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The fractal formalism in combination with linear image analysis enables statistically

significant description and classification of <irregular= (in terms of Euclidean geometry)

shapes, such as, outlines of in vitro flattened cells. We developed an optimal model for

classifying bivalve Spisula sachalinensis and Callista brevisiphonata immune cells, based

on evaluating their linear and non-linear morphological features: dimensional

characteristics (area, perimeter), various parameters of cell bounding circle, convex hull,

cell symmetry, roundness, and a number of fractal dimensions and lacunarities evaluating

the spatial complexity of cells. Proposed classification model is based on Ward9s clustering

method, loaded with highest multimodality index factors. This classification scheme groups

cells into three morphological types, which can be distinguished both visually and by

several linear and quasi-fractal parameters.
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12 Abstract

13

14 The fractal formalism in combination with linear image analysis enables statistically 

15 significant description and classification of <irregular= (in terms of Euclidean geometry) shapes, 

16 such as, outlines of in vitro flattened cells. We developed an optimal model for classifying 

17 bivalve Spisula sachalinensis and Callista brevisiphonata immune cells, based on evaluating 

18 their linear and non-linear morphological features: dimensional characteristics (area, perimeter), 

19 various parameters of cell bounding circle, convex hull, cell symmetry, roundness, and a number 

20 of fractal dimensions and lacunarities evaluating the spatial complexity of cells. Proposed 

21 classification model is based on Ward9s clustering method, loaded with highest multimodality 

22 index factors. This classification scheme groups cells into three morphological types, which can 

23 be distinguished both visually and by several linear and quasi-fractal parameters.

24

25 Introduction

26

27 The quantitative characterization and classification of fibroblast-like cells with complex 

28 irregular shapes is a challenge. Solution to it will facilitate identification of cell types at different 

29 differentiation stages and help investigate their morphogenetic transformations, both in vivo and 

30 in vitro. Unlike cells with clearly recognizable and typified structural elements (e.g., neurons 

31 (Pushchin and Karetin 2009)), invertebrate immune cells (bivalve hemocytes and echinoderm 

32 coelomocytes) do not have unambiguously recognizable structural elements of the external 

33 morphology. There are many transitional forms among filopodia, lamellipodia, and pseudopodia, 

34 and the boundary between the cell body and the processes is not always clear. This complicates 

35 description and classification of these cells using conventional structural parameters.

36 Parameters of quasi-fractal organization are used to describe <irregular= and chaotic (in 

37 terms of the Euclidean geometry) biological patterns with the de facto standard (Dokukin et al. 

38 2015). This standard treats a natural pattern as a quasi-fractal that can be analyzed with a number 

39 of fractal dimensions and spatial heterogeneity and lacunarity. In this work, we applied a 

40 complex approach combining classical morphometric parameters with quasi-fractal ones for 

41 comparative classification of hemocytes and coelomocytes of bivalve mollusks and echinoderms, 
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42 which enabled identification of morphotypes of adhered immune cells, which are characteristic 

43 of each animal species.

44

45 Keywords

46

47 hemocytes, bivalve, morphometry, fractal analysis, cell morphology

48

49 Material and Methods

50

51 The study was performed on 458 hemocytes of the bivalve mollusk Spisula sachalinensis 

52 (Bivalvia, Mactridae) (Schrenck, 1862) and 628 hemocytes of the bivalve mollusk Callista 

53 brevisiphonata (Bivalvia, Veneridae) (Carpenter, 1865). The animals were collected in the 

54 Vostok Bay (Peter the Great Bay, Sea of Japan). Cells were collected as previously described 

55 (Karetin 2016; Karetin and Pushchin 2017). Briefly, hemolymph was collected from the cardiac 

56 sac onto coverglass and incubated at room temperature for 1 hour. Afterwards cells were fixed in 

57 a 4% formalin solution and stained with hematoxylin-eosin. Photographs of flattened cells were 

58 taken with Zeiss Axiovert 200M Apotome microscope, then they were sketched by hand and 

59 converted into a one-bit format for further analysis. 

60 8 quasi-fractal parameters (prefactor lacunarity (LCFD PreLac), prefactor lacunarity 

61 heterogeneity or translational invariance (outLCFD PreLac), mean mass fractal dimension 

62 (MMFD), mean mass dimension of images contour (outMMFD); mean local connected fractal 

63 dimension of contour images of cells (outMeanLCFD); mean local fractal images contour 

64 dimension (outMeanLFD); mean dimensions of images contour (outMeanD), lacunarity L 

65 (LF)) and 9 linear parameters (cell perimeter (Per), circularity (Circ), hull9s circularity 

66 (Hull9sCirc), Roundness (Round), hull9s center of mass radii Min/Max ratio (M/MHull'sCM), 

67 ratio of Min/Max distance to circle9s center (M/MRadCirc), aspect ratio (AR), Max half 

68 division (1/2half) and inner/outer bounding circle ratio (in50/out50) out of 39 linear and non-

69 linear parameters were chosen for final analysis. They were calculated using FracLac 2.5 plug-in 

70 for ImageJ 1.41 and Photoshop SC3. Full lists of parameters their explanation and computation 

71 can be viewed at Supplementary 1. All parameters were normalized to equalize their contribution 

72 to the classification as cluster variables. 
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73 STATISTICA 12.0 and NCSS 2007 software packages were used for statistical analysis. 

74 Correlation among parameters was measured using the Pearson9s linear correlation analysis. 

75 Highly correlated parameters, presumably describing close morphological properties, were 

76 excluded from the analysis. When choosing from two highly correlated parameters, the 

77 preference was given to a parameter with a higher multimodality index showing whether the 

78 distribution of parameter values was mono-, bi-, or multimodal (Schweitzer and Renehan 1997). 

79 Cell were classified using hierarchical cluster analysis with the Ward9s clustering algorithm and 

80 the Euclidean distance as a measure of proximity. The dimension of multiparametric space was 

81 reduced using the factor analysis. A variance analysis was used to verify the cluster structure.

82

83 Results 

84

85 Description of all the measured variables is provided in Table 1. We used Pearson9s 

86 linear correlation analysis to exclude highly correlated parameters from analysis. 31 to 34 cell 

87 parameters for each species had a significantly high (p<0.05000) correlation with one or more 

88 other parameters. For further analysis of the cell morphology of both species, we selected weakly 

89 correlated (r<0.7) or uncorrelated parameters with the highest multimodality index (Table 2).

90 One of the main cluster analysis problems is the so-called <curse of dimension=, which 

91 means that the quality of clustering decays rapidly as the model dimensionality (the number of 

92 parameters) increases (Gordon 1999; Xu and Wunsch 2009).

93 To further reduce the number of parameters, we used two approaches: selection of 

94 uncorrelated parameters with a multimodality index above a given threshold and the factor 

95 analysis; in this case, both factors and parameters loading the factors were used for classification. 

96 Among parameters loading each factor, parameters with the maximum multimodality index were 

97 also selected (Pushchin and Karetin 2014).

98 Factors of the factor analysis were chosen using the Varimax method of orthogonal 

99 rotation of the main factor axes. The Varimax method maximizes the spread of load squares for 

100 each factor, which increases large values of factor loads and decreases small values of factor 

101 loads.

102 In species C. brevisiphonata and S. sachalinensis, we identified 5 and 4 factors, 

103 respectively, which were significantly loaded with at least one parameter. The first factor in both 
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104 species was loaded with fractal dimensions and lacunarities of different types and, in general, 

105 reflected quasi-fractal characteristics of cell morphology. The second factor was loaded with 

106 parameters reflecting dimensional characteristics of the cell, such as the area, perimeter, and 

107 sizes of the cell bounding circle and convex hull. The third factor was loaded with parameters 

108 describing the roundness and elongation of the cell and its convex hull (Round, AR, Hull9sCirc). 

109 The fourth factor in both species was loaded with parameters associated with the local fractal 

110 dimension and mass dimension of contour cell images: (outMeanLCFD, outMeanLFD, outLCFD 

111 PreLac, and outMMFD). Therefore, loads of most parameters in both species were similarly 

112 distributed over four factors determining the main characteristics of cell morphology. In addition, 

113 the fifth factor in C. brevisiphonata included quasi-fractal parameters of contour images; in S. 

114 sachalinensis, these parameters were combined with quasi-fractal parameters of silhouette 

115 images in the first factor. However, Explained Variation of the fourth factor in C. brevisiphonata 

116 dropped below 3; apart from this factor, Explained Variation values in both species decreased 

117 below 3 only in factors lacking any parameter significantly loading the factors. To formally and 

118 uniformly limit the number of used parameters, only factors with an Explained Variation value 

119 above 3 and significantly loaded with at least one parameter were used in the cluster analysis. In 

120 each species, these requirements were met by four factors that were used as 4 parameters for 

121 clustering. In addition, as parameters chosen for the cluster analysis, we used parameters with the 

122 maximum multimodality index, which loaded each factor (C. brevisiphonata: AR, Per, MMFD, 

123 outMeanD; S. sachalinensis: AR, Per, LF, outLCFD PreLac).

124 We chose the Ward9s clustering algorithm and the Euclidean distance as an intercluster 

125 difference. This clustering technique provided the best results in classification of neurons 

126 (Pushchin and Karetin 2009) and invertebrate immune cells (Karetin and Pushchin 2015). The 

127 number of tested clusters did not exceed the number of cell types normally present in the 

128 immune system of invertebrates (Dyrynda et al. 1997; Chang et al. 2005). Also, we tested cluster 

129 sets with the intercluster communication distance that visually significantly exceeded the 

130 distances between subsequent bifurcations of cluster divisions.

131 Differences between clusters were estimated using discriminant analysis techniques, 

132 including the Mahalanobis intercluster distance estimation (Mahalanobis 1936) and F-test for 

133 equality of variances. In our case, the Mahalanobis distance defines the distance between 

134 obtained clusters in a multidimensional space of variables. The F-test, or the Fisher9s test, is used 
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135 to compare the variances of two normally distributed populations. When more than two 

136 populations are compared, the F-test is calculated as the external variance to internal variance 

137 ratio, determining the difference between variances of the selected clusters.

138 The use of factors as parameters gave a spread in the mean Mahalanobis distances for 

139 solutions with a different number of cell clusters of both species, ranging between 7 and 10; the 

140 same approach yielded F values lying between 113 and 140. Testing of 4 parameters with the 

141 highest multimodality value, without using factor analysis, gave a spread in the mean 

142 Mahalanobis distances of 9219, with the Fisher statistics values occurring between 155 and 196. 

143 For cells of both species, the use of parameters loading factors gave the Mahalanobis distances 

144 between 11 and 17 and F values between 177 and 218. According to the results of F statistics, the 

145 best solution for both species was a 3-cluster structure constructed on the basis of 4 parameters 

146 loading factors: 218.17 for cells of C. brevisiphonata and 216.98 for cells of S. sachalinensis 

147 (Fig. 1, Table 3). The Mahalanobis distances for these cluster solutions also were among the 

148 highest ones (Table 4).

149 Based on the Lambda quotient values, the contribution of all four parameters to the 

150 classification of S. sachalinensis and C. brevisiphonata cells was high, without dominance or 

151 exclusion of any of the parameters (Table 5); in C. brevisiphonata, the AR parameter had a 

152 somewhat more significant contribution (Table 5).

153

154 Discussion

155

156 Three morphological types of hemocytes from C. brevisiphonata, which are identified 

157 based on 3 clusters of the selected cluster solution, differ in several parameters of the linear and 

158 nonlinear morphology. Type 1 includes cells characterized by values of the lacunarity (LF) and 

159 mean fractal dimension of contour images (outMeanD) significantly higher than those of types 2 

160 and 3, which describes cells with a complex structure of boundaries, most unevenly filling the 

161 space. Visually, cells of this type are characterized by an elongated shape, with an average 

162 number of long processes. Type 2 is represented by cells with the highest outLCFD PreLac value 

163 as well as medium, but significantly different from other types, outMeanD and perimeter values 

164 (Fig. 2). Cells of this type are characterized by a less elongated shape and a larger number of 

165 smaller processes. The third type includes cells with the simplest microsculpture of boundaries, 
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166 which are characterized by the minimum outMeanD value and the largest AR value 

167 characteristic of cells with an almost round shape. Cells of this type are characterized by the 

168 most <regular= symmetrical shape, with a low number of relatively small processes (Fig. 2).

169 The cluster model for classification of hemocytes from S. sachalinensis, using parameters 

170 of four factors, also includes three cell types (Fig. 3). The first type includes cells with the 

171 highest outMeanD, LF, and perimeter values among the identified types. This characterizes cells 

172 of complex morphology with a high number of large and small processes. Cells of the second 

173 type, like the second type cells from C. brevisiphonata, have the highest LCFD PreLac value for 

174 contour images and an average, but significantly different, outMeanD value. These cells have a 

175 visually simpler <average= shape with a smaller number of small processes. Type 3 includes cells 

176 with a smaller, compared to other types, area of spreading (Area), the highest AR value, and a 

177 low outMeanD value. Visually, these cells have the simplest microsculpture of boundaries with 

178 the minimum number of processes, but the general shape of these cells is diverse and 

179 asymmetric. Usually, cells of this type have an elongated, sometimes slightly round, shape 

180 typical of moving cells.

181 According to the Tukey-Kramer multiple-comparison test for the mean value difference, 

182 the identified cell types significantly differed from each other both in most classifying 

183 parameters (Table 6) and in several other parameters of the linear and quasi-fractal morphology.

184 Therefore, although the best classification for cells of each of the studied species includes 

185 different parameters and distinguishes species-specific types differing in various aspects of 

186 morphology, the optimal classification structure of immune cells of both species uses a common 

187 algorithm including a Ward9s hierarchical classification and using parameters with the highest 

188 multimodality index, loading factors in the factor analysis.

189 A classification model with the best cluster structure combines both linear and quasi-

190 fractal parameters, thereby reflecting various aspects of the cell morphology. Due to loading of 

191 various factors of the factor analysis with parameters describing similar morphological aspects, 

192 the classification of cells of the studied species comprises simultaneously parameters reflecting 

193 the cell asymmetry (AR), dimensional characteristics (Per), and quasi-fractal parameters 

194 describing the structural complexity of silhouette (MMFD) and contour (outMeanD) cell images. 

195 In this case, among parameters representing each morphological aspect, we chose a parameter 

196 with the maximally multimodal distribution over a sample, which indicates heterogeneity of the 
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197 sample in this parameter and most clearly reveals the sample composite structure that includes 

198 cells of different morphological types.

199 In biological terms, the main issue of the morphology of cells from various animal 

200 species is what determines the difference in the morphology of flattened hemocytes from 

201 different invertebrate species? The initial hypothesis suggests searching for an ecological aspect 

202 of functional differences manifesting in the morphology of cells and leading to the difference in 

203 cell shapes among separate species. However, we found no significant ecological differences 

204 between the studied species. Both mollusk species live in overlapping areas, and both species are 

205 filter feeders digging into the sea floor.

206 Regardless of whether environmental causes underlie the differences in shapes of 

207 hemocytes and coelomocytes from different species, and whether the specific features of their 

208 morphology are affected by natural selection, it is obvious that the difference in cell shapes is 

209 genetically associated with certain differences in cell physiology: the general cytoskeleton 

210 structure, cell behavior, etc. Therefore, it is logical to consider cell shapes in terms of biological 

211 analysis of parameters that describe cell shapes, which would answer the question: what kind of 

212 genetic and cytophysiological species-specific features of the cell determine the value of a 

213 certain parameter. This will make it possible to predict features of cell physiology based on 

214 detailed morphological analysis.

215

216 Conclusions

217 The optimal classification that is based on the morphological features of immune cells of 

218 the studied bivalve species uses a common universal algorithm that includes a Ward9s 

219 hierarchical cluster analysis based on parameters with the highest multimodality index, loading 

220 factors of the factor analysis. This cluster structure demonstrates the highest F statistics values 

221 for intercluster variance differences.

222 The identity of the optimal classification algorithm for cells of both species with very 

223 close values of discriminant functions describing interspecies differences in the variances of cell 

224 morphotypes in the selected classification model suggests a common morphological structure of 

225 hemocytes, despite interspecific differences, both in numerical values of used parameters and in 

226 the set of parameters selected for the classification. Therefore, the cell classification algorithm 
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227 may be recommended as an optimal method for morphological classification of hemocytes 

228 adhered to a two-dimensional substrate.
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Figure 1

Hierarchical cluster analysis of hemocytes from C. brevisiphonata and S. sachalinensis

Clustering is based on parameters with the highest multimodality index, loading each of four

factors of the factor analysis. Clustering algorithm: the Ward9s method, a measure of the

intercluster difference: the Euclidean distance, a 3-cluster solution.
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Figure 2

Silhouette images of cells from C. brevisiphonata
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Figure 3

Silhouette images of cells from Spisula sachalinensis
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Table 1(on next page)

Description of measured linear and quasi-fractal parameters

SE - standard error
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Spisula sachalinensis Callista brevisiphonata

Variable Mean SE Variable Mean SE

Area 258175,9
± 

111077,8
Area 240782,8

± 

5314,675

Per 4823,5 ± 2496,7 Per 5792,4 ± 117,301

Circ. 0,139 ± 0,0839 Circ 0,090 ± 0,0028

Hull'sCirc 0,829 ± 0,0759 Hull'sCirc 0,812 ± 0,0030

Round 0,636 ± 0,1551 Round 0,646 ± 0,0066

M/MHull'sCM 1,674 ± 0,3627 M/MHull'sCM 1,697 ± 0,0151

M/M RadCirc 1,608 ± 0,5666 M/M RadCirc 1,713 ± 0,0241

1/2half 2,312 ± 2,7958 1/2half 7,068 ± 0,3938

in50/out50 0,951 ± 0,7683 in50/out50 1,811 ± 0,0514

AR 1,692 ± 0,5326 AR 1,686 ± 0,0231

LCFD PreLac 0,456 ± 0,3212 LCFD PreLac 7,502 ± 0,2034

outLCFD 

PreLac
0,059 ± 0,0176

outLCFD 

PreLac
0,043 ± 0,0006

MMFD -1,984 ± 0,0043 MMFD -1,975 ± 0,0004

outMMFD -1,038 ± 0,0111 outMMFD -1,027 ± 0,0003

outMeanLCFD 1,033 ± 0,0098 outMeanLCFD 1,023 ± 0,0003

outMeanLFD 1,080 ± 0,0237 outMeanLFD 1,102 ± 0,0011

outMeanD 1,177 ± 0,0617 outMeanD 1,186 ± 0,0018

LF 0,815 ± 0,2648 LF 1,167 ± 0,0133

1 Table 1. Measured linear and quasi-fractal parameters

2

3
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Table 2(on next page)

Weakly correlated parameters ranked by the multimodality index
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Spisula sachalinensis Callista brevisiphonata

Selected parameters Multimodality index Selected parameters Multimodality index

LCFD PreLac 0,705279674 AR 0,649614849

1/2half 0,690093836 M/MradCirc 0,621260648

Per 0,649817151 Circ 0,612524578

M/MradCirc 0,582812559 in50/out50 0,576105304

in50/out50 0,571990685 Per 0,575294522

AR 0,533511041 1/2half 0,503101471

M/Mhull9sCM 0,496496281 MMFD 0,463013064

Hull9sCirc 0,460160702 outMeanLCFD 0,40903434

MMFD 0,379435841 LCFD PreLac 0,370674562

outLCFD PreLac 0,370878375 - -

outMeanLFD 0,342725457 - -

1 Table 2. Weakly correlated parameters ranked by the multimodality index.

2

3
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Table 3(on next page)

F-test values for the difference in the cluster variance of the optimal cluster solution
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C. brevisiphonata; F-values; df = 4,622

G_1:1 G_2:2 G_3:3

G_1:1 219.9391 232.1484

G_2:2 219.9391 202.4672

G_3:3 232.1484 202.4672

Average F-test value for all clusters 218.17

S. sachalinensis; F-values; df = 4,451

G_1:1 G_2:2 G_3:3

G_1:1 232.5024 277.5630

G_2:2 232.5024 140.8834

G_3:3 277.5630 140.8834

Average F-test value for all clusters 216,98

1 Table 3. F-test values for the difference in the cluster variance of the optimal cluster solution (Fig. 

2 1).
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Table 4(on next page)

Squared Mahalanobis distances between clusters of the optimal cluster solution
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C. brevisiphonata

G_1:1 G_2:2 G_3:3

G_1:1 0.00000 15.13759 12.74839

G_2:2 15.13759 0.00000 7.16835

G_3:3 12.74839 7.16835 0.00000

Average Mahalanobis distances between clusters 11,7

S. sachalinensis

G_1:1 G_2:2 G_3:3

G_1:1 0.00000 19.66674 23.90871

G_2:2 19.66674 0.00000 5.75293

G_3:3 23.90871 5.75293 0.00000

Average Mahalanobis distances between clusters 16,43

1 Table 4. Squared Mahalanobis distances between clusters of the optimal cluster solution (Fig. 1).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27258v1 | CC BY 4.0 Open Access | rec: 7 Oct 2018, publ: 7 Oct 2018



Table 5(on next page)

The Tukey-Kramer multiple-comparison test
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C. brevisiphonata

Parameters Wilks's lambda Partial - Lambda F-remove - (3,621) p-value

MMFD 0.163939 0.692703 91.8292 0.000000

Per 0.142717 0.795709 53.1454 0.000000

outMeanD 0.145625 0.779820 58.4460 0.000000

AR 0.280243 0.405223 303.8301 0.000000

S. sachalinensis

Parameters Wilks's lambda Partial - Lambda F-remove - (2,451) p-value

LF 0.177949 0.746466 76.5902 0.000000

Per 0.174506 0.761195 70.7449 0.000000

AR 0.171701 0.773631 65.9827 0.000000

outLCFD PreLac 0.234937 0.565398 173.3339 0.000000

1 Table 5. The Tukey-Kramer multiple-comparison test for the difference in mean values of selected 

2 parameters of three morphological hemocyte types from S. sachalinensis and C. brevisiphonata, 

3 which are identified based on the optimal cluster solution.

4

5
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Wilks9 Lambda for the optimal cluster solution
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1

2 Table 6. Wilks9 Lambda for the optimal cluster solution.

3

4

S. sachalinensis C. brevisiphonata

Parameters
Cell 

type

Inter-type  

difference
Parameters

Cell 

type

Inter-type  

difference

LF

3

2

1

1

1

3, 2

MMFD

3

1

2

1, 2

3, 2

3, 1

Per

3

2

1

2, 1

3, 1

3, 2

Per

3

1

2

2

2

3, 1

AR

1

2

3

3

3

1, 2

AR

3

2

1

2, 1

3, 1

3, 2

outLCFD 

PreLac

3

1

2

2

2

3, 1

Area

1

3

2

2

2

1, 3

Area

3

2

1

2, 1

3

3

outMeanD

3

1

2

1, 2

3, 2

3, 1
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