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Species distribution models (SDMs) have become an increasingly important tool in

ecology, biogeography, evolution and, more recently, in conservation management,

landscape planning and climate change research. The assessment of their predictive

accuracy is one fundamental issue in the development and application of SDMs. Accuracy

assessments for models should have a close connection to the intended use of the model.

However, we found that the common evaluation method (we named internal-aspatial)

usually ignored how the spatial prediction map actually looks like, and achieves for the

real-world species distribution and for application. Therefore, in this research we proposed

a spatial method to evaluate model performance by assessing how the prediction maps

look like (we named external-spatial). We took Hooded Crane (Grus monacha) as a case, in

this research, to compare these two methods (internal-aspatial and external-spatial)

performance. Both of the two methods were expressed with three commonly used SDM

evaluation criteria (AUC, Kappa and TSS). In addition, model accuracy was also assessed

via evaluating the prediction maps with knowledge of the study species and alternative

occurrence data assistance. We used two popular data mining algorithms (Random Forest

and TreeNet) and ran 8 experiments using 1, 3, 5, 8, 11, 21, 29 and 78 predictors, allowing

to develop overall 16 models for this assessment. Results indicated that AUC had a

significant linear relationship with Kappa and TSS. Both of interal-aspatial and external-

spatial methods could get higher AUC values and they were close. This indicated that

internal-aspatial model assessments can serve as powerful assessment-aspatiual metrics

without the need of secondary data even! However, internal-aspatial, external-spatial,

prediction map evaluation and alternative occurrence data could not distinguish well

models with different sets of predictors. This is the first time the concept of spatial

assessment criteria is expressed and assessed. Overall, we hope to see more study on

meaningful spatial criteria and proposed more and better methods to evaluate SDMs and
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distribution map in the future.
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26

27 ABSTRACT

28 Species distribution models (SDMs) have become an increasingly important tool in ecology, 

29 biogeography, evolution and, more recently, in conservation management, landscape planning 

30 and climate change research. The assessment of their predictive accuracy is one fundamental 

31 issue in the development and application of SDMs. Accuracy assessments for models should 

32 have a close connection to the intended use of the model. However, we found that the common 

33 evaluation method (we named internal-aspatial) usually ignored how the spatial prediction map 

34 actually looks like, and achieves for the real-world species distribution and for application. 

35 Therefore, in this research we proposed a spatial method to evaluate model performance by 

36 assessing how the prediction maps look like (we named external-spatial). We took Hooded Crane 

37 (Grus monacha) as a case, in this research, to compare these two methods (internal-aspatial and 

38 external-spatial) performance. Both of the two methods were expressed with three commonly 

39 used SDM evaluation criteria (AUC, Kappa and TSS). In addition, model accuracy was also 

40 assessed via evaluating the prediction maps with knowledge of the study species and alternative 

41 occurrence data assistance. We used two popular data mining algorithms (Random Forest and 

42 TreeNet) and ran 8 experiments using 1, 3, 5, 8, 11, 21, 29 and 78 predictors, allowing to 

43 develop overall 16 models for this assessment. Results indicated that AUC had a significant 

44 linear relationship with Kappa and TSS. Both of interal-aspatial and external-spatial methods 

45 could get higher AUC values and they were close. This indicated that internal-aspatial model 

46 assessments can serve as powerful assessment-aspatiual metrics without the need of secondary 

47 data even! However, internal-aspatial, external-spatial, prediction map evaluation and alternative 

48 occurrence data could not distinguish well models with different sets of predictors. This is the 

49 first time the concept of spatial assessment criteria is expressed and assessed. Overall, we hope 

50 to see more study on meaningful spatial criteria and proposed more and better methods to 

51 evaluate SDMs and distribution map in the future.

52 Keywords: Species distribution models (SDMs); internal-aspatial; external-apatial; AUC; Kappa; 
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54 INTRODUCTION

55 Species distribution models (SDMs) are well-established numerical spatial tools that 

56 combine field observations of species occurrence or abundance with environmental predictor 

57 variables (Guisan and Zimmermann, 2000; Elith and Leathwick, 2009; Drew et al., 2011). In 

58 recent years, predictive model of species distribution has become an increasingly important 

59 science-based management tool for policy (e.g. Drew et al., 2011; Mi et al., 2016). The trend of 

60 SDMs goes towards data mining of data heavy applications to address many wider and more 

61 holistic and interdisciplinary issues in ecology, biogeography, evolution and, more recently, in 

62 conservation management and climate change research, and usually gets done now on a global 

63 level but with a high resolution (Austin et al., 1990; Franklin, 1995; Peterson et al., 2002; Guisan 

64 and Thuiller, 2005; Wei et al., 2010). A wide variety of statistical and machine learning methods 

65 have been introduced, often in conjunction with geographic information systems (GIS), remote-

66 sensing (Aspinall and Veitch, 1993; Franklin et al., 2000; Hegel et al., 2010).

67 Only slowly, a number of ‘data mining’ approaches for modeling data that contain non-

68 linear and other complex and interacting dependencies have appeared now in the wildlife 

69 literature, too (Derrig and Francis, 2006; Cushman and Huettmann 2010; Mi et al 2014). 

70 Relatively new methods are based on data hungry networks, or ensembles and that can handle 

71 complex and even marginal data situations. Over 100 machine learning algorithms exist 

72 (Fernandez-Delgado et al. 2014). Some of them use statistical trees and include algorithms such 

73 as Random Forest (bagging; Breiman, 2001a), TreeNet (stochastic gradient boosting (Friedman, 

74 2002)), and other methods (Araujo and New 2007; see Biomod2 package in R). Random Forest 

75 and TreeNet were used in this research, because model construction process was fast and 

76 convenient (Mi et al., 2014 and 2016), and also model prediction performed very well in similar 

77 investigations (Oppel et al., 2012, Mi et al., 2014), and they were also non-parametric. These two 

78 algorithms usually do not really require or make relevant a priori assumptions about the 

79 relationship between the response and predictor variables. It does not limit the number of 

80 predictor variables, and it is capable of uncovering the underlying structure of data that are non-

81 additive, interacting or hierarchical in nature (Prasad et al., 2006; Hasti et al., 2009; Cushman 

82 and Huettmann, 2010; Drew et al., 2011). 

83 While somewhat overlooked, the deeper and ecological assessment of predictive accuracy is 
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84 one fundamental issue in machine learning and specifically in the development of species 

85 distribution models (Fielding and Bell, 1997; Pearce and Ferrier, 2000; Guisan and Thuiller, 

86 2005; Allouche et al., 2006). A quantitative assessment of model performance assists in 

87 determining the suitability of the model for specific applications (Vaughan and Ormerod, 2005; 

88 Barry and Elith, 2006; Guisan et al., 2006). Model performance assessment can also provide a 

89 basis for comparing alternative modelling techniques (Loiselle et al., 2003; Segurado and Araujo, 

90 2004; Pearson et al., 2006) and it enables the user to investigate how different properties of the 

91 data and/or the species affect the accuracy of predictive maps generated by the model (Kadmon 

92 et al., 2003; Segurado and Araujo, 2004; Reese et al., 2005; Seoane et al., 2005). 

93 To assess model performance, we found that most scholars used evaluation criteria (e.g. the 

94 Area Under the ROC Curve (AUC), the Kappa Statistic (Kappa) and the True Skill 

95 Statistic(TSS)) were created by the software itself (e.g. Anderson and Gonzalez Jr, 2011; Elith et 

96 al., 2011). Typically, such tests are based on hold-out data, such as from boot strapping or 

97 jackknifing applied to the (large) training data. This creates unmapped (aspatial) models and then 

98 calculates metrics (Kappa, TSS). We named this: internal-aspatial method. However, this method 

99 ignored how the spatial prediction map actually looks like, and achieves for the real-world 

100 species distribution and for application. Actually, accuracy assessments for models should have a 

101 close connection to the intended use of the model (Fielding, 2002). One major role of species 

102 distribution models is to model complex ecology and to support an efficient conservation 

103 management, such as conservation planning, design reserve networks that maintain biodiversity 

104 (Guisan and Thuiller, 2005). Therefore, in this research we proposed a spatial method to evaluate 

105 model performance by assessing how the prediction maps look like. We named this: external-

106 spatial method. This spatial metrics mean it mapped predictions first, and then used presence-

107 absence points to overlay the created prediction map and get the relative index of occurrence 

108 (RIO), and then calculated accuracy metrics to obtain the estimate of accuracy, such as AUC, 

109 Kappa and TSS. The aim of this research was to explore which evaluation method was better, 

110 internal-aspatial or external-spatial? In addition, we also assess model accuracy using prediction 

111 map with experts’ knowledge of target species’ distribution, and alternative occurrence data. 
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112 MATERIALS AND METHODS

113 Study species put to a test

114 The Hooded Crane is listed as a vulnerable (VU) species in the IUCN Red List. This species 

115 breeds in Eastern Russia and Northeastern China (Guo, 2005; Simonov and Dahmer, 2008; Mi et 

116 al., 2018). Its global population is estimated to be 11,160 individuals (Birdlife international, 2014) 

117 and the population size is declining (IUCN, 2012). In recent years, more than 10,500 (~ 94%) 

118 Hooded Cranes winter in Izumi, Japan (Birdlife international, 2014). This presents a risk and 

119 therefore, it is badly needed to find suitable places and methods to disperse the Hooded Crane 

120 from Izumi in order to diversify and reduce the population density there and to minimize local 

121 risks. Otherwise it can for instance lead to epidemic diseases of birds and their population 

122 crashes, such as Avian Influenza (Mi et al., 2018). Thus, here we tried to construct a winter 

123 distribution model for Hooded Cranes and to see where they would stay and for making a 

124 conservation plan and obtain more management methods. 

125 Species occurrence data

126 The Hooded Crane winter occurrence data was collected from our own fieldwork, also 

127 using previously published literature in East Asia (Fig. 1). In general, the data were initially 

128 provided by location name. To ensure the exact position for a valid geo-referencing, we then 

129 searched the location using a map with coordinates, Google Earth and also consulted experts for 

130 confirmation. Overall, we obtained 112 data points that were observed for this species during 

131 1980-2013. This compiled data represents the best available geo-referenced data set for Hooded 

132 Crane wintering in China we know (Supplement S1). Initially, we considered that the data points 

133 maybe overly dense in some locations (oversampled or cluster sampling); thus, we created a 

134 concentric buffer around a data point with a 2-km radius in ArcGIS 10.1 (Toolboxes/System 

135 Toolboxes/Analysis Tools/Proximity/Buffer). However, in our data, we did not find any overlap 

136 of the 2-km scale. Therefore, we continued to use the all the data points as intended.

137 Environmental layers

138 The environmental predictor variables we used to develop models in this study describe 
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139 climate, topography, terrain and human factors. We chose a set of 21 predictors (see Supplement 

140 S2) to develop models as the ordinary baseline model, which was often used in our previous 

141 research (e.g. Mi et al., 2017). Based on this step, we then added another 8 bio-climate layers 

142 (Supplement S2) to construct models with overall 29 predictors (Mi et al., 2016; Han et al., 

143 2018). In addition, we tried to make models with the entire predictor set (78 predictors). The 

144 Salford Predictive Modeler (SPM) suite we applied can generate a variable importance ranking 

145 table from the obtained trees; here we chose the top 1, top 3, top 5, top 8 and top 11 predictor 

146 variables. For that initial approach, we refer readers to Harrell et al. (1996), who promote for 

147 multiple regressions that the variable (predictor) quantity should not exceed n/10 (n means 

148 sample size, in our case n=112) for multivariable regression models). In all, we created 8 

149 Random Forest models and 8 TreeNet models. All data layers were publicly available and had a 

150 global-wide coverage (Supplement S2). We re-projected layers into WGS-1984 Mercator (in 

151 meters) and merged them for a study area coverage in ArcGIS. Slope and aspect layers were 

152 derived in ArcGIS from the DEM. We also calculated the Euclidean distance to road, railroad, 

153 river, lake, coastline, settlement using the Euclidean distance tool in ArcGIS 10.1. Layers and 

154 raw data can be obtained from the College of Nature Conservation, Beijing Forestry University 

155 upon request to the autuors.

156 Put Figure 1 Here

157 Selection of model algorithms

158 In SPM, we choose Random Forest (hereafter RF) and TreeNet (hereafter TN) as our 

159 species distribution models. We used them as a set of representative algorithms for the wider 

160 machine learning (ML) family of methods. RF and TN are specific stand-alone software products 

161 from Salford Systems Ltd that can outcompete R implementations (Herrick 2013), and each 

162 performs one specific technique. Here we used them as representative ML methods because 

163 when using these algorithms, model construction is fast and convenient, they offer a very high 

164 degree of fault tolerance for messy and incomplete data (Friedman, 2001; Craig and Huettmann 

165 2008, Mi et al., 2014; Jiao et al. 2016). For more details on Random Forest and TreeNet, we refer 

166 readers to the user guide (https://www.salford-systems.com/products/spm/userguide). 
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167 Model development

168 We created 10,000 random points across the study area using the freely available Geospatial 

169 Modeling Environment (GME; Beyer, 2013; Booms et al., 2010) and compared these points to 

170 the 112 bird locations. The ratio of 112 presence points versus 10,000 pseudo-absence points is 

171 commonly used in the machine learning modeling literature (Booms et al., 2010, Mi et al., 2016) 

172 and even more so when it comes to data mining (Hastie et al. 2009, Jiao et al. 2016) We 

173 extracted information from environmental layers at bird location sites and random points using 

174 GME.

175 We generally used the powerful default settings in SPM (e.g. Mi et al., 2014). Our 

176 distribution models were constructed in SPM by using ‘classification’ and the balanced class 

177 weights option to account for unequal sample sizes of presence and availability (pseudo-absence). 

178 For the predictions, we created equally-spaced point lattice grids of 1,047,746 regularly spaced 

179 points across our study area (approximately a 5×5 km spacing for the study area). We extracted 

180 information from the environmental layers (Supplement S2) described above for each point, and 

181 then used the model to predict (=‘score’) birds occurrence as a relative index of occurrence at 

182 each lattice point based on the extracted environmental data. For visualization, we imported the 

183 dataset of spatially referenced predictions into GIS as a raster file, and interpolated for visual 

184 purposes between the regular points using inverse distance weighting (IDW) to obtain a 

185 smoothed predictive map, as it is commonly done (e.g. Kandel et al. 2015, Regmi et al. 2018). 

186 We used that resulting prediction surface for our spatial assessment and comparison.

187 Evaluation criteria 

188 In this study, we obtained three metrics: AUC (the area under the ROC Receiver Operator 

189 Curve), the Kappa Statistic (Kappa) and the True Skill Statistic (TSS). They were among the 

190 most popular measures that are commonly used to assess the accuracy of prediction models 

191 (Fielding and Bell, 1997; Pearce and Ferrier, 2000; Manel et al., 2001; Pearson et al., 2004; 

192 Huettmann and Gottschalk, 2011; Liu et al., 2013). They are based on the confusion matrix 

193 (Fielding and Bell, 1997; Pearce and Ferrier, 2000), and AUC is more generally applied whereas 

194 Kappa and TSS offer specific advantages in terms of prevalence (Manel et al., 2001). None of 

195 those metrics take the spatial distribution, arrangement or autocorrelation of the points into 
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196 account though (Betts et al. 2009). We obtained these three criteria using two methods (internal-

197 aspatial and external-spatial). When SPM creates the model, it offers internal-aspatial AUC value, 

198 and a threshold table which could be transformed as a subsequent confusion matrix table, then 

199 we calculated internal–aspatial Kappa and TSS in R 3.0.3 according to the formula in 

200 Supplement S3. For the spatial metric, we extracted the relative index of occurrence (RIO) for all 

201 of the presence and pseudo-absence points from each model prediction map with GME software. 

202 Using the above RIO and the “SDMTools” package in R 3.0.3, we could obtain external-spatial 

203 AUC, Kappa, and TSS. Kappa and TSS values can be shown with different thresholds (0-1, 

204 interval 0.01), in this research, we used the maximum value (max-Kappa, max-TSS) as the final 

205 metric. 

206 Prediction map assessment

207 Model prediction maps were evaluated by the ‘true’ distribution of Hooded Cranes in winter, 

208 as we know them from our own field experience. We ranked the prediction map based on 

209 following reasons: 

210 (1) Closeness between the predicted distribution and the distribution we knew;

211 (2) Whether the predicted distribution reflects ecological and biology realities of Hooded Crane 

212 (such as food, water availability etc);

213 (3) Whether some places were not predicted as part of the distribution area, and some places 

214 should be not considered as the distribution area but they were predicted (such as a 

215 settlement for instance)

216 Alternative occurrence data assessment

217 Alternative data from other sources, such as other research, citizen observtions, speciemen, 

218 or new field investiantion data were very important testing data for us to assess model accuracy 

219 (Magness et al., 200; Huettmann and Gottschalk, 2011). In this study, we used the occurrence 

220 data of Hooded Cranes from Global Biodiversity Information Facility (GBIF, 

221 http://www.gbif.org/) as alternative data to assess our model performance. We applied all of the 

222 90 locations, which were observed by people and recorded GPS location in winter time (October 

223 to next February) from 1994 to 2013. Then we extracted the relative index of occurrence (RIO) 

224 for each point from 8 Random Forest and 8 TreeNet spatial distribution map.
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225 RESULTS

226 Static metric evaluation

227 AUCs and TSSs from both, internal-aspatial and external-spatial metrics were close among 

228 models with different number of variables in Random Forest, while the Kappa value diversified 

229 more between different models. The internal-aspatial AUCs were slightly greater than the related 

230 external-spatial metric; however, TSSs had a contrasting trend. For TreeNet models, internal-

231 aspatial AUCs and TSSs were always larger than related external-spatial AUCs and TSSs (Fig. 

232 2a and 2c). For the Kappa statics of Random Forest, it showed a somewhat contrasting result 

233 from RF3 to RF78 for internal and external metrics. The trend of internal metrics was increasing 

234 first and then decreasing; while external-spatial metrics kept increasing, except for RF21 and 

235 RF29 they were smaller than RF11 (Fig. 2b). 

236 From the linear regression analysis (Table 1), we found that AUC had a significant positive 

237 relationship with TSS and Kappa (P ≤ 0.001, R² > 0.510), both for internal-aspatial and 

238 external-spatial metrics, except for the internal-aspatial Kappa metric of the Random Forest 

239 model. Therefore, in the remaining analysis, we just used AUC to evaluate model accuracy.

240 Put Figure 2 Here

241 Put Table 1 Here

242 We used three-way ANOVA analysis between AUC and model algorithm (RF or TN), 

243 evaluation method (internal-aspatial or external-spatial), number of predictors, and their 

244 interaction factors. The result showed that AUC was only effected by evaluation methods (P = 

245 0.001) and model algorithm × evaluation methods among these factors. In addition, the results of 

246 interaction plots (Fig. 2) showed that internal-aspatial AUC were usually larger than external-

247 spatial AUC across all models with same variables (Fig. 3a), and for RF and TN models (Fig. 2b). 

248 However, we found only TN model had significant difference between internal-aspatial and 

249 external-spatial AUC with Paired t-test (P = 0.000, t=10.727, df=7), but not for RF model (P = 

250 0.221, t=1.344, df=7). 

251 Put Figure 3 Here

252
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253 Prediction map assessment

254 According to the distribution of Hooded Crane known to us and also when compare with the 

255 source of “The BirdLife International Red Data Book” (Collar et al., 2001), for Random Forest, 

256 first, we listed RF1, RF3, RF5, RF8 as the worst predictor set of models (ranked as the fourth 

257 place; see Fig. 3 and Table 2). It shows that models with the least predictors actually perform 

258 worst. This is due to the distribution map not reflecting well the true distribution situation of 

259 Hooded Cranes, and it goes against the ecological amplitude of hooded crane distribution and 

260 biology, especially in the Far Eastern part (Fig. 4a). Second, it should be fewer areas predicted as 

261 the winter distribution area in Sakhalin Island (Russia), and whether Lake Biwa (Japan) can be 

262 predicted. Sakhalin Island is just recorded as rare breeding area of Hooded Crane in history 

263 (Collar et al., 2001). RF78, RF29 predicted slightly better than RF21 and RF11 judged on the 

264 Sakhalin Island prediction that too many areas were predicted in the middle and upper part and 

265 along this island in the RF21 and RF29 model. Third, there were largely areas of RIO ranging 

266 from 0.41 to 0.60 in the prediction map of RF78. Therefore, we regarded RF29 as the best and 

267 rank it as the first place in Random Forest.

268 For TreeNet: first, TN1, TN3 and TN5 are ranked as worst in our set for the same reason 

269 with Random Forest. Next, ranked 2, came TN8, TN21 and TN29, because it should be fewer 

270 areas predicted as the winter distribution area in Sakhalin Island (Russia) and Shanghai (China). 

271 Third, Lake Biwa (Japan) should be predicted, Poyang Lake and Dongting Lake (China) should 

272 predict more area and, meanwhile fewer areas should be included in the east coast of Vietnam. 

273 Thus, TN78 is ranked higher than TN11. We think that the model evaluation through a 

274 prediction map assessment may still carry bias in some extent (e.g. in our study, prediction maps 

275 from models with predictor number from 11 to 78 were very close), but it is less than going 

276 purely by internal metrics. 

277 Put Figure 4 Here

278

279 Put Table 2 Here

280 Alternative data assessment

281 Alternative presence data from GBIF were also used to evaluate model accuracy. From the 

282 Fig. 5, we found that most Random Forest model performed good, especiealy of RF11, RF21, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27257v1 | CC BY 4.0 Open Access | rec: 7 Oct 2018, publ: 7 Oct 2018



283 RF29 and RF78. For TreeNet, TN3 performed significantly good, and TN21, TN29, TN78 looks 

284 similar. Comparing with distribution maps (Fig. 3), these results were acceptable, becauce the 

285 general distribution were close and it looks like good prediction models. Therefore, it was 

286 difficult to distingusih which one was better than another one. Comparing the Ralative index of 

287 Occurrence (RIO), we found more record points had higher RIOs in Random Forest than in 

288 TreeNet. 

289 Regression analysis was used to compare the AUC value with median and mean RIO of 

290 each model in Fig. 5. We found there was a significant linear regression relationship among 

291 internal-aspatial and external-spatial AUC with two kinds of RIOs in Random Forest model (P < 

292 0.03), but the R² of spatial method (mean = 0.942) were larger than internal-aspatial mehthod 

293 (mean = 0.706); while in TreeNet model, the linear relationship were not so obvious (P > 0.189).

294 Put Figure 5 Here

295 Figure 5 (a) violin plot of Random Forest with different predictors model; (b) violin plot of 

296 TreeNet with different predictors model. The thick black bar in the centre represents the 

297 interquartile range, the thin black line extended from it represents the 95% confidence intervals, 

298 and the white dot is the median.

299 DISCUSSION

300 In this study, we have proposed two methods to obtain three evaluation criteria (AUC, the 

301 Kappa statics (Kappa) and the true skill statics (TSS)), we refer to them as internal-aspatial and 

302 external-spatial approaches (Fig. 2). Further, we used a prediction map based on experience 

303 knowledge (Fig. 4 and Table 2). Overall, regardless of the evaluation criteria (AUC and TSS) the 

304 internal-aspatial or external-spatialmetric, the AUC and TSS in these models with different 

305 predictors were close to each other. In comparison, Kappa performed slightly more distinct, 

306 especially in the Random Forest model (Fig. 2). In addition, we found there were obviously 

307 linear relationships among three evaluation criteria, no matter of what approach was used (Table 

308 1). 

309 When put to a test, the results of the three-way ANOVA showed that model accuracy based 

310 on AUC was only influenced by the evaluation approach (internal-aspatial or external-spatial) 

311 and the interaction of the evaluated metric and model algorithms (Random Forest or TreeNet). 

312 Though the internal values were larger than the external-spatial value in same models in most 
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313 cases (Fig. 2a and Fig. 3), we found only TN model had a significant difference between the 

314 internal and the spatial AUC, but not for the RF model when using a Paired t-test. It means that 

315 the effect of the internal-aspatial and external-spatial metric to evaluate model accuracy was 

316 close in Random Forest; but would somewhat mislead in TreeNet. Based on a rough classifying 

317 system, AUC can be interpreted as follows: ≥ 0.9 are excellent, 0.80 ~ 0.90 “good”, 0.70 ~ 0.80 

318 “fair”, 0.60 ~ 0.70 “poor”and 0.50 ~ 0.60 “fail” (Allouche et al., 2006). Therefore, one same 

319 TreeNet model would be listed as different accurate classes models when referring to internal-

320 aspatial and external-spatial metric, which was also seen in Kappa and TSS (Fig. 2b and 2c).  

321 From both of the internal-aspatial and external-spatial metrics of AUC and TSS values, we 

322 found it was difficult to tell which model was better, when the number of predictors ranged from 

323 3 to 78. But spatial Kappa for Random Forest showed distinctly different among models, 

324 internal-aspatial Kappa showed an inconsistent result with external-spatial Kappa and the other 

325 two statistic criteria. Combining the rank of prediction maps assessed through our field 

326 knowledge (Fig. 4 and Table 2), we found that the Random Forest result was consistent with the 

327 external-spatial Kappa metric. We thought taking external-spatial Kappa as the criteria was the 

328 best choice among above for Random Forest model in our case, but maybe do not perform well 

329 for all models and species. This needs more applications and study. Also, several studies have 

330 criticized the kappa statistic for being inherently dependent on prevalence and they claimed that 

331 this dependency introduces bias and statistical artefacts to estimates of accuracy (Byrt et al., 

332 1993; Lantz and Nebenzahl, 1996; Manel et al., 2001; McPherson et al., 2004). 

333 The high AUC values (> 0.85) and the slightly difference among all 16 Hooded Crane 

334 models (Fig. 2a, Supplement S4) show that all models were accurate and performed similar, as 

335 values above 0.75 generally indicate an adequate model performance for most applications 

336 (Pearce and Ferrier, 2000). However, we would list RF1, RF3, TN1, TN3 and TN5 as ‘bad 

337 models’ because of the poor spatial prediction map (Fig. 4). It means that both of the internal-

338 aspatial and external-spatial AUC did not perform so well to distinguish model predictions, but 

339 the prediction maps did. Therefore, we argue that model accuracy evaluation should not only be 

340 based on a static number, but also should care more about models’ spatial prediction as assessed 

341 with external-spatial data! 

342 In this research, we evaluated how the prediction map compares in the light of the experts’ 

343 knowledge on species and its real winter distribution, to determine which model is more accurate 
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344 and reliable. We clearly agree with the thought of Fielding (2002): accuracy assessments for 

345 models should have a close connection to the intended use of the model. One major gain of 

346 species distribution models is to model and quantify complex ecology and to support an efficient 

347 conservation management, such as conservation planning (Drew et al., 2011). It could be used 

348 for instance to design reserve networks that maintain biodiversity (Guisan and Thuiller, 2005; 

349 Han et al., 2018). Thus, in order to obtain a more accurate and reliable species distribution model 

350 in less time and with less money, an external-spatial approach will be more meaningful than just 

351 to get a numerically perfect statistical model with unproven output and assumptions. In times of 

352 limited and competing, science budgets, such things really matter, and when large scales are to 

353 be handled well; valid inference remains ‘key’. On such scales even small decimal improvements 

354 can be of major value. Wilson et al. (2005) already concluded that efforts should be directed 

355 towards producing the most reliable predictions for use in conservation planning, and for 

356 instance to find the reserve network that is most robust to the uncertainty in the predictions.

357 In addition, alternative occurrence data from other sources were also used to assess model 

358 accuracy. The results were similar with prediction maps and statistic metrics for Random Forest 

359 models, but not really for TreeNet. This also was proved through the regression analysis result 

360 between internal-aspatial, and external-spatial AUC and RIOs. The alternative data used, in this 

361 research, was only ‘presence’ data.  In the future true absence data (=species are not occurring) 

362 should also be collected, though collecting such absence data remains difficult. However, in all 

363 the ways we used here and also studies elsewhere, most studies people used point data (like 

364 presence, pseudo-absence points) to assess distribution area accuracy (Baltensperger et al., 2013; 

365 Mi et al., 2017). Whether points can stand for the area (polygon) and how much representation 

366 they own should be a discussion in future study. It’s a question of detection distances as assessed 

367 through Distance Sampling for instance!

368 In this study, we found the accuracy of highly non-parsimonious models RF78 and TN78 

369 performed very well, and those were close to models with a set of predictors reaching from 11 to 

370 29 across most of evaluation criteria. That means high-dimension variables models can also 

371 predict species distribution very well. In contrast we found that, so far, high-dimension variables 

372 models are widely avoided by ecological researchers (few study use more than 30 variables, we 

373 referred 30 papers published, see Supplement S5). The published advice was that high 

374 dimensionality is unwanted, dangerous (Meisel, 1972), poorly fitted or overfitted (Harrell et al., 
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375 1996). But Breiman (2001b) stated for long time differently, and recent work has shown that 

376 dimensionality can be a blessing (Drew et al. 2011) and any proxy predictor can often improve 

377 the prediction, specifically when dealing with large scales and when decimals mean a lot beyond 

378 just template thresholds. This presents a massive paradigm shift for the sciences. Though using 

379 complex predictors may be unpleasant perhaps, and requires skill and some time, the soundest 

380 path for valid inference – the goal of science (generalization; as per textbook) - is to go for 

381 predictive accuracy first, then try to understand why and to infer (Breiman, 2001b; Hilborn and 

382 Mangel 1997, Drew et al. 2011).

383 Conclusion

384 In this study, we used two methods to assess model accuracy: internal-aspatial and external-

385 spatial. We found internal-aspatial and external-spatial metrics can get higher model 

386 performance (AUC > 0.85), but both of them can’t distinguish models with different predictors 

387 well, while the prediction maps did a little better than them. Therefore, we argued that model 

388 accuracy evaluation also should care more about models’ spatial prediction and has a close 

389 connection to the intended use of the model! Certainly, all above conclusion is limited to 

390 Random Forest and TreeNet from lots of SDM options available, and only one species. Whether 

391 other algorithm implementations and species have the same results should be tested further. As 

392 we know, other than Breiman (2001b) and related papers by the authors, this maybe the first time 

393 the concept of external-spatial assessment criteria for model accuracy is formerly promoted, and 

394 with a quest to assess model accuracy through prediction maps for inference and applications. 

395 Overall, we hope to see more study on proposing better methods and data to assess species 

396 distribution models (SDMs) and prediction distribution map for valid inference, and sustainable 

397 conservation management worldwide. 
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568 Figure Legend

569 Figure 1 Map of study area and study species locations.

570

571 Figure 2 (a) barplot of AUC from internal-aspatial and external-spatial metrics of RF and TN; (b) 

572 barplot of Kappa from internal-aspatial and external-spatial source of RF and TN; (c) barplot of 

573 TSS from internal-aspatial and external-spatial source of RF and TN.

574

575 Figure 3 Interaction plot of AUC value between predictor number, model algorithms and 

576 evaluation methods. (a) Interaction plot of AUC value between predictor number (1, 3, 5, 8, 11, 

577 21, 29 and 78) and two evaluation methods (internal-aspatial and external-spatial), (b) Interaction 

578 plot of AUC between model algorithms (Random Forest) and two evaluation methods (internal-

579 aspatial and external-spatial). Dots with same line represent the AUC value (internal-aspatial and 

580 external-spatial) of same model with certain predictor number (1, 3, 5, 8, 11, 21, 29 and 78).

581

582 Figure 4 Prediction map of Random Forest and TreeNet with 8 different predictor numbers. (a) 

583 Prediction map of Random Forest; (b) Prediction map of TreeNet.

584

585 Figure 5 (a) violin plot of Random Forest with different predictors model; (b) violin plot of 

586 TreeNet with different predictors model. The thick black bar in the centre represents the 

587 interquartile range, the thin black line extended from it represents the 95% confidence intervals, 

588 and the white dot is the median.

589
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600 Table Legend

601

602 Table 1 Linear Regression analysis of AUC, Kappa and TSS.

603

604 Table 2 Rank of model by prediction map assessment.

605
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1 Table 1 Linear Regression analysis of AUC, Kappa and TSS 

Slope R² P

AUC~Kappa 0.165 0.510 0.000

AUC~TSS 0.481 0.839 0.000

AUC_RF~Kappa_RF 0.159 0.556 0.001

AUC_RF~TSS_RF 0.455 0.773 0.000

AUC_TN~Kappa_TN 0.203 0.582 0.000

AUC_TN~TSS_TN 0.533 0.937 0.000

AUC_RF_spatial~Kappa_RF_spa 0.203 0.847 0.001

AUC_RF_spa~TSS_RF_spa 0.507 0.999 0.000

AUC_RF_aspa~Kappa_RF_aspa 0.120 0.348 0.123

AUC_RF_aspa~TSS_RF_aspa 0.598 0.970 0.000

AUC_TN_spa~Kappa_TN_spa 0.234 0.968 0.000

AUC_TN_spa~TSS_TN_spa 0.503 1.000 0.000

AUC_TN_aspa~Kappa_TN_aspa 0.074 0.968 0.000

AUC_TN_aspa~TSS_TN_aspa 0.263 0.943 0.000

2 Note: aspa represents internal-aspatial metric, spa represents external-spatial metric. 

3
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4 Table 2 Rank of model by prediction map assessment.

Rank Random Forest TreeNet

1 RF29 TN78

2 RF78 TN11,

3 RF11, RF21 TN29, TN21, TN8

4 RF1, RF3, RF5, RF8 TN1, TN3, TN5

5 Note: 1 means the best; 2 means better; 3 means good; 4 means less good.
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Figure 1 Study area
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Figure 4b
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Figure 5
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