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Abstract
Building more open-ended evolutionary systems can simul-
taneously advance our understanding of biology, artificial
life, and evolutionary computation. In order to do so, how-
ever, we need a way to determine when we are moving closer
to this goal. We propose a set of metrics that allow us to mea-
sure a system’s ability to produce commonly-agreed-upon
hallmarks of open-ended evolution: change potential, nov-
elty potential, complexity potential, and ecological poten-
tial. Our goal is to make these metrics easy to incorporate
into a system, and comparable across systems so that we
can make coherent progress as a field. To this end, we pro-
vide detailed algorithms (including C++ implementations)
for these metrics that should be easy to incorporate into ex-
isting artificial life systems. Furthermore, we expect this
toolbox to continue to grow as researchers implement these
metrics in new languages and as the community reaches con-
sensus about additional hallmarks of open-ended evolution.
For example, we would welcome a measurement of a sys-
tem’s potential to produce major transitions in individual-
ity. To confirm that our metrics accurately measure the hall-
marks we are interested in, we test them on two very dif-
ferent experimental systems: NK Landscapes and the Avida
Digital Evolution Platform. We find that our observed re-
sults are consistent with our prior knowledge about these
systems, suggesting that our proposed metrics are effective
and should generalize to other systems.

Introduction
A central goal of the field of artificial life is to build evolving
systems that capture the full range of dynamics found in nat-
ural systems. Such systems should be capable of producing
evolutionary outcomes such as sophisticated navigation be-
haviors, novel cooperative strategies, complex ecosystems,
and major evolutionary transitions, to name but a few. Re-
searchers seek such “open-ended” systems for a number of
reasons:

1. For biologists, access to systems exhibiting complex and
nuanced evolutionary processes allows rapid experimen-

tation and facilitates developing a deep intuition for un-
derlying mechanisms (Tenaillon et al., 2016).

2. For evolutionary computation researchers, insights from
open-ended evolving systems will allow researchers to
break complexity barriers, expanding the classes of engi-
neering problems that evolutionary algorithms can solve
(Hara and Nagao, 1999; Potter and Jong, 2000) and pro-
ducing more general forms of evolved intelligence.

3. For artificial life researchers, it is concerning that there
may be dynamics of fundamental importance to biology
that artificial life systems do not exhibit. The existence of
such dynamics suggests that we are not building evolving
systems as innovative as those found in nature, be it due
to limited memory, limited time, or simply an insufficient
understanding of the necessary components. Identifying
these missing factors should allow us to better understand
life as it is and to better explore life as it could be.

While various artificial life systems have reproduced in-
dividual dynamics – such as the evolution of complex traits
(Lenski et al., 2003b), cooperative behaviors (Goldsby et al.,
2012), and coexistence of diverse ecotypes (Cooper and
Ofria, 2003) – these accomplishments have been in highly
controlled circumstances. The overarching goal of open-
ended evolution research is to create a system where all of
these dynamics emerge more organically, as in nature. Ad-
ditionally, replicating this process would provide substantial
insights into our own origins, including the evolution of hu-
man brains. Indeed, harnessing a more open-ended set of
evolutionary dynamics could help us spur breakthroughs in
the evolution of general artificial intelligence.

Open-ended evolution is a many-faceted concept. A num-
ber of patterns are considered to be hallmarks of open-ended
evolution (Taylor et al., 2016), most notably the continual
production of novelty (Lehman and Stanley, 2011; Banzhaf
et al., 2016), unconstrained increases in diversity (Bedau
and Bahm, 1994), ongoing increases in complexity (Lenski
et al., 2003b; Korb and Dorin, 2011), and shifts in individu-
ality such as those often associated with major transitions in
evolution (Smith and Szathmary, 1997). There is a growing
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Figure 1: Relationships between the metrics. Originally
published in (Dolson et al., 2015). Solid lines with arrows
indicate metrics which are prerequisites for other metrics.

consensus in the field that all of these dynamics are impor-
tant pieces of the open-ended evolution puzzle (Taylor et al.,
2016). In addition, we have previously suggested that there
is a fifth necessary and even simpler dynamic: continuous
change in the information content of genomes in the popu-
lation (Dolson et al., 2015).

These five properties of a system fit into a hierarchy, as
shown in Figure 1. For novelty to exist, there must be some
degree of change in the information within a population.
While this observation is trivially true, many evolutionary
algorithms suffer from premature convergence, the absence
of non-trivial change. Thus, it remains an important prereq-
uisite to define and explicitly address. Similarly, complexity
and diversity can only increase indefinitely if novel members
of the population continue to be generated. Finally, tran-
sitions in individuality typically involve multiple organisms
coming together into a single individual, building from com-
plex and diverse progenitors. All of these dynamics capture
different subsets of interesting behavior that evolving sys-
tems might exhibit and we propose they are all necessary
(but perhaps not sufficient) in a fully open-ended system.

To draw conclusions about what factors of a system pro-
mote or inhibit these dynamics, we need methods for mea-
suring the extent to which each dynamic is present. Im-
portantly, these methods must be applicable across a wide
variety of systems. Some progress has been made toward
this end with evolutionary activity statistics (Bedau et al.,
1998a; Channon, 2001), an approach to isolating and quan-
tifying the adaptive component of an evolving system, sepa-

rating out the non-adaptive dynamics. Evolutionary activity
statistics require that the user decide on two things ahead of
time: a definition for “components” (meaningful individual
pieces of a system) and a way of filtering noise out of the
system (typically by contrasting with a shadow population
that evolves with selective pressures turned off).

Thus far, components have needed to be defined for each
system on a case-by-case basis. In artificial life systems, al-
leles or genotypes are typically used as components, while
in the fossil record, whole species were used as components
(Bedau et al., 1998b). This flexibility to choose different
components is valuable, as it allows for the study of open-
ended evolution at different scales of organization. How-
ever, it also means that care must be taken when compar-
ing evolutionary activity statistics across systems. Here, we
suggest a component definition that should work for any sys-
tem in which genomes are composed of elements that collec-
tively determine fitness (see Identifying Meaningful Sites in
the Genome).

Due to the critical role of stochasticity in evolution, most
evolving systems are noisy. In order to make behavioral
generalizations, we need a way to distinguish evolutionary
signal from this noise. In the original description of evo-
lutionary activity statistics, a specific method was proposed
for doing so: for each run of a system, there should be a cor-
responding “shadow” run in which any outcome of selection
is replaced with a random choice. Dynamics observed in
the shadow run can then be subtracted out from those in the
main run. While this control can be highly informative, it
is challenging to implement in many systems and requires
researchers to be able to isolate all selective events in the
system. For example, when evolutionary activity statistics
were applied to the fossil record, a different filter had to be
used: the assumption that any species that was successful
enough to have made it into the fossil record was probably
evolutionarily successful for a substantial amount of time. In
this paper, we build on this idea to propose a filter for evolu-
tionary activity that can be more easily implemented across
a variety of systems (see Filtering Out Noise).

Evolutionary activity statistics classify evolving systems
based on how open-ended they are. However, it is relatively
easy to create a system that falls into the most open-ended
class while still failing to further our goals for open-ended
evolution research or to match our subjective understand-
ing of what we would expect from a truly open-ended sys-
tem Maley (1999). Indeed, there is debate over whether
“open-endedness” is even quantifiable (Stanley and Soros,
2016). Moreover, it is our opinion that most efforts to de-
fine systems as either open-ended or not have largely been
unproductive; open-endedness is likely better thought of as
a continuum than as a binary. While there is much debate
over what would constitute a fully open-ended system, there
is consensus in the field that we are not particularly close
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to building such a system1. Our goal in this paper is to
extend evolutionary activity statistics into easy-to-use diag-
nostic criteria that quantitatively measure key hallmarks of
open-ended evolution. We want researchers to be able to iso-
late the effects of experimental settings on these hallmarks,
keeping such results relevant across experimental platforms.
As such, we hope to spur a more consistent and comparable
march toward true open-endedness, adding new metrics to
this toolbox as the community reaches a consensus on the
features that we should promote.

In the rest of this paper we will introduce the Mea-
surements of Open-ended Dynamics in Evolving Systems
(MODES) toolbox and explore the behavior of the metrics
it contains in the context of two evolving systems: NK-
Landscapes (Kauffman and Levin, 1987) and the Avida Dig-
ital Evolution Platform (Ofria and Wilke, 2004).

Background
Evolutionary Activity
Evolutionary activity statistics attempt to quantify the extent
to which adaptive dynamics are occurring in a population. In
most applications, evolutionary activity has been measured
as the length of time that components exist in the population
beyond what would be expected in the absence of selection
(Bedau et al., 1997, 1998a; Channon, 2003). This value was
chosen because it translates easily across systems and repre-
sents a universal measure of evolutionary “success”. In ear-
lier work, a measure of selective sweeps was used instead of
component existence time (Bedau and Packard, 1992), but
this metric could not be easily generalized across systems.

Multiple facets of evolutionary activity are used in the in-
terpretation of evolutionary activity statistics: the activity
of new components (Anew), the mean (or median) cumula-
tive activity of components in the population (Ācum), and
the diversity of components in the population (D). Based
on the long-term behavior of these values, systems that ex-
hibit qualitatively similar dynamics have been grouped to-
gether into a class of evolutionary dynamics. Initially, three
possible classes were described: no evolutionary activity,
bounded evolutionary activity, and unbounded evolutionary
activity. Over time, additional classes have been added to
more precisely reflect the types of systems observed. For
ease of referring to these classes, table 1 merges together all
prior additions to the original classification system of which
we are aware.

1This line of thought originally lead us to conceptualize the
metrics described here in terms of possible barriers a system might
encounter that would prevent it from being open-ended (Dolson
et al., 2015). However, our attempts to measure these barriers align
closely with dynamics that have since been identified as hallmarks
of open-ended evolution. Ultimately, these perspectives are two
sides of the same coin and both are useful frames through which to
view open-endedness. For simplicity, we phrase this paper in terms
of hallmarks rather than barriers.

According to the original formulation of evolutionary ac-
tivity statistics, in order for a system to be categorized
among the most open-ended systems (originally class 3,
now class 4) it must exhibit unbounded growth in summed
evolutionary activity across all components in the popula-
tion (Bedau et al., 1997) (see Table 1). Technically, this
growth could happen either because of an unbounded in-
crease in the number of components (diversity) or because of
an unbounded increase in the average evolutionary activity
of components in the population. The latter case was orig-
inally thought to not occur (Bedau et al., 1998a), however
when such a case was observed, Channon suggested that
class 3 open-ended dynamics should be broken up into three
subcategories. These subcategories depend on whether the
growth in evolutionary activity was driven by diversity, per-
component evolutionary activity, or a combination of both
(Channon, 2001) (see Table 1).

In parallel, Skusa and Bedau refined the classification in
a different way (Skusa and Bedau, 2003), inserting a new
second class in which evolutionary activity was unbounded
but no novel components came into being (see Table 1).
Such a situation would describe purely ecological dynamics.
This observation may seem surprising at first - shouldn’t un-
bounded evolutionary activity involve adaptation? However,
when evolutionary activity is measured as the existence time
of a component, evolutionary activity statistics draw no dis-
tinction between stabilizing selection and selection favoring
changes to the status quo (Channon, 2003). Thus, pressure
for multiple eco-types to continue existing in their current
form (i.e., ecology) will show up as as evolutionary activity
above and beyond what is observed in the shadow run.

In fact, the presence of a single component under stabi-
lizing selection will trivially cause the mean evolutionary
activity to increase indefinitely; such a component will sit in
the population, increasing the population’s activity counter
despite being quickly lost from the shadow population. This
behavior casts doubt on how we should interpret class 4b,
as well. To remedy this concern, Channon suggested that
we should look for unbounded growth in median (rather
than mean) per-component evolutionary activity (Channon,
2003). This adjustment is a drastic improvement, but it still
does not eliminate the possibility that systems exhibiting
class 4b evolutionary dynamics are not doing quite what we
would expect. If at least 51% of the components in the popu-
lation are under stabilizing selection – as would be expected
in an ecological system – the rest of the population could
still be behaving like a class 3 system. While such a system
would still be interesting for ecological studies, our under-
standing of it would not be well-served by conflating it with
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Class
Median2

Evolutionary
Activity (Ãcum)

Change Novelty
Anew

Diversity
(D) Complexity

Type of
evolutionary

dynamics
Described in

1 zero ? zero bounded bounded None Bedau et al, 1997
2 unbounded ? zero bounded bounded Uncreative Skusa and Bedau, 2003
3 bounded positive positive bounded bounded Bounded Bedau et al, 1997
4a bounded positive positive unbounded bounded Unbounded Bedau et al, 1997
4b unbounded positive positive bounded ? Unbounded Channon, 2001
4c unbounded positive positive unbouned ? Unbounded Channon, 2001

Table 1: Table combining all previously described classes of evolutionary dynamics as measured with evolutionary activity
statistics. For each class, we show the response of all quantities measured for evolutionary activity statistics and in our pro-
posed metrics (novelty and diversity should behave equivalently between the two systems). Note that we expect bounded
evolutionary activity to imply bounded complexity, as any scenario in which complexity is growing without bound should im-
ply that evolutionary activity is too. Question marks indicate that the value of a given metric is not specified in the description
for a class of evolutionary activity. Higher-numbered classes are generally believed to fall further along the continuum of
open-endedness than lower-numbered classes.

systems that are exhibiting open-ended adaptive evolution.
How can we know whether evolutionary activity is driven

by stabilizing selection rather than more interesting dynam-
ics? If every component is experiencing directional (as op-
posed to stabilizing) selection, the change metric we pro-
pose here should theoretically be comparable to the number
of components3. In contrast, if most of the population is un-
der stabilizing selection, the change metric should be very
low.

Ultimately, our change metric (described in the next sec-
tion) is in keeping with the original evolutionary activity
measurement, which sought to quantify the acquisition of
new genetic information (Bedau and Packard, 1992). For
this reason, in our suite of metrics, we replace the concept of
evolutionary activity with change. We believe that this fram-
ing will be easier to measure and interpret with little loss
of information (although of course we encourage the use of
other measures of evolutionary activity where appropriate).
Our change metric does have the downside of not being pos-
sible to usefully classify as bounded or unbounded. Because
we seek only to compare systems and identify progress to-
ward higher levels of open-endedness, this limitation should
not be a problem for us.

Prior work using MODES
Soros (2018) used a preliminary version of our framework
(Dolson et al., 2015) to study open-ended evolution in the

2The original formulation of evolutionary activity statistics
used mean rather than median, but Channon (2003) makes a com-
pelling argument for using median instead. Using median rather
than mean does not change any of the intuitions for how we expect
this metric to behave and reduces the risk of non-intuitive behavior
due to outliers.

3However, the change metric may often be lower than the num-
ber of components because not every component will change dur-
ing every measurement period.

artificial life system Chromaria. Agents in Chromaria are
colorful circles controlled by CPPNs that must find a region
of the world that matches their color in order to reproduce.
These agents can be classified into species based on their
patterns of coloration, and change and novelty can be as-
sessed by measuring the emergence of new species. Ecolog-
ical interactions in Chromaria occur as a result of individuals
planting themselves in the world, which alters the color envi-
ronment that subsequent agents must navigate. Thus, Soros
was able to measure the ecology of Chromaria through a se-
ries of visual snapshots of the world, as well as by measur-
ing the number of species that occur over the course of a run.
Lastly, she measured complexity in terms of the number of
elements in the CPPNs controlling the agents.

Using these MODES-inspired metrics, Soros (2018)
investigated three hypothesized necessary conditions for
open-ended evolution: 1) some sort of minimal criterion
(Soros and Stanley, 2014) must be met before reproduction,
2) when new types of individuals evolve, it should create
new ways to satisfy the minimal criterion, and 3) individuals
should be responsible for making decisions about how they
interact with the world. By measuring hallmarks of open-
ended evolution under various controls that removed these
conditions, Soros (2018) found strong evidence that all of
the conditions are indeed necessary for change and novelty
(let alone ecology and complexity) in Chromaria. These ex-
periments perfectly illustrate the kind of hypothesis-driven
research that we hope a further formalization of our metrics
will enable. Additionally, they serve as an example of the
range of approaches that can be taken to translate these con-
cepts between systems.

Applying MODES to biology

Since many hypotheses about open-ended evolution involve
comparisons to the biosphere, it is critical that MODES met-
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rics are applicable not only to digital systems, but are also
relevant to experimental biological systems. To confirm that
they are, we consider how we would apply them to a well-
studied wet-lab experiment. The Long-Term Evolution Ex-
periment (LTEE) (Lenski et al., 1991) is an exemplar of ex-
perimental evolution, consisting of 12 populations of the
bacteria E. coli, which have been evolving independently
for more than 60,000 generations (Good et al., 2017). As
detailed in (Taylor et al., 2016), the LTEE exhibits many
hallmarks of open-ended evolution, including the criteria we
propose here. Because fitness within the LTEE is best de-
scribed by an unbounded power law function (Wiser et al.,
2013; Lenski et al., 2015), the system meets the change met-
ric: populations continue to change in non-trivial ways over
time. Further, studies of individual populations within the
LTEE have shown numerous examples of the generation of
novelty, including exploration of new areas of the fitness
landscape (Tenaillon et al., 2016), repeated selective sweeps
(Maddamsetti et al., 2015), and new diversity arising af-
ter such sweeps (Blount et al., 2012). Toward the ecology
metric, several populations within the LTEE demonstrate
frequency-dependent fitness dynamics (Ribeck and Lenski,
2015; Rozen and Lenski, 2000; Le Gac et al., 2012; Mad-
damsetti et al., 2015), which are necessarily cases of eco-
logical interactions. Included in these cases of frequency de-
pendence is a special case (Blount et al., 2008, 2012; Turner
et al., 2015a) driven by cross-feeding and specialization on
different resources (Turner et al., 2015b). Because each pop-
ulation in the LTEE descends from a single ancestor present
at the start of the experiment, all ecological complexity in
any population must have arisen during the course of the ex-
periment, and thus satisfies the ecological metric. The com-
plexity metric is inherently harder to quantify in a biological
system than in a computational one, but recent large-scale
genome sequencing from the LTEE (Tenaillon et al., 2016)
offers the promise of being able to measure complexity at
the genome level over the course of the experiment. Because
our metrics can theoretically be applied to a well-studied and
open-ended biological system, they can be used to compare
dynamics in a broad range of systems and enable the field of
artificial life to move forward in quantifiable steps to open-
ended evolution.

Metrics
Overarching techniques
We use two broad techniques to ensure that our metrics can
focus on the most relevant and meaningful information in an
evolving population. Additionally, we describe a technique
for determining whether a metric is bounded or unbounded.

Filtering out noise In any evolving population, mutations
continually produce new maladapted genomes that are then
purged from the population via natural selection. All of the
MODES metrics assume that some form of filtering has been

Figure 2: An illustrative example of how we filter
genomes for persistent lineages. At time point A, the pur-
ple lineage has proven to be persistent and therefore the orig-
inal genome from A-t will be considered meaningful. Sim-
ilarly, the green and blue lineages persist to time point A+t
and so the original green and blue genomes will be consid-
ered meaningful as they existed at time point A.

applied before-hand, to prevent maladapted genomes from
overwhelming the hallmarks that we are measuring. Here,
we describe a persistence filter that we use in our experi-
ments. However, shadow runs are also a viable filter option,
and there are likely further useful filtering techniques that
have not yet been invented.

To focus only on the adaptive products of evolution, we
limit our analysis to those genomes whose descendants per-
sist for a substantial number of generations. We refer to
this technique as a persistence filter. We mark each organ-
ism with a lineage ID at a given time point A, as demon-
strated in Figure 2 (where color indicates lineage ID). The
lineage IDs are passed on to offspring for the next t gener-
ations, where t is a pre-determined number of generations
indicating the length of our filtering process (hereafter re-
ferred to as filter length). At time point A+ t, we determine
which genomes from the population at A have descendants
atA+t. At this point, those genomes are considered persis-
tent; in the example in Figure 2 the individuals at the bases
of the green and blue lineages are considered persistent at
time point A + t. These are the individuals that would be
evaluated in the MODES metrics. This filtering leads to a
delay in counting a genome in a metric until t generations
later, but enables us to avoid an apparent increase in metrics
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due to drift via mutation. For example, the red and orange
genomes from time point A would not be considered in our
metrics because their lineages do not persist to time point
A+ t.

How large should t be? The correct value depends on our
goals. If we are interested in evolution on a shorter time
scale, we may only want to filter out deleterious mutants,
which will likely only survive a few generations. In this
case, a relatively small value of t should suffice. Indeed,
prior open-ended evolution research has used what is effec-
tively a persistence filter with t = 1 as a supplemental fil-
tering technique (Channon, 2003). If we are interested in a
broader time scale, however, we may want to filter out neu-
tral mutants too and measure only adaptive evolution. In this
case, coalescence theory can inform our choice of t. In an
asexual population without diversity-preserving forces, the
population will periodically “coalesce”, i.e. neutral clades
will die out resulting in a new most-recent-common ances-
tor of the current population. If we take a snapshot of such
a population at any given point in time and let the popula-
tion continue evolving for long enough, a single individual
from the snapshot will eventually be a common ancestor of
the entire extant population. We refer to coalescence time
here as the amount of time that this process takes, although
it should be noted that coalescence time is more commonly
thought of retrospectively.

If we want to filter out all neutral mutants that do not go on
to play a critical role in evolution, it would be ideal to choose
a value for t that falls above the expected distribution for co-
alescence times. If we did so, then we could be confident
that any individuals that made it past the filter represented
a meaningful part of the evolutionary history of the popula-
tion. If only a single individual makes it through the filter,
that individual must be along the line of descent for the en-
tire population. Multiple individuals making it through the
filter would be evidence of ecological dynamics promoting
their coexistence.

The median coalescence time for a well-mixed asexual
population ofN haploid individuals under no selective pres-
sure is 2N generations (Fu and Li, 1999). Unfortunately,
the expected distribution of coalescence time is exponential,
meaning that we would have to choose a potentially imprac-
tically large value for t if we want to guarantee that it is rare
to get through the filter by chance. However, the presence
of selective pressure dramatically reduces expected coales-
cence time. Since most systems in which people study open-
ended evolution do have selective pressure of some form, in
practice relatively low values of t are still effective filters.

For a meaningfully comparison across populations, we
must filter them using consistent values of t. We always
expect filters with lower t values to let more individuals
through, and it is challenging to separate this effect from
changes in the underlying dynamics of the system. Addi-
tionally, t must be measured in generations to ensure con-

sistency in the amount of filtering that occurs. Researchers
studying systems that use a different time scale need only
calculate the average generations within the population to
measure t.

In evaluating results, the field should strive to use consis-
tent values of t relative to population size and be aware that,
all else being equal, increasing selective pressure will reduce
the number of taxa that get through the filter.

This effect brings up an important distinction between
this filtering technique and the shadow run traditionally used
with evolutionary activity statistics. Whereas shadow runs
filter out the effect of neutral processes, the persistence filter
does not entirely. We view this reduced filtering primarily as
an advantage – drift can be an important part of the evolu-
tionary process – but there may also be situations where it is
undesirable. Our metrics are unable to distinguish between
class 1 and 2 dynamics or between class 3 and 4b dynamics
(see Table 1), although they are able to distinguish between
useful subcategories within those classes (as discussed in the
Change Metric section below).

Identifying meaningful sites in genomes While a
genome may have descendants in t generations, if t is rel-
atively small this persistent genome may not be phenotypi-
cally different from another persistent genome in the popula-
tion. To ensure that we are not separately counting genomes
that differ only in non-coding regions, we use an additional
filter in which we determine which sites in the genome con-
tain information about the environment. In calculating all
of the following metrics, we first reduce the genome to its
informative sites.

This approach can easily be extended to any system in
which the genome is made up of a set of elements that col-
lectively determine fitness. Whether or not a genomic po-
sition is informative can be approximated by measuring the
overall fitness effect of either removing it or changing it to a
null alternative that is known to not contribute information.
A null alternative should be used in cases where changing
the structure of the genome changes the meaning of other
sites. For example, in Avida it is critical that we replace in-
structions with nulls rather than completely removing them
because information can be encoded in the number of in-
structions between two other instructions. A more accurate
technique would be to examine the fitness effect of substi-
tuting all possible alternative elements and calculate the po-
tential entropy at that site. When null substitutions are not
possible, this technique is an effective method. A caveat to
this technique is that genomes that achieve a given result
in an excessively fragile manner may appear more complex
than more robustly built genomes. To mitigate this issue,
the combined fitness effect of eliminating multiple genome
elements at once can be measured.

Note that, although identifying informative sites can be
computationally intensive, we would need to do so anyway
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to calculate the complexity metric. As such, this additional
layer of filtering is effectively free.

Determining boundedness In the design of these metrics,
we have primarily focused on determining the effect that
small changes to a system have on the extent to which that
system exhibits hallmarks. However, they can also be used
to classify systems in much the same way that evolutionary
activity statistics do. As described in Table 1, this classifi-
cation requires determining whether diversity is increasing
without bound. In addition, it would be informative to de-
termine whether complexity is growing without bound. In
previous work, the definition of boundedness in this context
has been stated in terms of the limit of the suprememum of
diversity as time goes to infinity (Bedau et al., 1998a). While
this is an excellent theoretical definition, taking limits of em-
pirical data as time goes to infinity is generally not practical.
Previous applications of evolutionary activity statistics seem
to determine boundedness based on whether or not a line on
a graph appears to be plateauing. This technique has the
potential to be misleading (Wiser et al., 2018).

Instead, we advocate the use of statistics to determine
what mathematical model best fits the observed data. We
can then classify the pattern as bounded or unbounded based
on the limit of the best-fitting mathematical model. Such
an approach has previously been used to demonstrate that
fitness is following an unbounded growth pattern in a long-
term wet lab evolution experiment with E. coli (Wiser et al.,
2013; Lenski et al., 2015).

MODES Metrics
Change Metric Our first metric focuses on whether the
genetic makeup of the population is changing in a non-trivial
way. This metric will be above zero during adaptive evo-
lution, including situations where the population is return-
ing to previous states, perhaps due to environmental cycling.
In the work presented here, we use a persistence filter (ex-
plained above) to ensure that we mark a genome as new only
if its lineage full t generations. However, a different filter-
ing technique (e.g. a shadow run) could be used instead. For
this comparison, we first find the genomes from persistent
lineages from generation A by determining which genomes
have descendants in generation A + t. In the example shown
in Figure 2, the genomes at the roots of the green and blue
lineages would count as persistent. We then compare these
genomes to those found to have been from persistent lin-
eages in the previous time point (e.g. we would compare the
roots of the blue and green lineages to the root of the purple
lineage in Figure 2). In this way, we create a sliding window
to observe change in the population. Note that the example
in the figure assumes the resolution at which data are col-
lected (i.e. the number of generations between time points)
is equivalent to the value of t, but this does not need to be
the case. It may be desirable to have a very long length of

t but still gather data frequently. In such a case, each time
point is individually filtered by looking ahead t generations,
but change is calculated by comparing the set of persistent
taxa in the current time point to the set of persistent taxa in
the previous time point.

While there is no change metric in the original concep-
tion of evolutionary activity statistics, we expect that it will
provide similar information to cumulative evolutionary ac-
tivity (Bedau et al., 1997). Change must be positive in sys-
tems exhibiting class 3 or higher evolutionary dynamics, as
these systems must all exhibit positive novelty. Class 1 sys-
tems may or may not exhibit change; an evolving system
that stagnates (e.g. many genetic algorithms) would have
zero change, whereas a completely neutral system where all
change was caused by drift would sometimes have a non-
zero amount of change (depending on the value of t). Class
2 systems would have non-zero change if they were cycling
between fixed states, but not if they were purely the result of
stabilizing selection.

Novelty Metric The novelty metric measures how many
genomes have evolved in the population that have never been
seen previously in the experiment. For this metric we again
filter out genomes that do not have descendants in t gen-
erations, enabling us to focus on meaningful novelty. As
with change, we could have used a different filtering tech-
nique instead. To measure novelty, we simply count how
many genomes from persistent lineages have never been in
a previous time points persistent genome pool. It is possible
with this metric for a genome to evolve, but not persist, and
therefore not be recorded in the permanent history, but then
evolve and persist at a later point and be counted as novel.
Once a genome has been counted as novel, however, it is
part of the permanent history and will never be counted in
the novelty metric again. Thus, while a genome could be
delayed in being counted as novel, or not counted if it never
persists, it will not be counted twice. Our novelty metric
is functionally equivalent to Anew in evolutionary activity
statistics (Bedau et al., 1997).

Complexity Metric The complexity metric measures the
maximum complexity (informative sites) of any organism
found in the entire population. We recommend the approach
described in the section on “Identifying meaningful sites in
genomes” above. Once the meaningful sites have been iden-
tified, they can be counted to get a measurement of complex-
ity; the value of the complexity metric at a given time point
is the highest observed count of informative sites across all
taxa in the population that make it through the filter. Further,
complexity can be measured even more accurately by us-
ing information-theoretic techniques where all possible mu-
tations are considered at each site, and ideally some epistatic
interactions.

There is no equivalent to the complexity metric in evolu-
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tionary activity statistics. However, as many believe growth
in complexity to be an important hallmark of open-ended
evolution (Taylor et al., 2016), we feel it is a critical addi-
tion. In particular, it would be interesting to find non-trivial
systems that exhibit unbounded growth in complexity. We
suspect that such growth could only occur in systems ex-
hibiting class 4b or 4c evolutionary dynamics, as bounded
evolutionary activity should imply bounded complexity (al-
though the converse is not true).

Ecological Metric The ecological metric measures the
amount of information in the population as a whole. While
organisms may not contain increasing amounts of informa-
tion in their individual genomes (as measured by the com-
plexity metric), they could still be increasingly diverse and
therefore contain increased information collectively in the
population. Ideally, we would measure this collective infor-
mation by tracking the origin of each piece of information
across all genomes in the population and summing up the
number of unique pieces of information. Unfortunately, this
approach is not computationally practical for many systems.
As a proxy, we can look at the diversity of post-filter geno-
types reduced to informative sites. Complex ecologies in
which multiple subsets of the population are using different
information about the environment to survive are likely to
be characterized by a relatively balanced distribution of in-
dividuals across the various successful phenotypes. Thus,
we use Shannon entropy, a popular metric of diversity that
also measures evenness, to measure the diversity of the per-
sistent genotypes and calculate the ecological metric. This
metric is equivalent to D in evolutionary activity statistics
(Bedau et al., 1997), assuming we chose genotypes reduced
to informative sites as components.

Experimental Systems
We used two radically different experimental systems in or-
der to ensure both that these metrics can be broadly applied
and that they produce meaningfully consistent results.

NK Landscape

To begin a systematic examination of MODES metrics, we
used a simple NK model (Kauffman and Levin, 1987). An
NK model uses two parameters, N and K, to randomly gen-
erate a fitness landscape. N specifies the number of sites in
the genome, each of which is a 0 or a 1. The fitness land-
scape specifies the effect of a given value at a given site on
the fitness of the bit-string organism. This fitness effect de-
pends on the values at the K subsequent adjacent sites. As
such, K tunes the ruggedness of the landscape; low values of
K produce smooth landscapes with few peaks, whereas high
values produce landscapes with many peaks. We chose to
use NK models because they are a well-understood system
for studying general questions about evolutionary dynamics.

Experimental Treatments Our basic treatment usedN =
20 (i.e., 20 bits in an individual) and K = 3 (the fitness con-
tribution of each bit was influenced by three other bits). We
used a population size of 200 and a per site mutation rate
of .05, with tournament selection and a tournament size of
2. In addition to this baseline treatment, we tested the ef-
fects of eight experimental treatments: High K tests the ef-
fect of a highly rugged landscape (K=10) where fitness is
effectively randomized whenever a mutation occurs. High
N tests the effect of longer bit-string genomes (N=100; mu-
tation rate was adjusted to 0.01 to keep the whole-genome
mutation rate consistent with the base condition), allowing
for a higher potential complexity. Low Mutation and High
Mutation test the effects of more extreme mutation rates
(0.005 and 0.1 respectively); we expect the mutation rate
to be important for finding new areas of the fitness land-
scape and thus our novelty metric. Small Pop and Large
Pop vary the population size (to 20 and 1000 respectively);
in small populations we expect more drift in the population,
allowing more change, while in a large population we expect
stronger selection and consequently that a higher percentage
of changes along the line of descent are beneficial. Finally,
we included two special treatments: in Oscillating Envi-
ronment, the fitness function was toggled between two pre-
defined NK Landscapes every 500 generations, allowing us
to see the effect of changing selective pressures where the
populations was not able to stay on a single peak. In Fit-
ness Sharing organisms that were too similar to each other
detracted from each other’s fitness, creating a pressure to
explore multiple portions of the landscape at the same time
and, ideally, maintain a high diversity. We used the fitness
sharing equations described by Goldberg and Richardson
(1987), with a sharing threshold of 50 and an α of 1. For
all experiments, we used a filter length (t) equal to the pop-
ulation size.

Avida
The Avida Digital Evolution platform is a popular artifi-
cial life system for studying evolutionary dynamics (Ofria
and Wilke, 2004). Avida consists of a population of self-
replicating digital organisms with circular genomes com-
posed of assembly-code-like instructions. Over the course
of their lifetimes, organisms in Avida execute the code in
their genome. The population is initially seeded with a sin-
gle hand-coded organism that inefficiently copies itself and
does nothing else. Each organism lives in its own cell in a
toroidal grid. When an organism copies itself, its offspring
is placed in a different cell, overwriting any previous occu-
pant of that cell. Thus, there is pressure for individuals to
reproduce quickly, before others copy over them. During
the replication process, mutations are probabilistically in-
troduced. Thus, the system contains inheritance, variation,
and selection, causing evolution by natural selection to oc-
cur. Optionally, “tasks” can be added to the environment
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in Avida. These are computational problems that organisms
can perform for a reward in the form of additional CPU cy-
cles that allow organisms to execute their code faster.

Experimental Treatments To understand how MODES
metrics will behave in a full-featured artificial life system,
we tested them in Avida under a variety of scenarios. For
all experiments, we used a well-mixed population in order
to speed up the expected rate of coalescence. All other pa-
rameters in Avida were left at their default values. We ran
experiments in two different environments. The empty en-
vironment has no tasks - all evolution is focused entirely
on optimizing the efficiency with which organisms can self-
replicate. The logic-9 environment, which has been used in
many prior experiments (e.g. (Lenski et al., 2003a)), con-
tains tasks for all non-trivial one- and two-input boolean
logic functions.

Artificial life systems necessarily have constraints on the
amount of time and memory we can give them. It is impor-
tant in open-ended evolution research to determine whether
these constraints are imposing practical limitations on the
dynamics the system exhibits (Zaman, 2018). To do so, we
ran experiments in each environment at three different pop-
ulation sizes: 500, 1000, and 2000. In each condition, we
ran 30 replicate runs of Avida.

Additionally, to understand how sensitive our metrics are
to the choice of the filter length (t) we conducted some ad-
ditional experiments in the empty environment in which we
varied t. In general, since our Avida runs are so long, we aim
to filter neutral mutants out with our persistence filter, rather
than just deleterious mutants. At each of the three popu-
lation sizes, we tried t values of 500, 1000, and 2000. To
ensure that we always have data from a filter length larger
than population size, we also included a condition with a
population size of 2000 and a t of 4000.

Implementation Details
If not implemented with care, these metrics can become
computationally intractable in the context of the long exper-
iments that open-ended evolution research often entails. In
particular, RAM requirements can become prohibitive. We
provide a few high-level approaches to mitigating these is-
sues.

The largest memory cost is imposed by the novelty met-
ric’s requirement that we keep track of every taxon that has
ever passed the persistence filter. Because we only need to
know when we encounter a repeat taxon (rather than storing
an archive of all taxa we have encountered), we can dra-
matically reduce this cost by using a Bloom filter (Bloom,
1970). Although this approach does introduce a (tunable)
risk of false negatives (i.e. miss-classifying a novel taxon as
not novel), this risk only makes the metrics more conserva-
tive.

The next largest cost is imposed by needing to keep track

of the phylogeny over time. In addition to standard phylo-
genetic pruning techniques (such as removing all taxa that
do not have extant descendants), we can safely remove all
taxa that died before the current generation minus t4. This
optimization prevents the tree from growing without bound
over the course of the experiment.

Lastly, it is helpful to be aware that increasing t will re-
duce computational demands by increasing the percentage
of taxa that will be filtered out. With these optimizations,
MODES metrics can be implemented with minimal over-
head.

Statistical Methods
We assessed significance using Kruskal-Wallis tests fol-
lowed by post-hoc Wilcox tests comparing each treatment to
the baseline condition. To correct for multiple comparisons,
we used a Bonferroni correction. Effect size measurements
determine whether a treatment has a meaningful impact on a
variable. Because standard deviations varied wildly among
conditions, we used Glass’s ∆ as our measure of effect size
(Hedges, 1981). As a general guideline for interpreting ∆, a
value of 0.2 is generally thought to be low while a value of
0.8 is generally thought to be high (although this guideline is
context dependent). All analyses and statistics for this paper
were conducted used the R Statistical Computing Language
version 3.4.4 (R Core Team, 2017) and the ggplot2 plotting
library (Wickham, 2016). Distributions of final metric val-
ues are visualized using rain-cloud plots (Allen et al., 2018).
Statistical code and supplemental statistical information is
freely available (Dolson, 2018).

Code Availability
A C++ implementation of the MODES toolbox is available
as part of the Empirical library (Ofria et al., 2018). The li-
brary is header only, and designed to be as easy to integrate
into existing systems as possible. Code reliability is ensured
with a suite of unit tests automatically run when code is
added. As a proof of this concept, the Avida experiments
presented in this paper were carried out using a lightly mod-
ified version of Avida that incorporated this implementation
of our metrics (Bryson et al., 2018). All code used in this
paper is open source and freely available (Dolson, 2018).

Results and Discussion
To ensure that these metrics are capturing the dynamics that
we want them to, we tested them on a range of variants of
our basic NK model and a range of conditions in Avida. The
preliminary results for each metric are presented here.

4An important caveat is that this approach will only work with a
strictly increasing unit of time. In many systems (including Avida)
the average generation is not guaranteed to consistently increase.
To support such systems, our implementation of the metrics allows
for time to be tracked using two units at once, one corresponding
to generation, and one that is guaranteed to be strictly increasing.
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Figure 3: Amount of change at over time in varying NK
Landscape environments. Fitness sharing increases the
amount of change in the population over time. Conversely,
a routinely changing environment leads to spikes in change
that quickly drop as the population converges again. Shaded
region represents a bootstrapped 95% confidence interval
around the mean.

Change Metric

In the baseline and low mutation rate conditions for the NK
Landscape, change is close to 0 (see Figures 3 and 4), indi-
cating that our metrics are capable of detecting the stagna-
tion typical of many genetic algorithms. As shown in Fig-
ure 3, several environmental changes increase the amount of
meaningful change found in the NK Landscape populations
over time. When organisms are forced to share fitness be-
tween others with the same genotype, the amount of change
increases and remains higher than the baseline over time.
Conversely, when the environment changes frequently, there
is an initial spike of increased change that quickly drops
back down to the baseline value.

The majority of environmental conditions we tested in the
NK Landscape system produced dynamics over time qual-
itatively similar to the baseline treatment. In Figure 4 we
show the amount of meaningful change in populations at
the final time point in more environmental conditions. A
higher mutation rate leads to increased meaningful change
(p < 0.0001, Wilcoxon test; ∆ = 0.80) because mutations
are necessary to create any meaningful change in this sys-
tem. A smaller population size produces more meaningful
change (p = 0.004, Wilcoxon test; ∆ = 0.33) because a
small population cannot hold as many different genomes at
one time and therefore there are more genomes that can arise
that are different than what is in the previous population. Fi-
nally, fitness sharing produces increased meaningful change
(p < 0.0001, Wilcoxon test; ∆ = 0.63) because it creates
a constant pressure for the population to adapt away from

Figure 4: Rain-cloud plot of change at final generation
across NK Landscape treatments. Environmental condi-
tions that increase the amount of change at the final time
point include: increasing the mutation rate, decreasing the
population size, and implementing fitness sharing. Black
circle and line indicate mean and bootstrapped 95% confi-
dence interval.

whatever is the current dominant genotype.
In Avida, there is always at least a little change (see Figure

5. This observation is consistent with previous findings that
fitness in Avida increases indefinitely (Wiser, 2015), as an
increase in fitness implies both change and novelty. Based
on coalescence theory, we would expect change in the empty
environment to usually be less than or equal to one, because
it is a single-niche environment. During each interval, ei-
ther a fitter genotype will arise and sweep the population or
the current fittest genotype will remain dominant. Because
our value of t is not higher than the maximum expected co-
alescence interval, we should also expect to see the occa-
sional time point with change greater than one. Our data are
roughly consistent with this expectation. In addition, there
is a subtle downward trend in the change data, likely due to
the progressively increasing difficulty of finding beneficial
mutations.

As expected, increasing the filter length, t, decreases the
amount of change observed because fewer taxa are able to
get through the filter (see Figure 5). In general, using a value
of t equal to population size seems to be an adequate filter.
The confidence interval for the mean of these conditions al-
ways overlaps 1, indicating that a substantial amount of fil-
tering is occurring. Using lower values of t begins to lead
to substantial increases in the variance of observed change.
Using a higher value of t does further reduce noise, but with
diminishing returns. In the empty environment, population
size does not appear to have much impact on change, im-
plying (unsurprisingly) that population size does not exert
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Figure 5: Rain-cloud plot of change at final genera-
tion across multiple population sizes and filter lengths in
Avida in the empty environment. Labels along the top in-
dicate population size. Black circle and lines indicate mean
and bootstrapped 95% confidence interval. Horizontal bar
indicates change = 1, the expected average change in the
empty environment.

pressure on evolutionary dynamics in this environment.
In the logic-9 environment, however, there is a slight in-

crease in change as population size increases, particularly
early in the experiment (see Figure 6). Additionally, change
is generally a little higher in the logic-9 environment than the
empty environment. This distinction is an unexpected ben-
efit of using a value of t too low to guarantee coalescence.
Logic-9 is a single-niche environment, so if we chose a large
enough value of t, we would expect change to always be less
than or equal to 1. However, logic-9 is a more complex en-
vironment than the empty environment, which increases the
odds that multiple lineages will be able to keep evolutionary
pace with other for a substantial amount of time. As such, at
the values of t we used, our change metric is able to reflect
the fact that more is going on in the logic-9 environment than
the empty environment.

While change is a metric often not considered in discus-
sions of open-ended evolution, these results show that the
amount of meaningful change can reflect differences in the
environment and evolution of the populations and is likely
a necessary dynamic for open-ended evolution. Our change
metric responds in intuitive ways to variations in parame-
ter settings, suggesting that it is a reliable indicator of the
dynamics we designed it to capture.

Novelty Metric
As shown in Fig 7, a higher mutation rate increases the
amount of novelty generated by the NK Landscape system.
This result is to be expected, because more mutations make

Figure 6: Change over time across different environ-
ments and population sizes in Avida. Note that y axes have
different scales. In general, change is much higher in the
Logic-9 environment. Filter length, t, is equal to population
size.

it easier to cross fitness valleys and otherwise traverse the
fitness landscape. Even at a high mutation rate, novelty does
start to decrease over time as the search space is explored.

We again found that the majority of treatments had a qual-
itatively similar trajectory over time and therefore in Fig-
ure 8 we show only the final novelty value. As predicted,
the baseline treatment has, with the exception of 1 repli-
cate, stopped producing meaningful novelty by the final time
point. Indeed, the only environment still reliably produc-
ing meaningful novelty is the high mutation rate condition
(p = 0.003, Wilcoxon test; ∆ = 0.3). High mutation rates
produce ongoing novelty by shifting the mutation-selection
balance such that drift is able to preserve novel lineages for
longer than t. Notably, fitness sharing does not increase the
final novelty (p = 0.333, Wilcoxon test), presumably be-
cause it is promoting cycling among previously-discovered
genomes.

Like NK Lanscapes, Avida shows gradually declining
novelty over time (although novelty in Avida declines more
slowly) (Dolson, 2018). This trend presumably reflects the
declining availability of beneficial mutations. Interestingly,
the novelty and change graphs from Avida look almost iden-
tical, implying that there is little cycling among previously
discovered solutions. This result, too, is consistent with
the previously observed indefinite fitness increases in Avida
(Wiser, 2015) - if the population is always getting fitter,
genotypes from earlier in the run would be unlikely to sur-
vive in the present.

These results highlight the power of the novelty metric to
identify environments and populations that have the poten-
tial to be open-ended due to the high number of new geno-
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Figure 7: Amount of novelty over time in NK Landscape
with varying mutation rate. The novelty metric measures
the number of completely new meaningful genomes that
have lineages that persisted since the previous time point.
As the mutation rate increases, more novelty is continuously
produced. However, at all mutation rates the novelty de-
creases over time. Shaded region represents a bootstrapped
95% confidence interval around the mean.

Figure 8: Rain-cloud plot of novelty at final generation
across NK Landscape treatments. . Black circle and lines
indicate mean and bootstrapped 95% confidence interval. At
the final time point, little meaningful novelty is found in
our baseline populations. Only increasing the mutation rate
increases novelty, implying that other conditions with high
change are simply promoting cycling between a fixed set of
genotypes.

Figure 9: Rain-cloud plot of complexity at final genera-
tion across NK Landscape treatments. Black circle and
lines indicate mean and bootstrapped 95% confidence in-
terval. Note that we have excluded the high N condition
from this graph because it throws off the axes. Most of the
treatments reach the maximum complexity allowed by the
genome length (20 or 100) and cannot continue to increase.
High mutation rate and smaller populations decrease the fi-
nal complexity achieved by the populations on average.

types being consistently discovered. Novelty is likely neces-
sary, but not sufficient, for open-ended evolution because if
nothing new is being produced by a population, neither the
complexity nor the ecological metric can be non-zero.

Complexity Metric
In an NK Landscape populations, organisms cannot evolve
to be more complex than N. As a result, the complexity in-
creases over time and then saturates. High mutation rate
(p < 0.0001, Wilcoxon test; ∆ = −2.6) and small popu-
lation size (p < 0.0001, Wilcoxon test; ∆ = −.23) reduce
complexity because they shift mutation-selection balance to
make staying on a fitness peak more challenging (see Fig-
ure 9). All other treatments were able to achieve maximal
complexity fairly reliably. Note that, due to the rough nature
of our complexity metric, this merely indicates the presence
of an individual on a fitness peak. We cannot distinguish be-
tween higher and lower peaks. The high N treatment was,
unsurprisingly, able to attain a drastically higher complexity
due to its increased upper bound on complexity.

The NK Landscape results demonstrate that the complex-
ity metric correctly identifies a system that is not able to con-
tinuously produce more complex solutions. Once the maxi-
mum complexity allowed by the genome length is reached,
no higher value is possible.

In Avida, the complexity metric reveals a stark difference
between the empty and logic-9 environments. In the empty
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Figure 10: Complexity in Avida over time across different
environments and population sizes. Note that y axes have
different scales. In general, complexity appears to continue
increasing in the Logic-9 environment, whereas it drops and
then stabilizes in the empty environment. Filter length, t, is
equal to population size.

environment, there is a rapid rise in complexity followed by
a decrease and leveling out. This behavior is likely due to
the strong pressure in Avida to become a more efficient self-
replicator by optimizing code. Over time, simpler solutions
are selected for, all else being equal. In the logic-9 environ-
ment, on the other hand, there is an ongoing upward trajec-
tory in complexity. While logic-9 still rewards efficiency, al-
gorithms that can make maximally efficient use of the tasks
are complex. These results are consistent with other mea-
surements of complexity in Avida over time (Adami et al.,
2000).

In the biosphere, complexity appears to be growing with-
out bound (Korb and Dorin, 2011), although there is debate
over the mechanisms behind this process. As such, building
a non-trivial system that exhibits such behavior is a worth-
while goal for open-ended evolution research. Unbounded
growth in complexity is only possible in a system with a
sufficiently complex environment such that there is always
new information to be integrated into the genome.

Ecology Metric
Across both of our systems, the only condition that creates
a multi-niche environment is the fitness sharing condition in
NK Landscapes. Accordingly, that is the only condition in
which we observe ecology significantly above the baseline
(p < 0.0001, Wilcoxon test; ∆ = 0.91) (see Figure 11).
Because fitness sharing specifically rewards organisms with
less common genotypes, it promotes a stably high ecology
value over time. This result demonstrates the trade-off in-
herent in fitness sharing because it leads to higher ecology at

Figure 11: Rain-cloud plot of ecology at final generation
across NK Landscape treatments. Black circle and lines
indicate mean and bootstrapped 95% confidence interval.
Fitness sharing is the only condition that reliably produces
ecology.

the expense of lower complexity. Interestingly, in the Avida
data, we see a consistent low level of ecology across all con-
ditions (Dolson, 2018). We hypothesize that this slight in-
crease over NK landscapes is due to the noise introduced by
Avida’s variable generation times.

Ecology is an incredibly powerful force in nature, leading
to feedback cycles of ever-increasing diversity. Like com-
plexity, diversity seems to be growing without bound in the
biosphere (Harmon and Harrison, 2015). Thus, it will be im-
portant to see what mechanisms are important to promoting
it in artificial life systems, too.

Conclusions
We have proposed a suite of metrics that quantify the pres-
ence of four generally-accepted hallmarks of evolution.
These metrics build on prior work with evolutionary activ-
ity statistics and are largely compatible with them. Addi-
tionally, we have proposed techniques for reducing noise in
these statistics. By testing them on two very different well-
understood evolutionary systems, we have demonstrated that
our metrics respond in an intuitive way to the dynamics these
systems exhibit. Thus, these metrics should also be useful
in understanding the extent to which novel systems exhibit
hallmarks of open-ended evolution. Moreover, we can use
them to understand the impact of incremental changes to a
system. By breaking the seemingly monolithic problem of
designing an open-ended evolutionary system into smaller,
measurable pieces, we facilitate improved use of the scien-
tific method. One of the primary goals in building an open-
ended evolutionary system is to understand the underlying
components that are necessary to do so. By measuring the
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effects that controlled changes to a system have on this suite
of metrics, we can more productively work toward these
goals.

Going forward, it will be interesting to see how a wider
variety of artificial life systems respond to the metrics in the
MODES toolbox. In particular, further investigation on the
differences between using a shadow run as a filter and using
the persistence filter described here would be worthwhile.
Ultimately, these two techniques capture sufficiently differ-
ent information that it may be valuable to use each in turn.

For a long time, the field of open-ended evolution has
been plagued by a lack of data that can be meaningfully
compared across systems. We believe that the MODES tool-
box will help remedy this problem by making useful metrics
easily accessible. As new hallmarks of open-ended evolu-
tion are identified and new techniques of reducing noise are
developed, we encourage contributions to the toolbox. By
working together as a community of users, researchers, and
developers we can dramatically increase the rate at which
open-ended evolution research progresses.
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