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ABSTRACT 6	

 From microorganisms to the largest macroorganisms, much of Earth’s biodiversity is 

subject to forces of physical turnover. Residence time is the ratio of an ecosystem’s size to its 8	

rate of flow and provides a means for understanding the influence of physical turnover on 

biological systems. Despite its use across scientific disciplines, residence time has not been 10	

integrated into the broader understanding of biodiversity, life history, and the assembly of 

ecological communities. Here, we propose a residence time theory for the growth, activity, 12	

abundance, and diversity of traits and taxa in complex ecological systems. Using thousands of 

stochastic individual-based models to simulate energetically constrained life history processes, 14	

we show that our predictions are conceptually sound, mutually compatible, and support 

ecological relationships that underpin much of biodiversity theory. We discuss the importance of 16	

residence time across the ecological hierarchy and propose how residence time can be integrated 

into theories ranging from population genetics to macroecology.  18	
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INTRODUCTION 

 Much of Earth’s biodiversity is at the mercy of currents that drive the transport of 20	

resources and organisms through environments of greatly varying size (V) and rate of flow (Q). 

In nature, the turnover induced by forces of flow can vary by more than eight orders of 22	

magnitude, from minutes in the organs of some plants and animals to millennia in lakes, glaciers, 

and soils (e.g., Dietrich and Dunne 1978; Bell et al. 2002; James et al. 2003, Friend et al. 2014; 24	

Dey et al. 2015, Schramski et al. 2015). The duration of this physical turnover, known as 

residence time (τ), influences a range of biological phenomena including population growth,  26	

nutrient dynamics, and ecosystem functioning (Post et al. 1982; Valiela et al. 1997; Josefson et 

al. 2000; Crump et al. 2004; Beaugrand et al. 2010; Friend et al. 2014, Sibley et al. 2012, 28	

Waldron 2015). Residence time can also influence organismal health and is thought to be an 

evolutionary constraint on digestion (Molla et al. 1983; Castiglione et al. 2000; Franz et al. 2009; 30	

Wu et al. 2011; Flint 2012, Dey et al. 2015). Despite the relevance of τ to environmental, 

engineered, and host-associated habitats, no theory exists for how τ should shape the biodiversity 32	

of ecological systems. 

 Residence time relates to V and Q in a simple, albeit powerful way: τ = V/Q. This 34	

relationship is based in probability theory and represents the average time that passively moving 

particles remain in a system (see Online Appendix A). At least three classic predictions related to 36	

τ have been developed and tested using well-mixed bioreactors known as chemostats where V 

and Q are held constant (Smith and Waltman 1995; Henze 2000; Angenent et al. 2004, see 38	

Online Appendix A). First, assuming ideal chemostat conditions, including zero immigration and 

constant growth, τ approximates the average time that individuals spend in the system. Second, at 40	

an equilibrium abundance, dilution rate (1/τ) approximates population growth rate (µ). Third, 
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population size and productivity are greatest when dilution rate (1/τ) is equivalent to maximum 42	

growth rate (µmax). These predictions underpin the mechanics of chemostats wherein seminal 

theories of resource competition and resource-limited growth were first tested (e.g., Droop 1974, 44	

Tilman 1981). However, in nature, the assumptions of chemostats are often violated: resource 

conditions are not optimal, populations are rarely stable, immigration is common, and organisms 46	

often resist forces of flow via active dispersal. Likewise, species in natural systems are subject to 

selection via the fit of their traits to the abiotic environment (i.e., environmental filtering). 48	

Consequently, it remains to be seen whether classic τ-related predictions should hold under the 

complex conditions found in nature. Beyond these classic predictions and despite the generality 50	

of V and Q as ubiquitous aspects of natural systems, τ has rarely been to understand the assembly 

and diversity of ecological communities. 52	

 In this study, we develop a τ-based theory for biodiversity. Our theory is underpinned by 

the idea that the physical turnover induced by τ can shape the life history strategies of individual 54	

organisms, the traits of species, and the assembly and structure of ecological communities. We 

propose a set of predictions for how τ influences the abundance and diversity of taxa within 56	

ecological communities and how τ acts as a force of environmental filtering on sets of traits (i.e., 

syndromes) that promote growth, coexistence, and persistence. At the same time, we propose 58	

that classic τ-related predictions developed for chemostats may fail in complex ecological 

systems. We challenge our predictions to emerge in unison alongside established patterns of 60	

biodiversity using thousands of stochastic individual-based models (IBMs). In doing so, we 

provide initial support for our theory and its compatibility with other ecological theories. We 62	

discuss how τ can be integrated into theories ranging from population genetics and life history to 

community ecology and macroecology. We also describe how τ may contribute to the 64	
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understanding of metabolism and host-microbiome dynamics. Finally, we discuss the potential 

for anticipating changes in biodiversity by understanding ecological responses to changes in τ. 66	

 

RESIDENCE TIME PREDICTIONS 68	

 Here, we propose predictions for how residence time (τ = V/Q) should affect the 

abundance, diversity, and the productivity of ecological communities, as well as the emergence 70	

of trait-syndromes that allow organisms to persist within environments characterized by a rate of 

flow or physical turnover (Q). The following predictions, which are depicted in Box 1, use a 72	

generalized concept of an environment’s size (V) that applies to the number of spatial dimensions 

across which flow occurs. 74	

 

Community-level predictions 76	

Prediction 1: Total abundance (N) vs. τ — The number of individual organisms is the primary 

descriptor of abundance for populations and communities. We predict that τ influences N through 78	

its effects on immigration, emigration, and population growth. First, τ can be short enough that 

individuals are removed before reproducing, a phenomenon commonly referred to as “washout”. 80	

Second, τ can be long enough that immigration is too low to establish or maintain populations. 

Under the same conditions of slow turnover, resource supply may be too low to fuel growth or to 82	

offset metabolic maintenance. Between these extremes, resource supply can be high enough to 

sustain growth, immigration can be high enough to establish populations, and physical turnover 84	

can be slow enough to prevent washout. In this way, we expect a hump-shaped relationship 

where N is greatest at intermediate τ. 86	
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Prediction 2: Productivity (P) vs. τ – The number of individuals produced per unit time should 88	

also exhibit a hump-shaped relationship to τ. At sufficiently short τ, individuals may not have 

enough time to reproduce. At long τ, individuals may not have the resources to grow and 90	

reproduce. The relationship between P and τ will not necessarily reflect the relationship between 

N and τ, as immigration and non-reproductive states of low metabolism (dormancy) can decouple 92	

how abundance relates to productivity. 

 94	

Prediction 3: Species richness (S) vs. τ — The number of species in a community is the 

foremost component of species diversity (Magurran and McGill 2011). We predict a humped-96	

shaped relationship between S and τ because of the constraining influence of N (i.e., S ≤ N) and 

because a decreasing number of species should be able to persist when τ becomes increasingly 98	

short or long. Specifically, τ should constrain S by acting as an environmental filter on species 

that cannot resist washout at short τ or resist starvation at long τ. We expect that τ also affects S 100	

through its influence on immigration because without continued immigration (e.g., at long τ), a 

community can drift to a single species (S = 1). 102	

 

Prediction 4: Species evenness (E) vs. τ	— Similarity in abundance among species (i.e., 104	

evenness, E) is the second primary component of species diversity (Magurran and McGill 2011). 

Though measures of E are derived to be independent of S (Smith and Wilson 1996), E often 106	

scales inversely with N, E ∝ N-z (Locey and Lennon 2016). This relationship can partly be 

explained as a consequence of how both N and N/S mathematically constrain E (Locey and 108	

White 2013; Xiao et al. 2015). Consequently, we expect E to be lowest at intermediate values of 

τ, when N and N/S are greatest. 110	
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Prediction 5: Species turnover (β) vs. τ	— We predict that short τ should produce high rates of 112	

temporal species turnover (β) through a combination of low N, low S, and high rates of 

immigration and emigration. Species turnover should then decrease with greater τ, reflecting the 114	

dynamics of a slower moving system. However, β may increase at extremely long τ because the 

loss of a single species can greatly influence the value of β in communities of few species. As a 116	

result, we predict a relationship of β to τ that varies from monotonically decreasing to J-shaped. 

 118	

Prediction 6: Dormancy vs. τ — Dormancy is a reversible state of reduced metabolic activity 

accompanied by the absence of resource consumption, growth, and reproduction. Organisms 120	

across the tree of life exhibit dormancy, particularly in response to the sparse and fluctuating 

availability of resources (Guppy and Withers 1999). Dormancy should be maladaptive in 122	

systems with high rates of physical turnover because individuals will have an increased 

probability of being washed out before reproducing (Lennon and Jones 2011). In contrast, 124	

dormancy should be favored in systems with longer residence time owing to a reduced rate of 

resource supply and lower probability of washout. 126	

 

Trait-level predictions 128	

Prediction 7: Individual growth vs. τ — At short τ, populations can resist washout if individuals 

can reproduce before being removed and if resource supply is great enough to sustain rapid 130	

growth. As τ increases, the pressure imposed by τ on individuals to grow rapidly should decrease. 

Because faster growth incurs greater energetic costs (Carlson et al. 2007, Lipson 2015) and 132	
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because resources may become too deplete to fuel rapid growth, environmental filtering should 

favor slower growing organisms at longer τ. 134	

 

Prediction 8: Active dispersal vs. τ — Active dispersal allows organisms to resist forces of flow 136	

but also incurs energetic costs. At low τ, the cost of active dispersal may be compensated for by 

high rates of resource supply. However, resources should be become increasingly limited with 138	

longer τ and the pressure to actively disperse at rapid rates should decrease. Consequently, rates 

of active dispersal should decrease with greater τ. 140	

 

Prediction 9: Basal metabolic rate (B) vs. τ — Basal metabolic rate represents the sum of 142	

energetic costs associated with essential metabolic functions. We predict a decrease in B with 

increasing τ. While a higher B may be permissible in systems of high resource supply, 144	

increasingly long τ should favor greater metabolic efficiency (e.g., maintaining a similar rate of 

dispersal under a lower B) or greater austerity (e.g., via dormancy). 146	

 

Prediction 10: Resource specialization vs. τ — Resource specialization reflects the variation in 148	

species performance across a range of resource types (Devictor et al. 2010; Poisot et al. 2012). 

Under the stochastic supply of several resource types, we expect the relationship between τ and 150	

resource specialization to be hump-shaped. When τ is short, we expect that individuals reduce 

the probability of washout by consuming a variety of resources instead of waiting to encounter a 152	

specific resource type. As τ increases, specialists are afforded time to encounter specific resource 

types, resulting in the emergence of species that consume largely non-overlapping sets of 154	

resources. We expect this partitioning of resource types to promote greater S. However, we 
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expect that a generalist strategy may again be favored at high values of τ as the availability of 156	

each resource decreases through low resource resupply (low Q), high dilution of resources in the 

environment (high V), or both. 158	

 

Predictions 11: Resuscitation rate vs. τ — The resuscitation of organisms from a dormant state 160	

can be highly unpredictable, a consequence of interacting life history strategies and stochastic 

“seed bank” dynamics (Epstein 2009). Because resuscitation exposes organisms to the costs of 162	

active metabolism, we expect rates of random resuscitation to decrease with increasing τ. 

 164	

Prediction 12: Reduction of basal metabolism (B) in dormancy vs. τ — Dormancy allows 

organisms to persist in suboptimal environments via reduced B. Because increasingly long τ 166	

represents increasingly strong pressure on organisms to survive in the absence of resources, we 

expect the degree to which B is decreased in dormancy to increase with τ. 168	

 

Equivalence predictions 170	

Predictions 13 & 14: In chemostat-like bioreactors with ample resource supply, theory predicts 

that total abundance (N) and productivity (P) should be greatest when specific maximum 172	

population growth rate (µmax) is equivalent to the dilution rate (1/τ). This classic prediction 

assumes a constant rate of growth, constant N, and zero dormancy; conditions that are unlikely 174	

under the stochastic and resource-limited dynamics of complex communities. Therefore, we 

expect the similarity between 1/τ and rates of energetically costly traits (e.g., B, individual 176	

growth, active dispersal) to reflect the fit of species’ to local conditions. As a result, P and the 
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total abundance of active individuals (Na) should be greatest when rates of individual growth, B, 178	

and active dispersal are equivalent to 1/τ. 

 180	

METHODS 

Overview – We tested our predictions (Box 1) using an individual-based modeling (IBM) 182	

platform that simulates stochastic and energetically constrained life history processes among 

thousands of highly varied and randomly parameterized IBMs. IBMs are choice tools for the 184	

aims of our study. First, IBMs are ideal for simulating changes among particles (organisms, 

resources) as they move through dynamic environments (Hellweger et al. 2016; Locey et al. 186	

2017). Second, IBMs allow higher order properties (specific-growth rate, community-scale 

predictions) to emerge from processes operating at the individual-level (Grimm et al. 2005, 188	

Hellweger et al. 2016). For example, while specific-growth rate (µ) would typically be 

parameterized in most other models, µ can emerge in IBMs via the cumulative reproductive 190	

events of individuals. Finally, IBMs allow a practically unlimited number of relationships to 

simultaneously emerge at the individual-, population-, species-, community-, and ecosystem- 192	

level (Locey and Lennon 2017). Hence, our IBMs allowed us to examine classic predictions of τ 

derived from ideal conditions, novel predictions of τ derived from more realistic conditions, and 194	

well-known macroecological patterns from a single ensemble of IBMs. We describe our 

modeling below and provide greater details in Online Appendix B. 196	

 

Randomized model parameterization – Each IBM began with random combinations of traits for 198	

each species in the regional pool, along with randomly drawn values of immigration rate, 

resource conditions, and randomly drawn values of V and Q (Table 1). This randomized 200	
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parameterization allowed our IBMs to explore wide swaths of multivariate parameter space 

while allowing our predictions, realistic trait combinations, and general biodiversity patterns to 202	

emerge, as opposed to being explicitly enforced. 

 204	

Simulating residence time (τ) — Flow rate (Q) was simulated as the fraction of a single unit 

distance covered per time step and was randomly chosen within a range of three orders of 206	

magnitude (Table 1). The length of a system across which flow occurred (V) was also randomly 

chosen within a range of three orders of magnitude (Table 1). These ranges of values for V and Q 208	

yielded six orders of magnitude in τ. 

 210	

Immigration and resource supply – Each IBM began as an empty system into which resource 

particles flowed and individual organisms immigrated. The body size and species identity of 212	

each immigrant was drawn at random from uniform distributions, as were the sizes and identities 

of inflowing resource particles (Table 1). As a result, the probability of immigration was 214	

essentially equal among species and ensured that realistic community structures would have to 

emerge from the dynamics of the local community and the physical properties of the focal 216	

system (i.e., V, Q). 

 218	

Life history processes: Our IBMs simulated individual-based processes of consumption, growth, 

reproduction, death, passive and active dispersal, and transitions into and out of dormancy. The 220	

rates at which individuals underwent these processes were determined by the products of 

probabilities, i.e., multiplicative interactions of random variables (see lognormal dynamics of 222	

Shoemaker et al. 2017). These probabilities were determined by species trait values along with 
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the metabolic state (active or dormant), body size (s), and endogenous resources (q) of 224	

individuals. Body size and q differed in that s represented the mass of individuals that could not 

be used to fuel metabolism. Along with basal metabolism, growth and active dispersal also 226	

incurred energetic costs (Table 1). 

 228	

Resource consumption – At each time step (t), randomly sampled individuals could consume a 

randomly encountered resource particle from any of 10 possible resource types. Encounters with 230	

resource particles were influenced by the concentration of resource particles (D) in the system, 

with the probability of encounter increasing with D and equaling 0 in the absence of resources: 232	

D/(1+D). Once an encounter was made, efficiency of consumption (0 to 100%) was determined 

by species-specific values for each of the 10 possible resource types. Consumption increased an 234	

individual’s endogenous resources according to their species-specific efficiency (e) for the 

particular resource, the size of the resource particle (r), and s:  236	

𝑞!!! =  𝑞! +min 𝑟! , 𝑒 ∗ 𝑠!   

This relation prevented an individual from consuming a greater amount of resource than 238	

represented in the resource particle and allowed s to take any non-zero real number. The size of 

the resource particle then decreased respectively and led resource particles of zero size to be 240	

removed from the system: 

𝑟!!! =  𝑟! −min 𝑟! , 𝑒 ∗ 𝑟! ∗ 𝑠!   242	

 

Growth – Because our models were individual-based, they did not explicitly encode a 244	

proportional rate of population growth, also known as specific growth rate (µ). Instead, randomly 
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sampled individuals grew proportionally to their body size according to their species-specific 246	

rate of individual growth 𝜇, resulting in an equivalent decrease in q: 

s!!! =  s! +min 𝑞! , 𝜇 ∗ 𝑞!   248	

𝑞!!! =  𝑞! −min 𝑞! , 𝜇 ∗ 𝑞!   

These relationships produced proportional growth, prevented individuals from growing beyond 250	

available q, and enforced a cost of growth via reduction in q. 

 252	

Reproduction – Reproduction was clonal as in other biodiversity models (e.g., Hubbell 2001) and 

resulted in the halving of 𝑞 and body size (s). At each time step (t), randomly sampled 254	

individuals that were metabolically active could reproduce according to a probability that 

increased with s and the ratio (λ) of q to basal metabolic costs (B), λ = q/(B): 256	

𝑝 =  
𝜆!

1+ 𝜆!
∗

𝑠!
1+ 𝑠!

   

In this way, the probability of reproducing (p) equaled 0 if q or size equaled 0. This probability 

also meant that reproduction was unlikely for newly produced individuals but became more 258	

likely with greater size, greater age, and with greater amounts of endogenous resources available 

beyond that needed to fuel basal metabolism. 260	

 

Transitions between activity and dormancy – At each time step, active individuals became 262	

dormant based on the product of probabilities based on age (a) and λ: 

𝑝 =  
1

1+ 𝜆!
 ∗

𝑎!
1+ 𝑎!

  

According to this probability, a greater amount of endogenous resource relative to basal 264	

metabolic costs decreased the probability of going dormant, while the age-related term prevented 
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newly produced individuals from going dormant before having the opportunity to consume and 266	

grow. Dormant individuals could transition back to activity according to a probability 

determined by their species-specific rate of random resuscitation (Table 1). 268	

 

Metabolic maintenance and death – At each time step, randomly sampled individuals incurred a 270	

species-specific cost of basal metabolism (B): qt+1 = qt – B. If the individual was dormant, B was 

reduced by a species-specific value (γ) ranging between 0.001 and 1: qt+1 = qt – γB. Active and 272	

dormant individuals died when they could no longer meet metabolic costs. 

 274	

Dispersal – At each time step, individuals were passively dispersed towards the downstream 

edge of the system according to the rate of flow (Q). However, metabolically active individuals 276	

could actively disperse against the direction of flow according to their species-specific dispersal 

rate (𝛿) and s. 278	

𝑥! =  𝑥! −min 𝑥!,  𝑞!, 𝛿 ∗ 𝑠!   

𝑞! =  𝑞! −min 𝑥!,  𝑞!, 𝛿 ∗ 𝑠!   280	

In this way, individual dispersal was limited by endogenous resources and incurred an energetic 

cost that was proportional to body size and the distance moved against Q. These relations also 282	

prevented individuals from dispersing beyond the upstream edge of the system. 

 284	

Model runs: We ran 104 randomly parameterized IBMs and placed no explicit ceiling on the 

abundance of individuals, numbers of resource particles, nor the size of individual organisms. 286	

The number of species could not exceed that of the regional pool, i.e., 103. Our platform ran each 

IBM for 103 + τ0.8 time steps before recording data. This “burn-in” time allowed models of short 288	
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τ (e.g., 100) a chance to form realistically structured communities while preventing models of 

long τ (e.g., 106) from running for unnecessarily large number of time steps. Each IBM ran for 290	

103 time steps after burn-in and recorded 117 metrics at every 10th time step (See Online 

Appendix B). In addition to these metrics, each IBM also recorded the abundances of each 292	

species, and the number of individuals of each species that were active or dormant at every 10th 

time step. All modeling code and results files are available on a public GitHub repository: 294	

https://github.com/LennonLab/residence-time. 

 296	

Measurement of select response variables: 

Specific growth-rate (µ) – In experimental studies, the proportional rate of population growth is 298	

quantified during periods of population increase as: µ = (ln(N1) - ln(N0))/time. At steady state 

conditions of chemostats, populations reach a stable abundance, allowing for 1/τ (i.e., Q/V) to 300	

approximate µ. Our IBMs allowed for µ to emerge as a measurable response of populations, 

which we then quantified according to population growth equation (µ) above. 302	

 

Species evenness and diversity – We quantified species evenness with Simpson’s evenness index 304	

(D-1/S), where D-1 is the inverse of Simpson’s diversity measure (Magurran and McGill 2011) 

and S is species richness. This metric is considered to be independent of S (Smith and Wilson 306	

1996). We quantified species turnover using Whittaker's index (𝛽!), which quantifies the 

number of times that species composition changes completely between two samples (Magurran 308	

and McGill 2011). See Online Appendix B9 for greater details. 

 310	
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Resource specialization – We quantified resource specialization as the variance in resource use 

efficiency among species for each of the 10 resource types that could enter the system. We also 312	

calculated resource specialization in two additional ways; see Online Appendix B9. 

 314	

Congruence of τ-related predictions with general biodiversity patterns: 

 Predictions of an ecological theory should support common ecological observations. For 316	

example, predicting the ubiquitous hollow-curve form of species-abundance distributions 

(SADs) is a necessary condition that theories of biodiversity must satisfy (McGill 2003, 2010). 318	

We adopted this perspective by challenging our IBMs to produce realistic forms of several 

ecological patterns. These patterns included SADs, four diversity-abundance scaling laws (Locey 320	

and Lennon 2016), and two other well-known ecological scaling laws. The first of these was 

Taylor’s law, a relationship that describes how variance in population size scales with average 322	

population size across time or space, σ2 ∝ µ1<z<2, where µ = N/S (Xiao et al. 2015). The second 

was the scaling of B with body size (M), which commonly takes the form of a ¾ power law, B ∝324	

M3/4 for plants and animals (Brown et al. 2004) but which is sometimes known to take on scaling 

exponents ranging from 2/3 to 2/1 (e.g., Glazier 2006; DeLong et al. 2010). 326	

 

RESULTS 328	

Compatibility of residence time (τ = V/Q) with general biodiversity patterns — Our stochastic 

and randomly parameterized IBMs produced realistic general patterns of biodiversity across six 330	

orders of magnitude in τ (Fig. S1-S4). These patterns included species abundance distributions 

that were well-described by the maximum likelihood forms of two commonly used species-332	

abundance models (Poisson lognormal, log-series) (Fig. S1). Our IBMs also reproduced Taylor’s 
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Law along with diversity-abundance scaling laws for species rarity, dominance, evenness, and 334	

richness (Locey and Lennon 2016) (Fig. S2, S3). Finally, our IBMs produced realistic scaling 

between metabolic rate and body size (Fig. S4), even though we did not explicitly encode any of 336	

the complex mechanisms proposed to explain metabolic scaling (e.g., fractal resource networks, 

genome architecture). Taken together, stochastic dynamics of resource supply, growth, and 338	

energetic costs imposed by τ reproduced general patterns of biodiversity that are rarely, if ever, 

produced by the same theory. 340	

 

Classic predictions in complex systems – In contrast to classical predictions from chemostat 342	

theory that assume stable-state dynamics, we found that τ did not approximate the average time 

that individuals spent in the system (Fig. S5). The failure of this classic prediction was due to 344	

processes that classic predictions do not account for such as immigration, active dispersal, 

transitions to and from dormancy that lead to stochastically fluctuating population sizes (Fig. 346	

S6). For much the same reasons, we also observed no relationship between 1/τ and species-

specific rates of proportional growth (µ) (Fig. S7).	348	

 

Community-level predictions — Our first six τ-related predictions (Box 1) emerged across six 350	

orders of magnitude in τ, despite each IBM starting as an empty system (Fig. 1). We observed 

unimodal relationships of total abundance (N), individual productivity (P), and species richness 352	

(S) to τ, with maximum values occurring near τ of 103 (Fig. 1). Responses of N, P, and S were 

characterized by unimodal upper bounds that were more constrained when we accounted for V 354	

and Q (Fig. 1). Species evenness (E) responded in the opposite fashion, with the lowest values of 

E occurring near τ of 103. As expected from the formulation of τ, increasing values of V and Q 356	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2727v3 | CC BY 4.0 Open Access | rec: 13 Aug 2018, publ: 13 Aug 2018



	 18	

had opposing effects on N, P, S, and E (Fig. S8). We also observed that species temporal 

turnover (β) monotonically decreased within greater τ. In a small number of simulations, β 358	

deviated slightly from the main trend, reflecting how the gain or loss of a single species can 

influence β in small communities (Fig. 1). Also as predicted, the percent of individuals in a 360	

dormant state (D) increased with greater τ. Nevertheless, in some simulations, our IBMs 

produced relatively active communities when there was long τ, a result that can arise under 362	

relatively high immigration and when species (that) have particularly low metabolic costs, small 

size, and low rates of growth and dispersal. 364	

 

Trait-related predictions — Our six trait-related predictions (Box 1) emerged from our ensemble 366	

of IBMs despite the random assignment of traits to species and the potential for immigration 

from a diverse regional pool to obscure emergent patterns. Short τ selected for a syndrome of 368	

traits that allowed species to resist washout (Fig. 2). High rates of growth, active dispersal, 

resuscitation from dormancy, and low resource specialization were favored in IBMs where 370	

combinations of V and Q led to rapid physical turnover, i.e., short τ. 

 As τ increased, we observed gradual shifts in average trait values that were consistent 372	

with a persistence syndrome emerging under decreased rates of resource supply and washout. 

For example, individuals grew slower, dispersed less quickly, and resuscitated less readily from 374	

dormancy (Fig. 2). Additionally, as τ increased and as individuals resuscitated less readily from 

dormancy, the effectiveness of dormancy in reducing B increased (Fig. 2). We also observed that 376	

resource specialization increased from low to intermediate levels of τ (100 - 103) reflecting a 

change in selective pressures from a growth-driven strategy of opportunistic consumption to a 378	

strategy of resource partitioning and avoidance of direct resource competition among all species. 
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By design, our IBMs allowed the potential for groups of species to consume different sets of 380	

resources. However, as τ increased past 103, resource specialization decreased, resulting in a 

return to a more generalist and opportunistic strategy. 382	

 As predicted, productivity (P) and the abundance of active individuals (Na) were greatest 

when dilution rate (1/τ) approximated the values of individual rates of basal metabolic costs, 384	

growth, and active dispersal (Fig. 3). An increasingly large difference between each of these 

traits and 1/τ led to greatly decreased values of N and P. These relationships were also 386	

characterized by upper bounds, revealing that a closer match between 1/τ and the rates of 

energetically costly traits allows, but does not necessitate, greater P and greater Na. 388	

 

DISCUSSION 390	

 We proposed that residence time (τ), the ratio of a system’s size (V) to its rate of flow 

(Q), constrains growth, abundance, and metabolic activity while also acting as a force of 392	

environmental filtering on the diversity of taxa and traits. We formulated a large set of τ-based 

predictions (Box 1) and then challenged an ensemble of 104 ecologically complex individual-394	

based models to simultaneously produce each predicted relationship alongside general patterns 

of biodiversity that are rarely, if ever, predicted by the same theories. Each IBM began as an 396	

empty system within which realistically structured communities were allowed to assemble. 

These models imposed no explicit relationships among traits, between τ and traits, between 398	

metabolic costs and body size, nor between abundance and species richness. Despite these 

randomized and highly uncontrolled conditions, our predictions and general biodiversity patterns 400	

emerged in unison from the simulation of energetically constrained life history processes acting 
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within flowing and resource-limited environments. Altogether, our models and findings provide 402	

the foundation for a formal τ-based theory for biodiversity. 

 404	

The influence of τ in complex systems: 

In idealized and simplified systems with stable-state dynamics and no immigration, dilution rate 406	

(1/τ) often approximates the specific growth rate (µ) of a population (Smith and Waltman 1995). 

It is reasonable to assume that this and other classic τ-based relationships should fail outside of 408	

idealized stable-state conditions. In contrast to this and other τ-based expectations, the 

predictions of our τ-based theory were derived with the complexity and openness of ecological 410	

systems in mind, which was reflected in our modeling by allowing for high degrees of 

variability, instability, and stochasticity. As a result, our predictions and modeling reveal how τ 412	

may still influence abundance, productivity, and the diversity of traits and taxa in complex 

ecological systems that violate assumptions of traditional residence-time theory. 414	

 

Importance of τ across the ecological hierarchy 416	

Microbiomes and their hosts — Residence-time theory may be particularly useful for 

understanding the ecology of microorganisms, which are almost always at the mercy of flow and 418	

physical turnover. At the scale of individual microorganisms, τ has been defined in terms of cell 

size and rate of consumption, and then integrated into metabolic scaling theory to predict 420	

processes in terrestrial and aquatic ecosystems (Schramski et al. 2015). Such an approach could 

be extended to understand host-microbiome interactions within physically dynamic 422	

environments such as the gastrointestinal (GI) tracts. While theoretical work on GI tracts has 

often focused on aspects of V (length, surface area) and their relations to body size (e.g., Franz et 424	
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al. 2009, Sibly et al. 2012), little focus has been given to flow rate (Q). Our in silico tests of 

residence time theory suggest that V and Q have opposing influences on microbiome abundance, 426	

activity, and diversity (Fig. S8). In turn, these aspects of microbiome structure can greatly 

influence the metabolism and health of hosts. For example, Q of the GI tract can vary according 428	

to diet and disease, in some cases reducing τ to the point of washout, which can alter a host’s 

ability to absorb and retain nutrients (Castiglione et al. 2000; Dey et al. 2015; Flint 2011; Molla 430	

et al. 1983; Waldron 2015; Wu et al. 2011). 

 432	

Evolution of populations — In the study of population genetics, population size directly 

influences the strength of genetic drift and natural selection, which influences the rate at which 434	

mutations are lost or become fixed. For example, the number of new mutations (m) expected per 

generation is known from the simple relation: m ∝ Niµ, where Ni is population size and µ is the 436	

site-specific mutation rate. While our modeling did not incorporate evolutionary processes or 

genetic information, the influences of τ on abundance (Fig. 1) suggests a natural connection 438	

between τ and population genetics. That is, if τ can be used to predict changes in productivity and 

abundance, then the accumulation of mutations or evolution of populations could be understood 440	

to be driven, in part, by a physical aspect of the environment (i.e., Nµ ∝ f(τ)µ). 

 442	

Life history – Our findings reveal connections between life history and aspects of the abiotic 

environment such as τ. Life history theory focuses on strategies that cause organisms to vary in 444	

growth rate, energetic efficiency, and reproductive investment. From early theory of r/K 

selection (e.g., MacArthur and Wilson 1967; Pianka 1970) to continuum theories of fast-slow 446	

life-history strategies (e.g., Salguero-Gómez et al. 2016), biologists often investigate strategies 
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that allow species to achieve high growth in unstable environments or that allow long-lived 448	

species to maintain stable population sizes. Our theory is consistent with the continuum view of 

fast-slow life history theory. For example, at extremely low values, τ places demands on 450	

organisms to grow and disperse sufficiently fast to resist washout, perhaps resulting in a 

decreased investment in reproduction (Box 1, Fig. 2A,C). As τ increases, advantages of active 452	

dispersal may be reduced relative to traits that allow populations to maintain competitively large 

populations (via rapid growth and reproduction) (Fig. 2A). At even greater τ, when rapid rates of 454	

dispersal, growth, and reproduction cannot be supported, pressure increases on the ability to 

persist in stable but resource-deplete conditions via dormancy-related strategies that result in 456	

greatly decreased reproductive efforts (Fig. 2D,F). 

 In addition to supporting a continuum of life history strategies across magnitudes of τ, we 458	

suggest that energetically costly life history traits may be most effective at maintaining large 

populations when those traits are well-matched to the physical environment. For example, 460	

productivity and the abundance of active individuals was greatest when individual rates of 

growth, basal metabolism, and dispersal were similar to dilution rate (1/τ) (Fig. 3). The result of 462	

this match between energetically costly life history traits and 1/τ allowed individuals to grow and 

reproduce fast enough to maintain large populations, but not so fast as to outstrip rates of 464	

resource supply and the ability of resource consumption to offset energetic costs. 

 466	

Population and community ecology — Our theory suggests that τ should influence aspects of 

population and community dynamics such as temporal changes and stability, coexistence and 468	

competition, spatiotemporal resource dynamics, and dispersal-related aspects such as mass-

effects and source-sink dynamics. For example, longer τ reflects a slower moving system and, as 470	
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a result, slower rates of change in species composition along with the accumulation of a 

persistent seed bank. In contrast, shorter τ reflects a system of faster dynamics, greater numbers 472	

of transient species, and lower degrees of population and community stability. Within individual 

IBMs, we did not simulate changes in V or Q that would have restructured communities or that 474	

may have promoted coexistence strategies. For example, varying V or Q across time may have 

fostered coexistence and greater diversity via storage effects and the temporal separation of 476	

competing species. However, by the same token, rapid changes in V or Q could have also led to 

less stable communities and the local extinction of populations. 478	

 Competition is central to the study of ecological communities. The simulated 

communities that assembled across magnitudes of τ were subject to varying degrees of resource 480	

competition. At extremely short τ, resource resupply was rapid and resource abundance was 

greater than individual abundance. Consequently, resource competition was perhaps less 482	

influential than the pressures imposed by potential washout. At high τ, resources were supplied 

more slowly and were more dilute, and seed banks comprised nearly all of individuals in the 484	

community. Under such conditions, metabolically active immigrants were introduced into largely 

dormant communities for which resuscitation was infrequent, and competition for highly limited 486	

resources was relatively low. However, at intermediate τ, large and diverse communities of many 

active individuals tended towards a greater partitioning of resources (Fig. 2e). This trend was the 488	

consequence of larger and more diverse communities being more likely to assemble when 

species consumed from largely non-overlapping resource pools. 490	

 Dispersal is also key to the dynamics of populations and communities. In much of 

population and community ecology, organisms are assumed to actively disperse (Levins 1969; 492	

Hubbell 2001; Leibold et al. 2004; McGill 2010). Our theory and modeling accounts for the 
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influence of active dispersal but also suggests the importance of passive dispersal and energetic 494	

constraints on active dispersal. For example, in rapidly flowing systems, rates of active dispersal 

opposed the rate of passive dispersal (i.e., flow rate) but also required an inflow of passively 496	

flowing resources great enough to support the energetic costs of active dispersal. While resource 

limitation is also fundamental to the study of populations and communities, resources in nature 498	

are spatiotemporally dynamic and their movement through environments is often overlooked 

(Polis et al. 1997; Haegeman and Loreau 2014). However, our theory places primary importance 500	

on the dispersal of resources into and through the environment as a means by which resource 

limitation occurs and influences rates of active dispersal. 502	

 

Biodiversity and biogeography — Biodiversity theories often focus on the understanding of 504	

space, but generally lack a comparable emphasis on time. Theories of biodiversity and 

biogeography often incorporate area (A) and a rate of dispersal or immigration (m) (e.g., Hubbell 506	

2001, McGill 2010, Harte 2011). However, these theories rarely consider explicit aspects of time 

outside the rates of biological processes (Wolkovich et al. 2014). In drawing connections 508	

between residence time theory and general theories of biodiversity and biogeography, consider 

how A/m resembles V/Q in that both place the size of a system over a rate of flow. With little 510	

modification, we suspect that τ as A/m could be used to derive new predictions from island 

biogeography theory, ecological neutral theory, stochastic resource limitation theory, and others. 512	

For example, the maximum entropy theory of ecology (METE) predicts more patterns of 

abundance, distribution, and diversity than most any other ecological theory (Harte 2011). 514	

However, METE’s predictions are effectively “snapshots” in time. The inclusion of τ as a state 

variable could add a temporal dimension to METE and bring it closer to a dynamical theory. In 516	
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fact, the expectation that τ should approximate the time that inert particles spend in a simplified 

system is, by first principles, a maximum entropy solution (see Online Appendix A). 518	

 

Ecosystem science — Residence time should have far-reaching effects on ecosystem dynamics 520	

(e.g., Copeland 1966). Historically, τ is recognized as an important variable with regard to 

nutrients, biomass, or other bulk ecosystem variables (e.g., Post et al. 1982; Valiela et al. 1997; 522	

Josefson et al. 2000; Crump et al. 2004; Beaugrand et al. 2010; Friend et al. 2014, Schramski et 

al. 2015). While our theory accounts for at least one variable that is central to ecosystem science 524	

(i.e., productivity), we have not yet developed our theory for nutrient cycling, stoichiometry, and 

trophic dynamics. Still, we suspect that τ may serve as a conduit for linking the ecology of 526	

populations and communities to the dynamics of ecosystems. For example, organisms that form 

the basis of food webs (e.g., soil microorganisms, cyanobacteria) are more prone to physical 528	

forces of flow than the larger-bodied consumers that occupy higher trophic levels. However, the 

dependence of consumers on the smaller organisms they consume inextricably connects the lives 530	

of consumers to physical forces of flow. This cross-trophic effect of τ is similar to that of donor 

control, where the supply of allochthonous resources constrains consumer growth but where 532	

consumers have little-to-no effect on the resupply of resources (Polis et al. 1997). 

 In presenting our theory, we focused on τ as a variable of the physical ecosystem that can 534	

shape biodiversity and drive biological rates. However, the value of τ is, in turn, driven by other 

properties of the physical environment. For example, changes in temperature induce the melting 536	

of ice, permafrost, and the occurrence of precipitation. All of these processes lead to changes in 

both V and Q. Temperature also influences metabolic rates and the breakdown of nutrients within 538	

ecosystems via chemical kinetics. Human-induced physical changes within watersheds and 
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across landscapes can also influence τ by changing V and Q of water bodies, and the loss of litter 540	

and erosion of soils through deforestation and agriculture. In this way, understanding the 

influences of τ on abundance, activity, productivity, and the diversity of traits and taxa also begs 542	

for an understanding of the physical factors that drive the magnitude and variability of τ. 

  544	
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 668	
Table 1. Parameters, traits, and variables for each of 104 individual-based models. Values of 

each were randomly chosen within the noted ranges. See Methods and Online Appendix A 670	

 for full descriptions of IBMs and their analysis. 

 672	

 
	674	
  

Model-specific parameters
Parameter Description Value
Size (V ) Length of the environment 1 - 1000
Flow rate (Q) units of V moved per time step 0.001 - 1
Resource diversity (R) number of inflowing resource types 10
Resource particle size Range size for inflowing resource particles 1 - 1000
Immigration rate per capita probability of immigration per time step Q
Inflowing resource concentration probability of a resource particle flowing in per time step Q

Species-specific traits
Trait Description Value
Intrinsic growth rate proportional increase per time step 0.001 - 1
Active dispersal rate units of space traveled against direction of flow per time step 0.001 - 1
Resuscitation rate probability of resuscitating per time step 0.001 - 1
Basal metabolic rate (BMR) proportion of endogenous resources lost

to maintenance respiration per unit time 0.001 - 1
Reduction of BMR proportional decrease of BMR when entering dormancy 0.001 - 1
Resource growth e�ciencies proportion of consumed resources assimilated in biomass 0 - 1

Individual-specific variables
Variable Description Value
Resource quota (qi) amount of endogenous resources 0 - unconstrained
Body size Individual biomass (does not include qi) 0 - unconstrained
x position along V 0 - V
Species species of an individual unconstrained
State metabolic state active or dormant

1
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Box 1. Predictions for how abundance, productivity, activity, the diversity of taxa, and traits 676	

should relate to residence time (τ), the ratio of a system’s size (V) to its average rate of flow or 

physical turnover (Q), τ = V/Q. 678	
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Figure 1. 104 stochastic and randomly parameterized IBMs with no explicit constraints on total 680	

community abundance (N) or species richness (S) reveal how residence time (τ = V/Q) 

influenced N, individual productivity (P), S, Simpson’s measure of species evenness, Whittaker’s 682	

measure of species turnover (β), and the percent of N individuals that were metabolically 

dormant. System size (V) and flow rate (Q) each varied over three orders of magnitude. The form 684	

of each relationship matches our predictions. Rainbow spectrum data points represent systems of 

different Q, with red being fastest and violet being slowest. Black lines are locally weighted 686	

polynomial regressions fitted to the 95th percentile of binned data (5th percentile for evenness).   
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Figure 2. 104 stochastic and randomly parameterized IBMs with no hard constraints on 

abundance or richness reveal how residence time (τ = V/Q) influenced species traits of individual 690	

growth rate, basal metabolic rate (B), active dispersal rate, the rate of random resuscitation from 

dormancy, resource specialization, and the degree to which B is decreased when individuals go 692	

dormant. Each of these relationships agrees with our predictions (Box 1). Rainbow spectrum data 

points represent systems of different flow rates, with red being fastest and violet being slowest. 694	

Black lines are locally weighted polynomial regressions. 
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Figure 3. Greater similarity between dilution rate (1/τ = Q/V) and species traits led to greater 

maximum values of active total abundance (Na) and individual productivity (P). These traits 698	

included rates of individual-growth (µ), basal metabolism (B), and active dispersal (d). The 

vertical dashed line represents the point where average values µ, B, and d equal dilution rate 700	

(1/τ). For example, if B = 1/τ, then log10(B*τ) = 0. As expected, this is the point where greatest Na 

and P occurred. Rainbow spectrum data points represent systems of different τ, with red being 702	

shortest and violet being longest. 
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