	highly	refined	shapes.	Refinement	coefficients	ranged	from	0.1	to	10,000	335	

and	were	evenly	distributed	on	a	logarithmic	scale.	At	the	smallest	values	of	refinement,	the	336	

alpha-shape	ceases	to	be	one	continuous	volume	and	the	sphere	passes	inside	the	point	337	

cloud	to	create	multiple	small	volumes,	hence	no	longer	representing	the	overall	shape	of	338	

the	object.	339	

	340	

Scaling	reference	length	341	

The	point	cloud	reference	length	&'()	is	a	scaling	factor	allowing	equivalencies	to	be	drawn	342	

between	alpha-shapes	fitted	to	specimens	of	absolute	different	size,	as	discussed	above.	Yet	343	
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arriving	at	a	single	‘reference’	length	that	adequately	describes	the	overall	size	of	a	point	344	

cloud	is	non-trivial.	A	simple	approach	is	to	use	the	maximum	diagonal	of	the	bounding	box	345	

as	a	reference	length.	Alternatively,	an	earlier	implementation	of	alpha-shapes	as	a	mass	346	

estimation	tool	[55]	utilised	the	average	distance	of	all	points	from	the	centroid	of	the	point	347	

cloud.	Here,	we	investigate	a	third	technique,	in	which	the	average	distance	of	each	point	to	348	

its	nearest	100	neighbours	in	the	downsampled	point	cloud	is	used	as	a	descriptor	of	overall	349	

point	cloud	size.	Ultimately,	the	nearest	neighbour	technique	was	preferred	as	this	resulted	350	

in	alpha-shapes	‘breaking	down’	(i.e.	becoming	multiple	small volumes)	at	the	same	351	

refinement	coefficient	(Figure	4	-	see	asterisk	*),	implying	alpha	radii	is	well	scaled	to	the352	

relative	distance	between	points	in	the	point	cloud,	and	therefore	the	overall	size	of	the	353	

specimen.	354	

	355	

Optimal	refinement	coefficient	356	

Having	calculated	alpha	radii	using	the	above equation,	alpha-shapes	were	fitted	to	point	357	

clouds	using	the	MATLAB	‘alphavol’	function	written	by	Jonas	Lundgren	358	

(http://www.mathworks.co.uk/matlabcentral/fileexchange/28851-alpha-	shapes),	which	359	

both	calculates	the	fit	of	the	alpha-shape	and	its	associated	volume.	Alpha-shapes	were	360	

fitted	for	a	range	of	refinement	coefficient	across	all	specimens,	and	volumes	extracted.	All	361	

analyses	were	run	on	a	laptop	computer	with	8GB	1600MHz	DDR3	RAM	and	a	1.1GHz	Intel	362	

Core	M	processor.	363	

	364	

Each	specimen	is	described	by	a	representative	curve	of	alpha-shape volume	against	365	

refinement	coefficient.	As	alpha-shapes	become	more	refined	(smaller	refinement	366	

coefficients),	their	associated	volumes	decrease.	However,	the	profile	of	this	alpha	curve	is	a	367	
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function	of	the	shape	complexity	of	the	bone,	from	gross	overall	shape	(straight	vs	curved,	368	

for	example),	to	specific	morphological	features	(such	as	grooves	or	forked	tips)	and	369	

ultimately	surface	texture/roughness	(i.e.	pitted	or	smooth).	The	alpha	curve	often	has	a	370	

stepped	appearance,	with	steep	regions	corresponding	to	a	sudden	reduction	in	alpha	371	

volume	when	alpha	radius	becomes	sufficiently	small	so	as	to	represent	a	particular	feature	372	

or	surface	texture.		373	

	374	

For	each	specimen,	we	therefore	identify	the	‘optimal’	refinement	coefficient	best	reflecting	375	

overall	shape	complexity	by	comparing	alpha	volume	against	‘raw’	volume.	‘Raw’	volume	is	376	

an	estimate	of	the	biological	volume	of	the	specimen,	as	calculated	from	the	hole	filled	CT	377	

data	by	multiplying	the	number	of	threshold	voxels	by	scan	resolution	cubed,	prior	to	point	378	

cloud	downsampling.	The	refinement	coefficient	producing	an	alpha	volume	that	is	closest	379	

to	raw	volume	will	be	taken	as	the	‘optimal’	refinement.	To	identify	the	‘optimal’	380	

refinement	coefficient	an	optimisation	approach	was	undertaken	using	the	‘fminsearch’	381	

function	of	MATLAB’s	optimisation	toolbox,	which	applies	a	‘Nelder-Mead’	search	method.	382	

The	optimisation	routine	searches	for	the	refinement	coefficient	that	produces	the	smallest	383	

difference	between	alpha	volume	and	raw	volume.	This	process	continues	until	two	384	

conditions	have	been	satisfied:	the	difference	between	volumes	(alpha	volume	vs	raw	385	

volume)	is	less	than	1e-4,	and	the	difference	between	subsequent	values	of	refinement	386	

coefficient	is	less	the	1e-4.	The	final	refinement	coefficient	after	both	conditions	have	been	387	

satisfied	is	taken	as	‘optimal’.	388	

	389	

Using	our	approach,	3D	shape	complexity	is	reduced	first	into	one	curve	per	specimen	and	390	

ultimately	into	one	refinement	value	per	specimen	(see	supplementary	material	for	391	
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MATLAB	code).	We	predict	that	simple	rod-like	structures	will	require	a	relatively	coarser	392	

refinement	coefficient	(relatively	larger	alpha	radii)	to	match	‘raw’	volumes	compared	to	393	

complex,	curved	or	grooved	specimens	that	will	require	a	more	refined	alpha	shapes	394	

(relatively	smaller	alpha	radii)	to	accurately	represent	total	volume.	395	

	396	

Comparison	to	other	shape	complexity	measures	397	

Here	we	compare	alpha-shapes	to	three	additional	metrics	of	topographic	complexity	398	

commonly	applied	in	the	field	of	evolutionary	biology.	Firstly,	we	calculate	the	orientation-399	

independent	3D	‘dissection	index’	(DI)	which	represents	the	ratio	of	the	squared	root	of	400	

surface	area	to	the	cubed	root	of	volume.	2D	dissection	indices	have	previously	been	401	

applied	to	quantify	shape	complexity	in	invertebrate	genitalia	[22],	and	here	we	modify	this	402	

technique	to	work	on	3-dimensional	data.	Isosurface	meshes	(comprising	10,000	faces,	see	403	

DNE	section	below)	were	generated	from	the	binarised	.raw	CT	stack	in	Horos	[74],	404	

decimated	in	Geomagic	(3D	Systems,	North	Carolina,	USA)	and	surface	areas	and	volumes	405	

calculated	using	the	‘compute	geometric	measures’	function	in	Meshlab [54].	406	

	407	

Three-dimensional	fractal	dimension	(FD)	was	estimated	using	a	box-counting	algorithm	408	

written	in	MATLAB	by	Frederic	Moisy	409	

(https://uk.mathworks.com/matlabcentral/fileexchange/13063-boxcount).	The	function	410	

was	applied	to	the	binarized	CT	data	after	the	internal	cavities	present	were	filled,	but	prior	411	

to	conversion	to	a	point	cloud	and	downsampling	(see	‘Raw	data’	section	above).	The	412	

function	calculates	the	number	of	cubes	required	to	cover	the	baculum	N(s)	at	sequential	413	

sizes	of	box,	where	the	size	of	the	cube	s	is	the	length	of	one	side.	The	slope	of	the	414	

relationship	of	log(1/s)	to	log	N(s)	is	taken	as	an	estimate	of	the	FD	of	the	object,	where	415	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27270v1 | CC BY 4.0 Open Access | rec: 10 Oct 2018, publ: 10 Oct 2018



objects	with	higher	topographic	complexity	have	a	higher	values	FD.			416	

	417	

Dirichlet	Normal	Energy	(DNE)	was	calculated	in	the	R	package	‘MolaR’	following	the	418	

methodology	of	Pampush	et	al	[47],	using	the	same	surface	meshes	as	produced	for	the	3D	419	

DI	calculation	above.	As	per	previous	applications,	meshes	comprised	10,000	faces	[47].	420	

Higher	values	of	DNE	are	indicative	of	higher	topographic	complexity.	421	

	422	

Sensitivity	Analysis	423	

In	theory,	alpha	shapes	can	cope	with	infinitely	detailed	point	clouds,	yet	practically	the	424	

number	of	points	comprising	an	object	will	be	dictated	by	several	factors.	The	scanning	425	

technique	used	can	impact	the	density	of	the	point	cloud,	with	µCT	scans	often	producing	426	

very	dense	point	clouds	compared	to	LiDAR	or	photogrammetry	(although	this	does	strongly	427	

depend	upon	the	specifics	of	a	given	imaging	set-up).	Larger	point	clouds	necessitate	longer	428	

computational	times,	which	may	problematic	for	large	comparative	studies.	More	429	

importantly,	the	particular	research	question	ought	to	have	a	large	bearing	on	the	density	of	430	

the	point	cloud.	If	the	question	under	investigation	pertains	to	‘gross’	morphology,	a	less	431	

dense	point	cloud	may	be	justifiable,	whereas	those	focusing	on	features	of	surface	texture	432	

may	require	more	detail.	Whilst	final	point	cloud	size	is	ultimately	determined	by	the	users’	433	

needs,	ensuring	that	all	specimens	within	a	comparative	study	comprise	an	equal	number	of	434	

points	is	necessary	in	order	that	one	sample	is	not	represented	in	significantly	more	detail	435	

than	another,	which	may	potentially	skew	the	results.	436	

	437	

We	therefore	conducted	a	sensitivity	analysis	to	examine	the	effect	of	point	cloud	density	438	

on	calculated	values	of	‘optimal’	refinement	coefficients	(and	associated	computing	time).	439	
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Optimal	refinement	coefficients	were	calculated	for	each	specimen	comprising	points	cloud	440	

sizes	ranging	from	104	to	106	points,	typical	for	datasets	derived	from	LiDAR,	441	

photogrammetry	or	CT.	Reference	lengths	(see	Equation	1)	of	the	104	point	clouds	were	442	

used	to	scale	alpha	radii	for	all	point	cloud	sizes,	ensuring	consistent	alpha	radii	(at	each	443	

refinement)	between	point	cloud	sizes	and	that	results	are	equivalent.		444	

	445	
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Results	446	

The	alpha-shapes	methodology	described	here	distils	the	complexity	of	three	dimensional	447	

baculum	shape,	firstly	into	a	single	representative	curve	and	ultimately	into	a	single	448	

parameter	to	facilitate	further	comparative	analysis.		We	consider	the	shape-fitting	protocol	449	

to	be	straightforward	and	relatively	computationally	inexpensive	when	operating	on	point	450	

clouds	of	~100,000	data	points.	For	a	typical	specimen	(Mustela	itatsi,14MB	8	bit	raw	file),	451	

data	import	and	hole	filling	took	14	seconds,	the	calculation	of	reference	length	on	the	basis	452	

of	100	nearest	neighbours	took	14	minutes,	and	the	calculation	of	the	optimal	refinement	453	

coefficient	took	2	minutes.		454	

	455	

In	specimens	appearing	outwardly	similar,	the	relationship	between	alpha-shape	volume	456	

and	refinement	coefficient	is	characterised	by	similar	profiles.	Ursid	bacula,	for	example,	457	

share	a	simple	rod-like	appearance	which	is	smooth	and	lacking	in	features	such	as	grooves,	458	

curvature	or	complex	apices	(Figure	2	and	Figure	3),	and	likewise	the	four	bear	bacula	share	459	

similar	alpha	curves	(Figure	4).	At	the	highest	value	refinement	coefficients	(approaching	a	460	

convex	hull),	ursid	alpha-shapes	overestimate	raw	volume	by	~25-50%,	and	only	the	461	

outermost	points	of	the	point	cloud	contribute	to	shape	fitting.	As	refinement	coefficients	462	

decrease,	divergence	between	alpha-shape	volume	and	raw	volume	is	quickly	reduced,	and	463	

‘optimal’	alpha	is	reached	(occurring	at	refinement	coefficients	between	11-36;	Table	2).	464	

Beyond	which,	alpha-shape	volume	decreases	with	refinement	coefficient	at	a	slower	rate,	465	

until	the	alpha-shape	fit	breaks	down	to	form	several	disconnected	volumes	(refinement	466	

coefficients	below	0.6).	467	

	468	

Whilst	also	lacking	distinct	curvature	or	a	complex	tip,	the	canid	baculum	does	possess	a	469	
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well-developed	broad	urethral	groove	on	the	ventral	surface (Figure	2	and	Figure	3).	470	

Optimal	refinement	coefficients	of	canid	bacula	are	therefore	intermediate	between	those	471	

of	ursids	and	mustelids	(Table	2).	It	follows	that	these	specimens	have	a	more	complex	472	

relationship	between	alpha-shape	volume	and	refinement	coefficient,	with	curves	taking	on	473	

a	multi-stepped	appearance	(Figure	4).	Steps	coincide	with	refinement	coefficient	values	474	

becoming	small	enough	to	allow	specific	morphological	features	to	be	detailed.	At	high	475	

values	of	refinement,	alpha-shapes	overestimate	canid	baculum	raw	volume	by	~200%.	As	476	

the	refinement	coefficient	is	reduced,	canids	display	a	very	pronounced	‘step’	(Figure	4	iii	to	477	

ii)	at	a	refinement	coefficient	of	~5.	This	coincides	with	alpha	radii	falling	below	~half	478	

urethral	groove	width	(Figure	5)	and	the	distinctive	feature	suddenly	being	resolved.	479	

Optimal	alpha	occurs	soon	after	at	refinement	coefficients	of	2.7-3.6.	480	

		481	

Finally,	mustelids	require	low	values	of	refinement	coefficient	to	accurately	represent	raw	482	

volume,	as	expected	due	to	their	complex	geometry.	In	Mustela	itatsi	(Figure	3A)	for	483	

example,	alpha-shape	volumes	generated	by	high	values	of	refinement	coefficient	vastly	484	

exceed	raw	volume	(by	a	factor	of	~3),	due	to	the	highly-curved	nature	of	the	bone.	As	485	

refinement	coefficient	is	reduced,	previously	unseen	morphological	features	become	486	

apparent.	Overall	dorsoventral	curvature	is	defined	at	a	refinement	of	~10	(Figure	3A	iii)	487	

whereas	more	detailed	morphological	features	such	as	the	urethral	groove	and	the	rugose	488	

proximal	portion	associated	with	attachment	to	the	corpora	cavernosa	become	apparent	at	489	

a	refinement	of	1.7	(Figure	3A	ii).	Due	to	the	overall	complex	shape of	this	structure,	alpha-490	

shape	volume	converges	upon	raw	volume	to	produce	an	‘optimal’	refinement	fit	at	low	491	

values	of	refinement.	492	

	493	
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Both	DI	and	DNE	complexity	metrics	agree	with	the	alpha	shapes	methodology	presented	494	

here	in	finding	ursids	to	possess	low	complexity	bacula	(Table	2,	Figure	7).	Alpha-shapes	is	495	

the	only	metric tested	here	in	which	all	taxonomic	groups	are	entirely	differentiated	from	496	

each	other	on	the	basis	of	surface	complexity.	In	contrast,	there	is	very	little	differentiation	497	

between	family	groupings	when	baculum	complexity	is	quantified	by	fractal	dimension	498	

(Table	2,	Figure	7).	Average	DI	and	DNE	values	of	canid	bacula	exceed	those	of	mustelids,	499	

reversing	the	trend	present	in	optimal	alpha.		500	

	501	

Sensitivity	Analysis	502	

The	results	of	the	sensitivity	analysis	indicate	that	optimal	refinement	coefficients	decrease	503	

with	increasing	point	cloud	size	(Figure	8A).	Less	dense	point	clouds	require	relatively	504	

coarser	refinement	coefficients	in	order	to	produce	alpha	shapes	of	equal	volume	to	the	505	

original	dataset.	This	phenomenon	has	previously	been	documented	elsewhere,	and	has	506	

been	referred	to	as	the	‘coastline	paradox’	[75,	see	Discussion].	Between	105-106	points,	the	507	

rank	order	of	optimal	refinement	coefficients	remains	relatively	consistent	across	taxa	508	

(Figure	8A).	At	the	lowest	point	cloud	densities,	canids	are	considered	the	most	‘complex’,	509	

whilst	mustelid	bacula	would	appear	most	complex	at	point	cloud	densities	of	~105	points	510	

(Figure	8A).	This	simply	reflects	the	scale	at	which	shape	complexity	is	present.	Canid	bacula	511	

possess	‘gross’	complexity	(e.g.	presence	of	a	deep	urethral	groove),	whilst	mustelid	bacula	512	

are	characterised	by	a	more	refined	level	of	complexity	(e.g.	a	shallow	urethral	groove,	513	

curved	tip	and	complex	apices)	which	may	only	be	recovered	at	higher	point	cloud	densities.	514	

The	time	taken	to	compute	optimal	refinement	coefficients	increases	dramatically	between	515	

105	points	(1-2	minutes	per	specimen)	and	106	points	(15-35	minutes	per	specimen)	(Figure	516	

8B).	517	
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Discussion	518	

The	alpha-shapes	methodology	presented	here	represents	an	additional	tool	for	quantifying	519	

3D	shape	complexity	across	biological	samples	characterised	by	high	morphological	520	

disparity.	Alpha-shapes	operates	by	converting	thresholded	CT	data	directly	to	point	clouds,	521	

thereby	removing	the	requirement	to	surface	mesh	structures	beforehand.	The	alpha-522	

shapes	algorithm	does	produce	a	suite	of	surface	meshes	as	an	output	however,	which	may	523	

be	incorporated	into	subsequent	functional	analyses.	For	example,	the	impact	of	the	canid	524	

urethral	groove	on	the	biomechanical	performance	of	the	baculum	may	be	quantified	by	525	

constructing	a	suite	of	finite	element	models,	based	on	coarser	(groove	absent)	alpha-526	

shapes	and	finer	(groove	present)	alpha-shapes.	The	alpha-shapes	algorithm	is	implemented	527	

in	programming	languages	including	MATLAB	(‘alphaShape’)	and	R	via	the	‘alphahull’	528	

package	[68],	thereby	facilitating	greater	automatization	in	the	future.	Furthermore,	alpha-529	

shapes	functionality	is	also	present	in	the	freeware	software	‘Meshlab’	[54]	for	those	530	

preferring	a	graphical	user	interface.		531	

	532	

A	recent	phylogenetic	reconstruction	of	mammalian	baculum	presence/absence	found	533	

support	for	the	independent	evolution	of	the	structure	on	8-9	occasions,	with	at	least	two	534	

independent	gains	of	baculum	within	primates	[76].	As	alpha-shapes	does	not	require	the	535	

placement	of	homologous	landmark,	it	may	therefore	be	extended	to	the	analysis	of	536	

potentially	analogous structures	or	used	to	quantify	shape	complexity	through	ontogenetic	537	

sequences.	We	do	also	urge	caution	against	the	a	priori	assumption	of	analogous	baculum	538	

function	for	mammals	however,	as	no	consistent	relationship	has	yet	been	identified	linking	539	

features	of	the	baculum	to	underlying	organismal	biology	across	the	whole	group.	540	

	541	
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Here	we	find	agreement	between	alpha-shapes,	DI	and	DNE	techniques	in	identifying	ursid	542	

bacula	as	possessing	low	topographic	complexity	(Table	2,	Figure	7).	This	is	perhaps	543	

unsurprising,	as	bear	bacula	lack	both	grooves/ridges/curvature	at	a	macro	scale	and	544	

possess	a	smooth	surface	texture	on	a	finer	scale.	In	contrast,	alpha	shapes	departs	from	545	

the	other	complexity	metrics	in	classifying	mustelid	bacula	as	more	complex	than	canids,	a	546	

pattern	that	is	reversed	in	DI	and	DNE	values	(Table	2,	Figure	7).	Disagreement	between	547	

metrics	of	shape	complexity	is	not	unprecedented	[22],	and	suggests	the	methods	are	548	

simply	capturing	different	aspects	of	complexity.		549	

	550	

In	this	instance,	we	interpret	these	differences	as	being	due	to	the	relative	sensitivity	of	551	

each	metric	to	concave	versus	convex	topology.	In	DI	and	DNE,	any	change	in	topology	552	

(concave	or	convex)	will	contribute	approximately	equally	to	the	complexity	metric.	In	553	

contrast,	the	calculated	optimal	alpha	appears	to	be	more	influenced	by	the	presence	of	554	

concave	sections.	In	Figure	5,	for	example,	alpha	shapes	fitted	to	the	convex	dorsal	surface	555	

of	the	canid	baculum	change	very	little	across	two	orders	of	magnitude	in	refinement	556	

coefficient.	In	contrast,	the	form	of	the	alpha	shape	fitted	to	the	highly	concave	ventral	557	

margin	varies	substantially	alongside	refinement	coefficient.	Thus,	for	specimens	possessing	558	

large	concave	surfaces	such	as	the	urethral	groove	or	distal	tip	curvature,	small	values	of	559	

refinement	coefficient	are	necessary	for	said	features	to	be	resolved.	We	consider	alpha-560	

shapes	complexity	to	therefore	be	weighted	more	towards	gross	concave	features	than	561	

corrugated-like	surface	rugosity,	in	which	convex	and	concave	sections	occur	with	562	

approximately	equal	frequency	and	magnitude.	563	

	564	

Relative	to	other	metrics	of	topographic	complexity	considered	here,	fractal	dimension	does	565	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27270v1 | CC BY 4.0 Open Access | rec: 10 Oct 2018, publ: 10 Oct 2018



not	distinguish	between	taxonomic	groupings	(Table	2,	Figure	7).	Indeed,	Figure	6B	would	566	

suggest	carnivore	bacula	do	not	exhibit	self-similarity,	and	the	application	of	FD	to	this	567	

structure	is	not	justified.	In	the	box-counting	technique	applied	here,	true	fractal	behaviour	568	

would	be	identified	by	a	‘plateauing’	in	local	slope	values	across	several	scales	of	box-size	569	

[77].	As	can	be	seen	in	Figure	6B,	no	such	plateaus	exist,	and	bacula	cannot	be	considered	to	570	

behave	in	a	fractal	manner	across	several	orders	of	magnitude	scale.	571	

	572	

Whilst	the	alpha-shapes	method	is	not	heavily	user	intensive,	the	process	of	shape-fitting	573	

can	be	computationally	costly.	To	expedite	the	process,	point	clouds	are	downsampled.	574	

However,	our	sensitivity	analysis	does	indicate	that	optimal	refinement	coefficients	are	a	575	

function	of	point	cloud	density	(Figure	8A).	In	denser	point	clouds,	surface	textural	576	

information	(such	as	attachment	scars,	and	small	fossae)	are	preserved	and	a	finer	‘fit’	577	

around	such	features	in	necessary	in	order	to	recreate	the	original	volume.	At	lower	point	578	

cloud	densities,	only	gross	morphology	is	preserved	and	a	coarser	‘optimal’	refinement	579	

coefficient	is	sufficient.			580	

	581	

This	effect	is	related	to	a	well	know	phenomena	known	as	the	‘coastline	paradox’	[65],	in	582	

which	the	length	of	a	country’s	coastline	increases	as	the	scale	of	the	measuring	unit	is	583	

decreased.	Intuitively,	more	features	of	a	coastline	can	be	resolved	and	incorporated	into	a	584	

metric	of	length	when	using	a	shorter	‘measuring	stick’.	In	the	case	of	alpha-shapes,	as	point	585	

cloud	density	is	downsampled,	the	likelihood	of	removing	points	lying	on	the	outer	contour	586	

is	increased.	As	the	outermost	points	define	the	margins	of	the	specimen,	downsampling	587	

results	in	an	apparent	‘smoothing’	of	the	object	and	hence	a	coarser	optimal	refinement	588	

coefficient.	To	illustrate	this	effect,	the	alpha-shapes	methodology	was	applied	to	a	2D	point	589	
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cloud	map	of	Great	Britain	(Figure	9).	The	results	mirror	our	baculum	dataset,	with	denser	590	

point	cloud	maps	requiring	more	refined	alpha-shapes	in	order	to	match	the	original	area	591	

(Figure	9).	Low	density	point	clouds	loose	many	of	the	finer	features	of	the	coastline	(thin	592	

peninsulas,	bays	etc.)	and	only	gross	shape	is	preserved.		593	

	594	

Furthermore,	the	sensitivity	analysis	highlighted	a	change	in	the	rank	order	of	species’	595	

optimal	refinement	coefficients	associated	with	downsampling	between	104-105	points	596	

(Figure	8A).	As	discussed	above,	this	pertains	to	the	‘hierarchy’	of	complexity	which	may	be	597	

revealed	at	a	given	point	cloud	size.	Canids	possess	‘gross’	complexity	which	may	be	598	

resolved	in	low	resolution	point	clouds,	whilst	mustelids	are	characterised	by	concave	599	

features	of	micro-complexity	which	require	higher	density	point	clouds	to	be	detected.	600	

Beyond	105	points,	rank	orders	are	relatively	stable	yet	computational	time	increases	601	

dramatically	(Figure	7B).	602	

	603	

Ultimately,	point	cloud	density	will	be	at	the	discretion	of	the	user.	This	is	not	unusual,	and	604	

similar	decisions	are	made	(implicitly	or	explicitly)	whenever	selecting	the	required	605	

resolution	of	a	digital	photograph	or	µCT	scan.	As	a	rule	of	thumb	in	µCT	scanning,	voxel	size	606	

must	be	at	most	one-quarter	to	one-third	of	the	size	of	the	feature	of	interest	in	order	to	607	

resolve	said	feature	and	avoid	partial	volume	effects.	Similarly,	to	guarantee	their	inclusion	608	

in	an	alpha-shapes	analysis,	we	recommend	the	minimum	dimension	of	a	given	feature	(for	609	

example,	the	width	of	a	groove	or	diameter	of	a	fossae)	comprise	at	least	3-4	data	points	610	

within	the	point	cloud.	Beyond	this,	the	final	point	cloud	density	will	reflect	a	compromise	611	

between	the	level	of	detail	required	by	the	user	and	computer	processing	time.	612	

	613	
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That	‘optimal’	refinement	coefficients	are	a	function	of	point	cloud	density	is	not	614	

problematic	for	the	application	of	alpha-shapes	within	a	comparative	analysis	framework.	615	

Minimum	point	cloud	density	should	be	dictated	by	the	smallest	feature	of	interest	across	616	

the	whole	sample,	and	all	specimens	downsampled	to	this	same	degree.	Thus,	‘optimal’	617	

refinement	coefficients	are	equivalent	across	a	given	dataset.	The	absolute	values	of	618	

refinement	coefficients	will	be	specific	to	that	given	dataset	however.	619	

	620	

	In	addition,	the	current	implementation	of	alpha-shapes	is	limited	in	the	sense	that	621	

between-subject	variation	in	alpha	volume	can	be	difficult	to	ascribe	any	one	particular	622	

geometric	feature. Figure	10	represents	an	initial	attempt	to	address	this	shortcoming,	in	623	

which	data	points	of	the	point	cloud	are	coloured	according	to	the	coarsest	alpha-shape	to	624	

which	they	contribute.		The	urethral	groove	of	the	canid	requires	a	similar	level	of	625	

refinement	in	order	to	be	resolved	as	the	curved	tip	of	the	mustelid	(Figure	10,	green),	and	626	

would	therefore	be	consider	equally	‘complex’	in	the	current	implementation	of	alpha—627	

shapes.	In	contrast,	the	urethral	groove	of	the	mustelid	required	a	more	refined	‘fit’	of	alpha	628	

in	order	to	be	distinguished	(Figure	10,	red),	contributing	to	the	low	values	of	optimal	alpha	629	

calculated	for	all	mustelids	here.	Future	implementations	of	alpha-shapes	will	seek	to	630	

further	quantify	regional	variation	in	shape	complexity	within	specimens,	and	will	explore	631	

means	of	extracting	additional	information	from	alpha-curves.	632	
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Conclusions	633	

The	alpha-shapes	methodology	presented	here	is	an	important	addition	to	the	biologist’s	634	

tool	kit,	providing	a	metric	of	topographical	complexity	that	complements	and	extends	pre-635	

existing	techniques	such	as	Dissection	Index,	Fractal	Index	and	Dirichlet	Normal	Energy.	636	

Alpha-shapes	differs	from	methods	that	have	previously	been	applied	to	genital	shape,	such	637	

as	GMM	and	spherical	harmonics,	in	that	it	describes	the	extent	to	which	an	object	is	638	

structural	complex,	as	opposed	to	how	objects	differ	in	the	positioning	of	particular	639	

features.	We	therefore	consider	alpha-shapes	to	be	especially	useful	for	measuring	the	640	

functional	properties	of	shapes,	be	those	animal	genitals,	corals,	or	the	occlusal	surfaces	of	641	

teeth.	Because	optimal	alpha	values	reflect	the	topographical	complexity	of	a	surface,	642	

rather	than	the	specifics	of	how	that	complexity	is	achieved,	it	does	not	require	the	643	

placement	of	homologous	landmarks	and	may	therefore	be	used	to	compare	shape	644	

complexity	across	unrelated	structures.	645	

	646	
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Abbreviations	647	

CT:	computed	tomography;	DI:	dissection	index;	DNE:	Dirichlet	normal	energy;	FD:	fractal	648	

dimension;	GMM:	geometric	morphometrics;	LiDAR:	light	detection	and	range;	SPHARM:	649	

spherical	harmonics.	650	
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Figures	860	

861	

Figure	1	-	Diagram	illustrating	the	nature	of	alpha-shapes,	as	understood	in	2-dimensions.	A,	862	

the	original	shape	to	which	alpha-shapes	are	to	be	fitted;	B,	a	convex	hull	fitted	to	the	data	863	

representing	the	special	case	when	alpha=infinity;	C-E,	represent	increasingly	refined	alpha-864	

shapes	fitted	to	the	data	as	alpha	is	reduced;	F,	represents	the	point	at	which	the	alpha	radii	865	

can	pass	‘internally’	through	the	data	set	and	the	alpha-shape	breaks	down	to	form	several	866	

smaller	shapes.	Intuitively,	the	alpha-shape	represented	in	Figure	1E	would	be	considered	as	867	

‘most-representative’	of	the	original	shape	described	in	Figure	1A,	as	defined	by	equivalency	868	

of	area.	869	
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	870	

	871	

Figure	2	-	Surface	renderings	(lateral	and	ventral	view)	of	three	example	Carnivora	bacula,	872	

for	illustrative	purposes.	A.	Mustela	kathiah;	B.	Canis	lupus;	C.	Ursus	maritimus.		873	
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Figure	3	–	Alpha-shapes	fitted	to	three	example	bacula.	A,	mustelid;	B,	canid;	C,	ursid.	As	875	

refinement	coefficient	is	decreased,	the	volume	of	alpha-shapes	(as	a	percentage	of	CT	876	

voxel	volume)	decreases.	i,	when	this	value	drops	below	100,	the	alpha-shape	has	‘broken	877	

down’	and	the	fit	passes	internally	of	the	point	cloud;	ii,	the	‘optimal’	refinement	occurs	878	

when	alpha	volume	is	exactly	equal	to	CT	volume;	iii,	an	intermediate	fit	alpha-shape	879	

defined	as	halfway	between	‘optimal’	alpha	and	the	cnvex	hull	describes	some	coarser	880	

geometric	features,	such	as	the	curvature	of	the	mustelid	baculum,	but	misses	finer-scale	881	

detail	such	as	the	canid	urethral	groove;	iv,	the	coarsest	alpha-shapes	are	equivalent	to	882	

convex	hulls,	fitted	only	to	the	outermost	extremes	of	the	point	cloud	and	representing	883	

gross	morphology.	Due	to	the	curved	nature	of	the	mustelid	baculum,	coarse	alpha-volume	884	

is	considerably	greater	than	the	CT	voxel	volume.885	
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	886	

887	

Figure	4	–Alpha-shapes	results	for	all	specimens.	A,	bacula	of	outwardly	‘similar’	shape	888	

complexity	describe	similar	alpha-shape	curves;	B,	zoomed-in	grey	region	of	Figure	4A.	The	889	
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location	at	which	alpha	volume	crosses	100%	of	CT	voxel	volume	is	taken	at	the	‘optimal’	890	

refinement	coefficient	and	used	as	a	metric	of	overall	shape	complexity.	Mustelids	require	891	

small	values	of	refinement	coefficient	to	adequately	represent	their	geometry,	whereas	892	

comparatively	‘simple’	ursid	bacula	can	be	described	by	coarser	alpha	fits.	The	point	at	893	

which	all	alpha-shapes	break	down	into	multiple	smaller	volumes	(*)	is consistent	for	all	894	

specimens,	suggesting	that	alpha	radii	is	well	scaled	to	the	overall	size	of	the	point	cloud.895	
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897	

Figure	5	–	The	stepped	alpha-shape	profile	of	a	canid	baculum	(modelled	in	2-dimensions	898	

for	illustrative	purposes).		Circles	illustrate	the	value	of	alpha	radius	at	four	locations	(A-D)	899	

along	the	alpha	curve.		The	step	between	B	and	C	represents	the	point	at	which	the	alpha	900	

exceeds	the	width	of	the	urethral	groove.	Once the	groove	is	no	longer	distinguished,	alpha	901	

volume	increases	dramatically.	902	

	903	
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904	

Figure	6	–	Box-counting	estimation	of	fractal	dimension	(FD).	A,	Fractal	dimension	is	905	

calculated	as	the	slope	of	the	relationship	between	log(1/s)	and	log	N(s),	where	s	is	the	906	

length	of	box	edge	and	N(s)	is	the	number	of	boxes	required	to	cover	the	object.	Steeper	907	

slopes	are	associated	with	increased	topographical	complexity;	B,	the	local	slopes	as	908	

calculated	between	sequential	data	points	of	Figure	6A.	When	objects	are	said	to	exhibit	909	

‘true’	fractal	behaviour,	the	local	slope	will	plateau	over	a	range	of	box	sizes.	In	this	910	
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instance,	it	is	clear	that	no	such	plateaus	occur,	and	thus	bacula	cannot	be	considered	911	

‘fractal’.912	
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	913	

914	

Figure	7	–	A	comparison	of	four	metrics	for	quantifying	topographic	shape	complexity,	as	915	

applied	to	carnivore	bacula.	A,	alpha-shapes	(displays	1/refinement	coefficient,	such	that	916	

lower	values	indicate	less	complex	shapes,	in	line	with	other	metrics);	B,	dissection	index	917	

(DI);	C,	fractal	dimension	(FD)	estimated	using	box-counting;	D,	Dirichlet	normal	energy	918	

(DNE)	calculated	from	surface	mesh.		919	

	920	
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921	

Figure	8	–	Alpha-shape	sensitivity	analysis.	A,	optimal	refinement	coefficients	for	study	922	

species	over	a	range	of	point	cloud	densities.	B,	the	associated	computational	time	to	find	923	

the	optimum	refinement	coefficient	for	a	given	point	cloud	density.	924	

	925	
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926	

Figure	9	–	‘Coastline	paradox’	example.	2D	point	clouds	of	Great	Britain	increase	in	density	927	

from	A-F.	As	point	cloud	density	increases,	refinement	coefficient	k	must	decrease	in	order	928	

to	resolve	fine-scale	features	and	maintain	an	equivalent	alpha-shape	area.	Map	modified	929	

from	930	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27270v1 | CC BY 4.0 Open Access | rec: 10 Oct 2018, publ: 10 Oct 2018



https://upload.wikimedia.org/wikipedia/commons/a/ab/England%2C_Scotland_and_Wales931	

_within_the_UK_and_Europe.svg932	
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934	

Figure	10	-		‘Coarsest	refinement’	point	clouds.	Ventral	surfaces	of	mustelid,	ursid	and	canid	935	

bacula	(left	to	right).	Points	are	coloured	according	to	the	coarsest	alpha-shape	to	which	936	

they	contribute.	The	urethral	groove	of	the	mustelid	baculum	is	identified	as	being	937	

particularly	‘complex’	according	to	the	alpha-shapes	methodology.938	
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Tables	939	

Table	1	–	Baculum	specimens	included	in	analysis.	*Natural	History	Museum,	London.	†National	Museum	of	Scotland,	Edinburgh.	940	

Family	 Taxa	 Common	name	 Accession	
number	

Baculum	length	(mm)	 Scan	resolution	(mm)	 Voltage	(kV)	 Current	(uA)	 Filter	(mm)	

Mustelidae	 Mustela	itatsi	 Japanese	weasel	 84.2.9.1*	 30.4	 0.031	 150	 160	 Cu	0.1	

Mustelidae	 Mustela	kathiah	 Yellow-bellied	weasel	 33.4.1.248*	 29.9	 0.023	 150	 160	 Cu	0.1	

Mustelidae	 Mustela	lutreola	 European	mink	 PH133.06† 35.3	 0.032	 75	 80	 NA	

Mustelidae	 Mustela	nigripes	 Black-footed	ferret	 Z.1999.206.003†	 29.9	 0.032	 75	 80	 NA	

Ursidae	 Melursus	ursinus	 Sloth	bear	 Z.2001.42.2†	 156.6	 0.050	 100	 90	 Cu	0.1	

Ursidae	 Tremarctos	ornatus	 Spectacled	bear	 Z.2001.42.2†	 140.1	 0.050	 100	 90	 Cu	0.1	

Ursidae	 Ursus	arctos	 Brown	bear	 1938.6.24.3*	 122.8	 0.067	 140	 150	 Cu	0.1	

Ursidae	 Ursus	maritimus	 Polar	bear	 Z.2000.234†	 186.8	 0.050	 100	 90	 Cu	0.1	

Canidae Canis aureus Golden jackal 5.10.4.18* 64.1 0.048 140 150 Cu	0.1

Canidae	 Canis	lupus	 Grey	wolf	 LW3†	 99.9	 0.040	 75	 80	 NA	

Canidae	 Canis	mesomelas	 Black-backed	jackal	 820*	 52.6	 0.031	 140	 150	 Cu	0.1	

Canidae	 Chrysocyon	brachyurus	 Maned	wolf	 Z.200.27†	 97.7	 0.040	 75	 80	 NA	

	941	
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Table	2	–	Optimal	values	of	alpha	derived	from	shape-fitting	protocol,	compared	to	3D	dissection	index	values,	fractal	dimensions	and	Dirichlet	942	

normal	energies.	SA,	surface	area;	V,	volume.	943	

944	

Family	 Taxa	
Optimal	refinement	

coefficient	
Dissection	index	

(2ÖSA/3ÖV)	
Fractal	dimension	 Dirichlet	normal	

energy	

Mustelidae	 Mustela	itatsi	 1.67	 3.54	 2.17	 1241	
Mustelidae	 Mustela	kathiah	 2.04	 3.57	 2.16	 1427	
Mustelidae	 Mustela	lutreola	 2.36	 3.3	 2.24	 1330	
Mustelidae	 Mustela	nigripes	 2.18	 3.3	 2.26	 1384	
Ursidae	 Melursus	ursinus	 20.9	 3.09	 2.24	 656	
Ursidae	 Tremarctos	ornatus	 10.7	 3.12	 2.20	 578	
Ursidae	 Ursus	arctos	 32.5	 3.29	 2.11	 826	
Ursidae	 Ursus	maritimus	 36.2	 3.37	 2.10	 718	
Canidae	 Canis	aureus	 2.87	 3.87	 2.13	 1242	
Canidae	 Canis	lupus	 3.18	 3.81	 2.20	 1389	
Canidae	 Canis	mesomelas	 3.59	 4.1	 2.12	 1460	
Canidae	 Chrysocyon	brachyurus	 2.71	 3.9	 2.11	 1714	
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