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Abstract
Building more open-ended evolutionary systems can simul-
taneously advance our understanding of biology, artificial
life, and evolutionary computation. In order to do so, how-
ever, we need a way to determine when we are moving closer
to this goal. We propose a set of metrics that allow us to
measure commonly-agreed-upon hallmarks of open-ended
evolution in a system: change potential, novelty potential,
complexity potential, and ecological potential. Our goal is
to make these metrics easy to incorporate into a system, and
comparable across systems so that we can make coherent
progress as a field. To this end, we provide a C++ imple-
mentation of these metrics that should be easy to connect
to existing artificial life systems. As the field reaches con-
sensus about additional hallmarks of open-ended evolution,
metrics corresponding to these additions can be added to this
toolbox. For example, we hope to soon add a measurement
of the potential for major transitions in individuality to oc-
cur. To confirm that our metrics accurately measure the hall-
marks we are interested in, we test them on two very differ-
ent experimental systems: NK Landscapes and the Avida
Digital Evolution Platform. We find that our observed re-
sults are consistent with our prior knowledge about these
systems, suggesting that our proposed metrics are effective
and should generalize to other systems.

Introduction
A central goal of the field of artificial life is to build evolving
systems that capture the full range of dynamics from nature.
Such systems should be capable of producing evolutionary
outcomes such as sophisticated navigation behaviors, novel
cooperative strategies, complex ecosystems, or major evolu-
tionary transitions, to name but a few. Researchers seek such
“open-ended” systems for a number of reasons: 1) For biol-
ogists, access to systems exhibiting complex and nuanced
evolutionary processes allows rapid experimentation and fa-
cilitates developing a deep intuition for underlying mech-
anisms (Tenaillon et al., 2016). 2) For evolutionary com-
putation researchers, insights from open-ended evolutionary
systems will allow researchers to break complexity barriers,

expanding the classes of engineering problems that evolu-
tionary algorithms can solve (Hara and Nagao, 1999; Pot-
ter and Jong, 2000) and producing more general forms of
evolved intelligence. 3) For artificial life researchers, the
presence of dynamics that are seen in biology but not in ar-
tificial life indicates that we are not yet sure how to build
evolving systems as innovative as those found in nature, be
it due to limited memory, limited time, or simply an insuf-
ficient understanding of the necessary components. Identi-
fying these missing factors should allow us to better under-
stand life as it is and to better explore life as it could be.

While various artificial life systems have reproduced in-
dividual dynamics – such as the evolution of complex traits
(Lenski et al., 2003b), cooperative behaviors (Goldsby et al.,
2012), and coexistence of diverse ecotypes (Cooper and
Ofria, 2003) – these accomplishments have been in highly
controlled circumstances. The overarching goal of open-
ended evolution research is to create a system where all of
these dynamics emerge more organically, as in nature. Ad-
ditionally, replicating this process would provide incredible
insights into our own origins, including the evolution of hu-
man intelligence. Indeed, harnessing a more open-ended set
of evolutionary dynamics could help us spur breakthroughs
in the evolution of general artificial intelligence.

Open-ended evolution is a many-faceted concept. A num-
ber of patterns are considered to be hallmarks of open-ended
evolution (Taylor et al., 2016), most notably the continual
production of novelty (Lehman and Stanley, 2011; Banzhaf
et al., 2016), unconstrained increases in diversity (Bedau
and Bahm, 1994), ongoing increases in complexity (Lenski
et al., 2003b; Korb and Dorin, 2011), and shifts in individu-
ality such as those often associated with major transitions in
evolution (Smith and Szathmary, 1997). There is a growing
consensus in the field that all of these dynamics are impor-
tant pieces of the open-ended evolution puzzle (Taylor et al.,
2016). In addition, we have previously suggested that there
is a fifth necessary and even simpler dynamic: continuous
change in the population (Dolson et al., 2015).

These five properties of a system fit into a hierarchy, as
shown in Figure 1. For novelty to exist, there must be some
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Figure 1: Relationships between the metrics. Originally
published in (Dolson et al., 2015). Solid lines with arrows
indicate metrics which are prerequisites for other metrics.

degree of change in the information within a population.
While this observation is trivially true, many evolutionary
algorithms suffer from premature convergence, the absence
of non-trivial change. Thus, it remains an important prereq-
uisite to define and explicitly address. Similarly, complexity
and diversity can only increase indefinitely if novel members
of the population continue to be generated. Finally, tran-
sitions in individuality typically involve multiple organisms
coming together into a single individual, building from com-
plex and diverse progenitors. All of these dynamics capture
different subsets of interesting behavior that evolving sys-
tems might exhibit and we propose they are all necessary
(but perhaps not sufficient) in a fully open-ended system.

To draw conclusions about what factors of a system pro-
mote or inhibit these dynamics, we need methods for mea-
suring the extent to which each dynamic is present. Impor-
tantly, these methods must be applicable across a wide va-
riety of systems. Some progress has been made toward this
end with evolutionary activity statistics (Bedau et al., 1998a;
Channon, 2001), an approach to isolating and quantifying
the adaptive component of an evolving system, separating
out the non-adaptive dynamics. Evolutionary activity statis-
tics require that the user decide on two things ahead of time:
a definition for “components” (meaningful individual pieces
of a system) and a way of filtering noise out of the system
(typically by using a shadow population that evolves with
selective pressures turned off).

Thus far, components have needed to be defined for each
system on a case-by-case basis. In artificial life systems, al-

leles or genotypes are typically used as components, while
in the fossil record, whole species were used as components
(Bedau et al., 1998b). This flexibility to choose different
components is valuable, as it allows for the study of open-
ended evolution at different scales of organization. How-
ever, it also means that care must be taken when compar-
ing evolutionary activity statistics across systems. Here, we
suggest a component definition that should work for any sys-
tem in which genomes are composed of elements that collec-
tively determine fitness (see Identifying Meaningful Sites in
the Genome).

Due to the critical role of stochasticity in evolution, most
evolving systems are noisy. In order to make behavioral
generalizations, we need a way to distinguish evolutionary
signal from this noise. In the original description of evo-
lutionary activity statistics, a specific method was proposed
for doing so: for each run of a system, there should be a cor-
responding “shadow” run in which any outcome of selection
is replaced with a random choice. Dynamics observed in
the shadow run can then be subtracted out from those in the
main run. While this control can be highly informative, it
is challenging to implement in many systems and requires
researchers to be able to isolate all selective events in the
system. For example, when evolutionary activity statistics
were applied to the fossil record, a different filter had to be
used: the assumption that any species that was successful
enough to have made it into the fossil record was probably
evolutionarily successful for a substantial amount of time. In
this paper, we build on this idea to propose a filter for evolu-
tionary activity that can be more easily implemented across
a variety of systems (see Filtering Out Noise).

Evolutionary activity statistics classify evolving systems
based on how open-ended they are. However, it is relatively
easy to create a system that falls into the most open-ended
class while still failing to further our goals for open-ended
evolution research or to match our subjective understand-
ing of what we would expect from a truly open-ended sys-
tem Maley (1999). Indeed, there is debate over whether
“open-endedness” is even quantifiable (Stanley and Soros,
2016). Moreover, it is our opinion that most efforts to de-
fine systems as either open-ended or not have largely been
unproductive; open-endedness is likely better thought of as
a continuum than as a binary. While there is much debate
over what would constitute a fully open-ended system, there
is consensus in the field that we are not particularly close
to building such a system1. Our goal in this paper is to

1This line of thought originally lead us to conceptualize the
metrics described here in terms of possible barriers a system might
encounter that would prevent it from being open-ended (Dolson
et al., 2015). However, our attempts to measure these barriers align
closely with dynamics that have since been identified as hallmarks
of open-ended evolution. Ultimately, these perspectives are two
sides of the same coin and both are useful frames through which to
view open-endedness. For simplicity, we phrase this paper in terms
of hallmarks rather than barriers.
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extend evolutionary activity statistics into easy-to-use diag-
nostic criteria that quantitatively measure key hallmarks of
open-ended evolution. We want researchers to be able to iso-
late the effects of experimental settings on these hallmarks,
keeping such results relevant across experimental platforms.
As such, we hope to spur a more consistent and comparable
march toward true open-endedness, adding new metrics to
this toolbox as the community reaches a consensus on the
features that we should promote.

In the rest of this paper we will introduce the Mea-
surements of Open-ended Dynamics in Evolving Systems
(MODES) toolbox and explore the behavior of the metrics
it contains in the context of two evolving systems: NK-
Landscapes (Kauffman and Levin, 1987) and the Avida Dig-
ital Evolution Platform (Ofria and Wilke, 2004).

Background
Evolutionary Activity
Evolutionary activity statistics attempt to quantify the extent
to which adaptive dynamics are occurring in a population. In
most applications, evolutionary activity has been measured
as the length of time that components persist in the popula-
tion (Bedau et al., 1997, 1998a; Channon, 2003). This value
was chosen because it translates easily across systems and
represents a universal measure of evolutionary success. In
earlier work, a more complex measurement was used, which
more directly quantified ongoing change in the contents of
the population (Bedau and Packard, 1992).

Multiple facets of evolutionary activity are used in the in-
terpretation of evolutionary activity statistics: the activity of
new components (Anew), the mean (or median) cumulative
activity of components in the population (Ācum), and the
diversity of components in the population (D). Based on
the long term behavior of these values, systems that exhibit
qualitatively similar dynamics can be grouped together into
a class of evolutionary dynamics. Initially, three possible
classes were described: no evolutionary activity, bounded
evolutionary activity, and unbounded evolutionary activity.
Over time, additional classes have been added to more ac-
curately reflect the types of systems observed. For ease of
referring to these classes, table 1 merges together all prior
additions to the original classification system of which we
are aware.

According to the original formulation of evolutionary ac-
tivity statistics, in order for a system to be categorized
among the most open-ended systems (originally class 3, now
class 4) it must exhibit unbounded growth in summed evolu-
tionary activity across all components in the population (Be-
dau et al., 1997) (see Table 1). Technically, this growth could
happen either because of an unbounded increase in the num-
ber of components (diversity) or because of an unbounded
increase in the average evolutionary activity of components
in the population. However, the latter case was originally
thought to not occur (Bedau et al., 1998a). When such a case

was observed, Channon suggested that class 3 open-ended
dynamics should be broken up into three subcategories de-
pending on whether the growth in evolutionary activity was
driven by diversity, per-component evolutionary activity, or
both (Channon, 2001) (see Table 1).

In parallel, Skusa and Bedau refined the classification in
a different way, inserting a new second class in which evo-
lutionary activity was unbounded but no new components
came into being (Skusa and Bedau, 2003) (see Table 1).
Such a situation would describe purely ecological dynam-
ics. This observation may seem surprising at first - shouldn’t
unbounded evolutionary activity involve adaptation? How-
ever, when evolutionary activity is measured as the number
of time steps that a component was present in the popula-
tion, evolutionary activity statistics draw no distinction be-
tween stabilizing selection and selection favoring changes
in the status quo (Channon, 2003). Thus, pressure for multi-
ple eco-types to continue existing in their current form will
show up as as evolutionary activity above and beyond what
is observed in the shadow run.

In fact, the presence of a single component under stabi-
lizing selection will trivially cause the mean evolutionary
activity to increase indefinitely; it will sit in the popula-
tion, increasing the population’s activity counter despite be-
ing quickly lost from the shadow population. This behavior
casts doubt on how we should interpret class 4b, as well.
To remedy this concern, Channon suggested that we should
look for unbounded growth in median (rather than mean)
per-component evolutionary activity (Channon, 2003). This
adjustment is a drastic improvement, but it still does not
eliminate the possibility that systems exhibiting class 4b
evolutionary dynamics are not doing quite what we would
expect. If at least 51% of the components in the population
are under stabilizing selection (not unreasonable with eco-
logical interactions), the rest of the population could still be
behaving like a class 3 system. While such a system would
be interesting in its own right, our understanding of it would
not be well-served by conflating it with systems that are be-
having in a categorically different manner.

How can we know whether evolutionary activity is driven
by stabilizing selection rather than more interesting dynam-
ics? If every component is experiencing directional (as op-
posed to stabilizing) selection, the change metric we pro-
pose here should theoretically be comparable to the number
of components (with the acknowledgement that not every
component will change every time step). In contrast, if most
of the population is under stabilizing selection, the change
metric should be very low.

Ultimately, our change metric (described in the next sec-
tion) is in keeping with the original evolutionary activity
measurement, which sought to quantify the acquisition of
new genetic information (Bedau and Packard, 1992). For
this reason, in our suite of metrics, we replace the concept of
evolutionary activity with change. We believe that this fram-
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Class
Median2

Evolutionary
Activity (Ãcum)

Change Novelty
Anew

Diversity
(D) Complexity

Type of
evolutionary

dynamics
Described in

1 zero ? zero bounded bounded None Bedau et al, 1997
2 unbounded ? zero bounded bounded Uncreative Skusa and Bedau, 2003
3 bounded positive positive bounded bounded Bounded Bedau et al, 1997
4a bounded positive positive unbounded bounded Unbounded Bedau et al, 1997
4b unbounded positive positive bounded ? Unbounded Channon, 2001
4c unbounded positive positive unbouned ? Unbounded Channon, 2001

Table 1: Table combining all previously described classes of evolutionary dynamics as measured with evolutionary activity
statistics. For each class, we show the response of all quantities measured for evolutionary activity statistics and in our proposed
metrics (novelty and diversity should behave equivalently between the two systems). Question marks indicate that the value
of a given metric is not specified in the description for a class of evolutionary activity. Higher-numbered classes are generally
believed to fall farther along the continuum of open-endedness than lower-numbered classes.

ing will be easier to measure and interpret with little loss
of information (although of course we encourage the use of
other measures of evolutionary activity where appropriate).
Our change metric does have the downside of not being pos-
sible to usefully classify as bounded or unbounded. Because
we seek only to compare systems and identify progress to-
ward higher levels of open-endedness, this limitation should
not be a problem for us.

Prior work using MODES
Soros (2018) used a preliminary version of our framework
(Dolson et al., 2015) to study open-ended evolution in the ar-
tificial life system Chromaria. Agents in Chromaria are col-
orful circles controlled by CPPNs which must find a region
of the world that matches their color in order to reproduce.
These agents can be classified into species based on their
patterns of coloration, and change and novelty can be as-
sessed by measuring the emergence of new species. Ecolog-
ical interactions in Chromaria occur as a result of individuals
planting themselves in the world, altering the color environ-
ment that subsequent agents must navigate. Thus, Soros was
able to measure the ecology of Chromaria through a series
of visual snapshots of the world, as well as by measuring
the number of species that occur over the course of a run.
Lastly, she measured complexity in terms of the number of
elements in the CPPNs controlling the agents.

Using these MODES-inspired metrics, Soros (2018)
investigated three hypothesized necessary conditions for
open-ended evolution: 1) some sort of minimal criterion
must be met before reproduction (Soros and Stanley, 2014),
2) when new types of individuals evolve, it should create
new ways to satisfy the minimal criterion, and 3) individuals

2The original formulation of evolutionary activity statistics
used mean rather than median, but Channon (2003) makes a com-
pelling argument for using median instead. Using median rather
than mean doesn’t change any of the intuitions for how we expect
this metric to behave and reduces the risk of non-intuitive behavior.

should be responsible for making decisions about how they
interact with the world. By measuring hallmarks of open-
ended evolution under various controls that removed these
conditions, Soros (2018) found strong evidence that all of
the conditions are indeed necessary for change and novelty
(let alone ecology and complexity) in Chromaria. These ex-
periments perfectly illustrate the kind of hypothesis-driven
research that we hope a further formalization of our metrics
will enable. Additionally, they serve as an example of the
range of approaches that can be taken to translating these
concepts between systems.

Applying MODES to biology

Since many hypotheses about open-ended evolution involve
comparisons to the biosphere, it is critical that MODES met-
rics are applicable not only to digital systems, but are also
relevant to experimental biological systems. To confirm that
they are, we consider how we would apply them to a well-
studied wet-lab experiment. The Long-Term Evolution Ex-
periment (LTEE) (Lenski et al., 1991) is an exemplar of ex-
perimental evolution, consisting of 12 populations of the
bacteria E. coli, which have been evolving independently
for more than 60,000 generations (Good et al., 2017). As
detailed in (Taylor et al., 2016), the LTEE exhibits many
hallmarks of open-ended evolution, including the criteria we
propose here. Because fitness within the LTEE is best de-
scribed by an unbounded power law function (Wiser et al.,
2013; Lenski et al., 2015), the system meets the change met-
ric: populations continue to change in non-trivial ways over
time. Further, studies of individual populations within the
LTEE have shown numerous examples of the generation of
novelty, including exploration of new areas of the fitness
landscape (Tenaillon et al., 2016), repeated selective sweeps
(Maddamsetti et al., 2015), and new diversity arising after
such sweeps (Blount et al., 2012). Towards the ecology
metric, several populations within the LTEE demonstrate
frequency-dependent fitness dynamics (Ribeck and Lenski,
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2015; Rozen and Lenski, 2000; Le Gac et al., 2012; Mad-
damsetti et al., 2015), which are necessarily cases of eco-
logical interactions. Included in these cases of frequency de-
pendence is a special case (Blount et al., 2008, 2012; Turner
et al., 2015a) driven by cross-feeding and specialization on
different resources (Turner et al., 2015b). Because all of the
populations in the LTEE began as single cells, all ecologi-
cal complexity in any populations must have arisen during
the course of the experiment, and thus satisfies the ecolog-
ical metric. The complexity metric is inherently harder to
quantify in a biological system than in a computational one,
but recent large scale genome sequencing from the LTEE
(Tenaillon et al., 2016) offers the promise of being able to
measure complexity at the genome level over the course
of the experiment. Because our metrics can be applied to
a well-studied biological example of open-ended evolution,
they can be used to compare dynamics in a broad range of
systems and enable the field of artificial life to move forward
in quantifiable steps to open-ended evolution.

Metrics
Overarching techniques
We use two broad techniques to ensure that our metrics can
focus on the most relevant and meaningful information in an
evolving population. Additionally, we describe a technique
for determining whether a metric is bounded or unbounded.

Filtering out noise In any evolving population, mutations
continually produce new maladapted genomes that are then
purged from the population via natural selection. To focus
only on the adaptive products of evolution, we limit our anal-
ysis to those genomes whose descendants persist for a sub-
stantial number of generations. We will refer to this tech-
nique as a persistence filter. We mark each organism with a
lineage ID at a given time point A, as demonstrated in Fig-
ure 2 (where color indicates lineage ID). The lineage IDs are
passed on to offspring for the next t generations, where t is a
pre-determined number of generations indicating the length
of our filtering process (hereafter referred to as filter length).
At time point A + t, we determine which genomes from the
population at A have descendants at A + t. At this point,
those genomes are considered persistent; in the example in
Figure 2 the individuals at the bases of the green and blue
lineages are considered persistent at time point A+ t. These
are the individuals that we go on to evaluate in the MODES
metrics. This filtering leads to a delay in counting a genome
in a metric until t generations later, but enables us to avoid
an apparent increase in metrics due to drift via mutation. For
example, the red, orange, and blue genomes from time point
A−t would never be considered in our metrics because their
lineages do not persist to time point A.

How large should t be? Coalescence theory can inform
our choice. In an asexual population without diversity-
preserving forces, the population will periodically “coa-

lesce”, i.e. neutral clades will die out resulting in a new most
recent common ancestor of the current population. If we
take a snapshot of the population at any given point in time
and let the population continue evolving for long enough, a
single individual from the snapshot will eventually be a com-
mon ancestor of the entire extant population. We will refer
to coalescence time here as the amount of time that this pro-
cess takes, although it should be noted that coalescence time
is more commonly thought of retrospectively.

In theory, it would be ideal to choose a value for t that falls
far above the expected distribution for coalescence times. If
we did so, then we could be confident that any individuals
that made it past the filter represented a meaningful part of
the evolutionary history of the population. If only a single
individual makes it through the filter, that individual must be
along the line of descent for the entire population. Multiple
individuals making it through the filter would be evidence of
ecological dynamics promoting their coexistence.

The average coalescence time for a well-mixed asex-
ual population of N individuals under no selective pres-
sure is 2N generations (Fu and Li, 1999). Unfortunately,
the expected distribution of coalescence time is exponential,
meaning that to make guarantees that it is rare to get through
the filter by chance we would have to choose a potentially
impractically large value for t. However, the presence of se-
lective pressure dramatically reduces expected coalescence
time. Since most systems in which people study open-ended
evolution do have selective pressure of some form, in prac-
tice relatively low values of t are still effective filters. Co-
alescence time is best discussed in units of generations, be-
cause generations are the only unit of time that is relevant to
coalescence. Thus, it is challenging to meaningfully com-
pare populations filtered using different values of t (in gen-
erations). We will always expect filters with lower t values
to let more individuals through, and it is challenging to sep-
arate this effect from changes in the underlying dynamics
of the system. This importance of generations is critical to
keep in mind, as many artificial life systems use different
units of time that do not directly correspond to generations.
Researchers using such systems should calculate the average
generation within the population and use it for the purposes
of measuring t.

In evaluating results, we should strive to use consistent
values of t relative to population size and be aware that, all
else being equal, increasing selective pressure will reduce
the number of taxa that get through the filter.

This effect brings up an important distinction between
this filtering technique and the shadow run traditionally used
with evolutionary activity statistics. Whereas shadow runs
filter out the effect of neutral processes, the persistence filter
does not entirely. We view this reduced filtering primarily as
an advantage – drift can be an important part of the evolu-
tionary process – but there may also be situations where it is
undesirable. Our metrics are unable to distinguish between
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class 1 and 2 dynamics or between class 3 and 4b dynamics
(see Table 1), although they are able to distinguish between
useful subcategories within those classes (as discussed in the
Change Metric section below).

All of the MODES metrics assume that some form of fil-
tering has been applied before-hand. Here, we describe the
use of a persistence filter, as that is what we use in our ex-
periments. However, shadow runs are also a viable filter op-
tion, and there are likely further useful filtering techniques
that have not yet been invented.

Identifying meaningful sites in genomes While a
genome may have descendants in t generations, if t is rel-
atively small this persistent genome may not be phenotypi-
cally different from another persistent genome in the popula-
tion. To ensure that we are not separately counting genomes
that differ only in non-coding regions, we use an additional
filter in which we determine which sites in the genome con-
tain information about the environment. In calculating all
of the following metrics, we first reduce the genome to its
informative sites.

This approach can easily be extended to any system in
which the genome is made up of a set of elements that col-
lectively determine fitness. Whether or not a genomic po-
sition is informative can be approximated by measuring the
overall fitness effect of either removing it or changing it to a
null alternative that is known to not contribute information.
A null alternative should be used in cases where changing
the structure of the genome changes the meaning of other
sites. For example, in Avida it is critical that we replace in-
structions with nulls rather than completely removing them
because information can be encoded in the number of in-
structions between two other instructions. A more accurate
technique would be to examine the fitness effect of substi-
tuting all possible alternative elements and calculate the po-
tential entropy at that site. When null substitutions are not
possible, this technique is an effective method. A caveat to
this technique is that genomes that achieve a given result
in an excessively fragile manner may appear more complex
than more robustly built genomes. To mitigate this issue,
the combined fitness effect of eliminating multiple genome
elements at once can be measured.

Note that, although identifying informative sites can be
computationally intensive, we would need to do so anyway
to calculate the complexity metric. As such, this additional
layer of filtering is effectively free.

Determining boundedness In the design of these metrics,
we have primarily focused on determining the effect that
small changes to a system have on the extent to which that
system exhibits hallmarks. However, they can also be used
to classify systems in much the same way that evolutionary
activity statistics do. As described in Table 1, this classifi-
cation requires determining whether diversity is increasing

Figure 2: An illustrative example of how we filter
genomes for persistent lineages. Here, we are using t =
50. At time point A, the purple lineage has proven to be
persistent and therefore the original genome from A-50 will
be considered meaningful. Similarly, the green and blue lin-
eages persist to time point A+50 and so the original green
and blue genomes will be considered meaningful as they ex-
isted at time point A.
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without bound. In addition, it would be informative to de-
termine whether complexity is growing without bound. In
previous work, the definition of boundedness in this context
has been stated in terms of the limit of the suprememum of
diversity as time goes to infinity (Bedau et al., 1998a). While
this is an excellent theoretical definition, taking limits of em-
pirical data as time goes to infinity is generally not practical.
Most previous applications of evolutionary activity statistics
seem to have determined boundedness based on whether or
not a line on a graph appears to be plateauing. This tech-
nique has the potential to be misleading (Wiser et al., view).

Instead, we advocate the use of statistics to determine
what mathematical model best fits the observed data. We
can then classify the pattern as bounded or unbounded based
on the limit of the best-fitting mathematical model. Such
an approach has previously been used to demonstrate that
fitness is following an unbounded growth pattern in a long-
term wet lab evolution experiment with E. coli (Wiser et al.,
2013; Lenski et al., 2015).

MODES Metrics
Change Metric Our first metric focuses on whether the
genetic makeup of the population is changing in a non-trivial
way. This metric will be above zero during adaptive evolu-
tion, including situations where the population is returning
to previous states due to environmental cycling. In this work
presented here, we use a persistence filter (explained above)
to ensure that we mark a genome as new only if its lineage
went on to persist for a full t generations, however a dif-
ferent filtering technique (e.g. a shadow run) could be used
instead. For this comparison, we first find the genomes from
persistent lineages from generation A by determining which
genomes have descendants in generation A + t. In the exam-
ple shown in Figure 2, the genomes at the roots of the green
and blue lineages would count as persistent. We then com-
pare these genomes to those found to have been from persis-
tent lineages in the previous time point (e.g. we would com-
pare the roots of the blue and green lineages to the root of the
purple lineage in Figure 2). In this way, we create a sliding
window to observe change in the population. Note that the
example in the figure assumes the resolution at which data
are collected (i.e. the number of generations between time
points) is equivalent to the value of t, but this does not need
to be the case. It may be desirable to have a very long length
of t but still gather data frequently. In such a case, each time
point is individually filtered by looking ahead t generations,
but change is calculated by comparing the set of persistent
taxa in the current time point to the set of persistent taxa in
the previous time point.

While there is no change metric in the original concep-
tion of evolutionary activity statistics, we expect that it will
provide similar information to cumulative evolutionary ac-
tivity (Bedau et al., 1997). Change must be positive in sys-
tems exhibiting class 3 or higher evolutionary dynamics, as

these systems must all exhibit positive novelty. Class 1 sys-
tems may or may not exhibit change; an evolving system
that stagnates (e.g. many genetic algorithms) would have
zero change, whereas a completely neutral system where all
change was caused by drift would sometimes have a non-
zero amount of change (depending on the value of t). Class
2 systems would have non-zero change if they were cycling
between fixed states, but not if they were purely the result of
stabilizing selection.

Novelty Metric The novelty metric measures how many
genomes have evolved in the population that have never been
seen previously in the experiment. For this metric we again
filter out genomes that do not have descendants in t gen-
erations, enabling us to focus on meaningful novelty. As
with change, we could have used a different filtering tech-
nique instead. To measure novelty, we simply count how
many genomes from persistent lineages have never been in
a previous time points persistent genome pool. It is possible
with this metric for a genome to evolve, but not persist, and
therefore not be recorded in the permanent history, but then
evolve and persist at a later point and be counted as novel.
Once a genome has been counted as novel, however, it is
part of the permanent history and will never be counted in
the novelty metric again. Thus, while a genome could be
delayed in being counted as novel, or not counted if it never
persists, it will not be counted twice. Our novelty metric
is functionally equivalent to Anew in evolutionary activity
statistics (Bedau et al., 1997).

Complexity Metric The complexity metric measures the
maximum complexity (informative sites) of any organism
found in the entire population. We recommend the approach
described in the section on “Identifying meaningful sites in
genomes” above. Once the meaningful sites have been iden-
tified, they can be counted to get a measurement of complex-
ity; the value of the complexity metric at a given time point
is the highest observed count of informative sites across all
taxa in the population that make it through the filter. Further,
complexity can be measured even more accurately by us-
ing information-theoretic techniques where all possible mu-
tations are considered at each site, and ideally some epistatic
interactions.

There is no equivalent to the complexity metric in evolu-
tionary activity statistics. However, as many believe growth
in complexity to be an important hallmark of open-ended
evolution (Taylor et al., 2016), we feel it is a critical addi-
tion. In particular, it would be interesting to find non-trivial
systems that exhibit unbounded growth in complexity. We
suspect that such growth could only occur in systems ex-
hibiting class 4b or 4c evolutionary dynamics, as bounded
evolutionary activity should imply bounded complexity (al-
though the converse is not true).
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Ecological Metric The ecological metric measures the
amount of information in the population as a whole. While
organisms may not contain increasing amounts of informa-
tion in their individual genomes (as measured by the com-
plexity metric), they could still be increasingly diverse and
therefore contain increased information collectively in the
population. Ideally, we would measure this collective infor-
mation by tracking the origin of each piece of information
across all genomes in the population and summing up the
number of unique pieces of information. Unfortunately, this
approach is not computationally practical for many systems.
As a proxy, we can look at the diversity of post-filter geno-
types reduced to informative sites. Complex ecologies in
which multiple subsets of the population are using different
information about the environment to survive are likely to
be characterized by a relatively balanced distribution of in-
dividuals across the various successful phenotypes. Thus,
we use Shannon entropy, a popular metric of diversity that
also measures evenness, to measure the diversity of the per-
sistent genotypes and calculate the ecological metric. This
metric is equivalent to D in evolutionary activity statistics
(Bedau et al., 1997), assuming we chose genotypes reduced
to informative sites as components.

Experimental Systems
We used two radically different experimental systems in or-
der to ensure both that these metrics can be broadly applied
and that they produce meaningfully consistent results.

NK Landscape
To begin a systematic examination of MODES metrics, we
used a simple NK model (Kauffman and Levin, 1987). An
NK model uses two parameters, N and K, to randomly gen-
erate a fitness landscape. N specifies the number of sites in
the genome, each of which is a 0 or a 1. The fitness land-
scape specifies the effect of a given value at a given site on
the fitness of the bit-string organism. This fitness effect de-
pends on the values at the K subsequent adjacent sites. As
such, K tunes the ruggedness of the landscape; low values of
K produce smooth landscapes with few peaks, whereas high
values produce landscapes with many peaks. We chose to
use NK models because they are a well-understood system
for studying general questions about evolutionary dynamics.

Experimental Treatments Our basic treatment used N =
20 (i.e., 20 bits in an individual) and K = 3 (the fitness con-
tribution of each bit was influenced by three other bits). We
used a population size of 200 and a mutation rate of three
sites per birth (three bits were randomized in each birth, so
there is a 1/8 probability of all three retaining their origi-
nal values), with tournament selection and a tournament size
of 15. In addition to this baseline treatment, we performed
eight experimental treatments: High K tests the effect of a
highly rugged landscape (K=10) where fitness is effectively

randomized whenever a mutation occurs. High N tests the
effect of longer bit-string genomes (N=100), allowing for a
higher potential complexity. Low Mut and High Mut test
the effects of more extreme mutation rates (1 bit and 6 bit
randomizations per birth, respectively); we expect the mu-
tation rate to be important for finding new areas of the fit-
ness landscape and thus our novelty metric. Small Pop and
Large Pop vary the population size (to 20 and 1000 respec-
tively); in small populations we expect more drift in the pop-
ulation, allowing more change, while in a large population
we expect stronger selection and consequently that a higher
percentage of changes along the line of descent are benefi-
cial. Finally, we included two special treatments: in Chang-
ing Environments, the fitness function was toggled every
500 generations, allowing us to see the effect of changing
selective pressures where the populations was not able to
stay on a single peak. In Fitness Sharing organisms that
were too similar to each other detracted from each other’s
fitness, creating a pressure to explore multiple portions of
the landscape at the same time and, ideally, maintain a high
diversity (Goldberg and Richardson, 1987).

Avida
The Avida Digital Evolution platform is a popular artifi-
cial life system for studying evolutionary dynamics (Ofria
and Wilke, 2004). Avida consists of a population of self-
replicating digital organisms with circular genomes com-
posed of assembly-code-like instructions. Over the course
of their lifetimes, organisms in Avida execute the code in
their genome. The population is initially seeded with a sin-
gle hand-coded organism that inefficiently copies itself and
does nothing else. Each organism lives in its own cell in a
toroidal grid. When an organism copies itself, its offspring
is placed in a different cell, overwriting any previous occu-
pant of that cell. Thus, there is pressure for individuals to
reproduce quickly, before others copy over them. During
the replication process, mutations are probabilistically in-
troduced. Thus, the system contains inheritance, variation,
and selection, causing evolution by natural selection to oc-
cur. Optionally, “tasks” can be added to the environment
in Avida. These are computational problems that organisms
can perform for a reward in the form of additional CPU cy-
cles that allow organisms to execute their code faster.

Experimental Treatments To understand how MODES
metrics will behave in a full-featured artificial life system,
we tested them in Avida under a variety of scenarios. For
all experiments, we used a well-mixed population in order
to speed up the expected rate of coalescence. All other pa-
rameters in Avida were left at their default values. We ran
experiments in two different environments. The empty en-
vironment has no tasks - all evolution is focused entirely
on optimizing the efficiency with which organisms can self-
replicate. The logic-9 environment, which has been used in
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many prior experiments (e.g. (Lenski et al., 2003a)), con-
tains tasks for all one- and two-input boolean logic func-
tions.

Artificial life systems necessarily have constraints on the
amount of time and memory we can give them. It is impor-
tant in open-ended evolution research to determine whether
these constraints are imposing practical limitations on the
dynamics the system exhibits (Zaman, 2018). To do so, we
ran experiments in each environment at three different pop-
ulation sizes: 500, 1000, and 2000. In each condition, we
ran 30 replicate runs of Avida.

Additionally, to understand how sensitive our metrics are
to the choice of the filter length (t) we conducted some ad-
ditional experiments in the empty environment in which we
varied t. At each of the three population sizes, we tried t
values of 500, 1000, and 2000. To ensure that we always
have data from a filter length larger than population size, we
also included a condition with a population size of 2000 and
a t of 4000.

Implementation Details

If not implemented with care, these metrics can become
computationally intractable in the context of the long exper-
iments that open-ended evolution research often entails. In
particular, RAM requirements can become prohibitive. We
provide a few high-level approaches to mitigating these is-
sues.

The largest memory cost is imposed by the novelty met-
ric’s requirement that we keep track of every taxon that has
ever passed the persistence filter. Because we only need to
know when we encounter a repeat taxon (rather than storing
an archive of all taxa we have encountered), we can dra-
matically reduce this cost by using a Bloom filter (Bloom,
1970). Although this approach does introduce a (tunable)
risk of false negatives (i.e. miss-classifying a novel taxon as
not novel), this risk only makes the metrics more conserva-
tive.

The next largest cost is imposed by needing to keep track
of the phylogeny over time. In addition to standard phylo-
genetic pruning techniques (such as removing all taxa that
do not have extant descendants), we can safely remove all
taxa that died before the current generation minus t3. This
optimization prevents the tree from growing without bound
over the course of the experiment.

Lastly, it is helpful to be aware that increasing t will re-
duce computational demands by increasing the percentage
of taxa that will be filtered out. With these optimizations,

3An important caveat is that this approach will only work with a
strictly increasing unit of time. In many systems (including Avida)
the average generation is not guaranteed to consistently increase.
To support such systems, our implementation of the metrics allows
for time to be tracked using two units at once, one corresponding
to generation, and one that is guaranteed to be strictly increasing.

MODES metrics can be implemented with minimal over-
head.

Code Availability
A C++ implementation of the MODES toolbox is available
as part of the Empirical library (Ofria et al., 2018). The
library is header only, and designed to be as easy to in-
tegrate into existing systems as possible. As a proof of
this concept, the Avida experiments presented in this paper
were carried out using a lightly modified version of Avida
that incorporated this implementation of our metrics (Bryson
et al., 2018). All analyses and statistics for this paper were
conduction used the R Statistical Computing Language (R
Core Team, 2017) and the ggplot2 plotting library (Wick-
ham, 2016). All code used in this paper is open source and
freely available (Dolson, 2018).

Results and Discussion
To ensure that these metrics are capturing the dynamics that
we want them to, we tested them on a range of variants of
our basic NK model and a range of conditions in Avida. The
preliminary results for each metric are presented here.

Change Metric
In the baseline and low mutation rate conditions for the NK
Landscape, change is close to 0 (see Figures 3 and 4), indi-
cating that our metrics are capable of detecting the stagna-
tion typical of many genetic algorithms. As shown in Fig-
ure 3, several environmental changes increase the amount of
meaningful change found in the NK Landscape populations
over time. When organisms are forced to share fitness be-
tween others with the same genotype, the amount of change
increases and remains higher than the baseline over time.
Conversely, when the environment changes frequently, there
is an initial spike of increased change that quickly drops
back down to the baseline value.

The majority of environmental conditions we tested in the
NK Landscape system produced dynamics over time qual-
itatively similar to the baseline treatment. In Figure 4 we
show the amount of meaningful change in populations at the
final time point in more environmental conditions. Larger
genomes (N) lead to increased meaningful change because
they allow for a larger search space that the population can
continuously mutate within, leading to more beneficial mu-
tants. A higher mutation rate leads to increased meaning-
ful change because mutations are necessary to create any
meaningful change in this system. A smaller population size
produces more meaningful change because a small popu-
lation cannot hold as many different genomes at one time
and therefore there are more genomes that can arise that
are different than what is in the previous population. Fi-
nally, fitness sharing produces increased meaningful change
because it creates a constant pressure for the population to
adapt away from whatever is the current dominant genotype.
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Figure 3: Amount of change at over time in varying NK
Landscape environments. As measured by the change met-
ric, fitness sharing increases the amount of change in the
population over time. Conversely, a routinely changing en-
vironment leads to spikes in change that quickly drop as
the population converges again. Shaded region represents
a bootstrapped 95% confidence interval around the mean.

Figure 4: Amount of change at final generation in varying
NK Landscape environments. As measured by the change
metric, environmental conditions that increase the amount
of change at the final time point include: increasing the size
of the genome (N), increasing the mutation rate, decreas-
ing the population size, and implementing fitness sharing.
Shaded region represents a bootstrapped 95% confidence in-
terval around the mean.

Figure 5: Rain-cloud plot of change in Avida at gener-
ation 200,000, across multiple population sizes and fil-
ter lengths. Labels along the top indicate population size.
Black circle and lines indicate mean and bootstrapped 95%
confidence interval. For more information on rain-cloud
plots, see (Allen et al., 2018).

In Avida, there is always at least a little change (see Figure
5. This observation is consistent with previous findings that
fitness in Avida increases indefinitely (Wiser, 2015), as an
increase in fitness implies both change and novelty. Based
on coalescence theory, we would expect change in the empty
environment to usually be less than or equal to one, because
it is a single-niche environment. During every interval, ei-
ther a fitter genotype will arise and sweep the population or
the current fittest genotype will remain dominant. Because
our value of t is not higher than the maximum possible co-
alescence interval, we should also expect to see the occa-
sional time point with change greater than one. Our data are
roughly consistent with this expectation. In addition, there
is a subtle downward trend in the change data, likely due to
the progressively increasing difficulty of finding beneficial
mutations.

As expected, increasing the filter length, t, decreases the
amount of change observed because fewer taxa are able to
get through the filter (see Figure 5). In general, using a value
of t equal to population size seems to be an adequate filter.
The confidence interval for the mean of these conditions al-
ways overlaps with 1, indicating that a substantial amount of
filtering is occurring. Using lower values of t begins to lead
to substantial increases in the variance of observed change.
Using a higher value of t does further reduce noise, but with
diminishing returns. In the empty environment, population
size does not appear to have much impact on change, im-
plying (unsurprisingly) that population size does not exert
pressure on evolutionary dynamics in this environment.

In the logic-9 environment, however, there is a slight in-
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Figure 6: Change over time across different environ-
ments and population sizes in Avida. Note that y axes have
different scales.

crease in change as population size increases, particularly
early in the experiment (see Figure 6). Additionally, change
is generally a little higher in the logic-9 environment than the
empty environment. This distinction is an unexpected ben-
efit of using a value of t too low to guarantee coalescence.
Logic-9 is a single-niche environment, so if we chose a large
enough value of t, we would expect change to always be less
than or equal to 0. However, logic-9 is a more complex en-
vironment than the empty environment, which increases the
odds that multiple lineages will be able to keep evolutionary
pace with other for a substantial amount of time. As such, at
the values of t we used, our change metric is able to reflect
the fact that more is going on in the logic-9 environment than
the empty environment.

While change is a metric often not considered in discus-
sions of open-ended evolution, these results show that the
amount of meaningful change can reflect differences in the
environment and evolution of the populations and is likely
a necessary dynamic for open-ended evolution. Our change
metric responds in intuitive ways to variations in parame-
ter settings, suggesting that it is a reliable indicator of the
dynamics we designed it to capture.

Novelty Metric

As shown in Fig 7, a higher mutation rate increases the
amount of novelty generated by the NK Landscape system.
This result is to be expected, because more mutations make
it easier to cross fitness valleys and otherwise traverse the
fitness landscape. As expected, even at a high mutation rate,
novelty does start to decrease over time as the search space
is explored.

We again found that the majority of treatments had a qual-
itatively similar trajectory over time and therefore in Fig-

Figure 7: Amount of novelty over time in NK Landscape
with varying mutation rate. The novelty metric measures
the number of completely new meaningful genomes that
have lineages that persisted since the previous time point.
As the mutation rate increases, more novelty is continuously
produced. However, at all mutation rates the novelty de-
creases over time. Mutation rate 3 is the baseline treatment
in previous graphs. Shaded region represents a bootstrapped
95% confidence interval around the mean.

ure 8 we show only the final novelty value. As predicted, the
baseline treatment has stopped producing meaningful nov-
elty by the final time point. However, many environments
do allow for continuing production of novelty, specifically
increased epistasis (K), larger genomes (N), higher mutation
rate, differing population size, and fitness sharing. Epis-
tasis increases the value of the novelty metric at the final
generation because the population must explore a rugged
fitness landscape instead of converging to a single fitness
peak, leading to more adaptive novel genomes to discover
throughout evolution. Larger genomes allow for more nov-
elty at the final generation because they increase the size of
the search space and therefore how many genomes can ever
be considered novel. Smaller population sizes increase nov-
elty at the final generation because it takes the population
longer to discover many genomes, leaving enough to still
be novel at the end of the experiment. Conversely, larger
population sizes allow for some increase in novelty over the
baseline treatment because the increased number of organ-
isms makes it easier for more of the search space to be ex-
plored. Finally, fitness sharing increases the final novelty by
creating a selective pressure to explore genotypes that are
not currently common in the population; many of these will
be novel, as novel genotypes are, by definition, not present
in the population.

Like NK Lanscapes, Avida shows gradually declining
novelty over time (although novelty in Avida declines more
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Figure 8: Amount of novelty at final time point in varying
environments. At the final time point, no meaningful nov-
elty is found in our baseline populations. However, increas-
ing the amount of epistasis (K), increasing genome length
(N), increasing mutation rate, decreasing population size,
and enabling fitness sharing increase the amount of novelty
produced in the final time point.

slowly) (Dolson, 2018). This trend presumably reflects the
declining availability of beneficial mutations. Interestingly,
the novelty and change graphs from Avida look almost iden-
tical, implying that there is little cycling among previously
discovered solutions. This result, too, is consistent with
the previously observed indefinite fitness increases in Avida
(Wiser, 2015) - if the population is always getting fitter,
genotypes from earlier in the run would be unlikely to sur-
vive in the present.

These results highlight the power of the novelty metric to
identify environments and populations that have the poten-
tial to be open-ended due to the high number of new geno-
types being consistently discovered. Novelty is likely neces-
sary, but not sufficient, for open-ended evolution because if
nothing new is being produced by a population, neither the
complexity nor the ecological metric can be non-zero.

Complexity Metric
Figure 9 shows the trajectories of the complexity metric over
time in NK Landscape populations with and without fitness
sharing. In our baseline NK treatment, organisms cannot
evolve to be more complex than N. As a result, the com-
plexity increases over time and then saturates. Conversely,
fitness sharing leads to lower complexity because it weakens
the pressure to be at the very top of a fitness peak (where
complexity would be maximized).

Because of the simplicity of NK Landscapes, the com-
plexity metric stabilizes quickly in most of those treatments
and therefore we show only the final time point values for

Figure 9: Amount of complexity over time in the base-
line and fitness sharing NK Landscape conditions. The
baseline treatment (red) is able to reach the top complex-
ity allowed by the model quickly and remain at that value.
When fitness sharing is introduced (blue), the population is
not able to attain the top complexity value. Shaded region
represents a bootstrapped 95% confidence interval around
the mean.

complexity in Figure 10. The baseline treatment was able to
reach the maximum complexity possible for a 20-bit genome
and most of the environments did not decrease in the final
complexity value. When the genome length was increased
to 100 bits, the populations were also able to reach the new
maximum complexity value of 100. However, high mutation
rate, smaller population size, and fitness sharing all some-
what decreased the final complexity achieved on average. A
high mutation rate decreased the final complexity because
it introduced more deleterious mutations and therefore in-
creased the percentage of the population that has just mu-
tated away from the fitness peak at any point in time. A
smaller population size decreased the complexity somewhat
because smaller populations are more susceptible to genetic
drift. As discussed previously, fitness sharing decreased the
overall complexity achieved by the population due to the
weakened selection for climbing fitness peaks when there
are many organisms on that peak.

The NK Landscape results demonstrate that the complex-
ity metric correctly identifies a system that is not able to con-
tinuously produce more complex solutions. Once the maxi-
mum complexity allowed by the genome length is reached,
no higher value is possible.

In Avida, the complexity metric reveals a stark difference
between the empty and logic-9 environments. In the empty
environment, there is a rapid rise in complexity followed by
a decrease and leveling out. This behavior is likely due to
the strong pressure in Avida to become a more efficient self-
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Figure 10: Amount of complexity at final time point
in NK Landscape environments. Most of the treatments
reach the maximum complexity allowed by the genome
length (20 or 100) and cannot continue to increase. High
mutation rate, smaller populations, and fitness sharing de-
crease the final complexity achieved by the populations on
average.

Figure 11: Complexity in Avida over time across different
environments and population sizes. Note that y axes have
different scales.

Figure 12: Amount of ecology at final time point in vary-
ing environments.

replicator by optimizing code. Over time, simpler solutions
are selected for, all else being equal. In the logic-9 environ-
ment, on the other hand, there is an ongoing upward trajec-
tory in complexity. While logic-9 still rewards efficiency, al-
gorithms that can make maximally efficient use of the tasks
are complex. These results are consistent with other mea-
surements of complexity in Avida over time (Adami et al.,
2000).

In the biosphere, complexity appears to be growing with-
out bound (Korb and Dorin, 2011), although there is debate
over the mechanisms behind this process. As such, building
a non-trivial system that exhibits such behavior is a worth-
while goal for open-ended evolution research. Unbounded
growth in complexity is only possible in a system with a
sufficiently complex environment such that there is always
new information to be integrated into the genome.

Ecology Metric

Across both of our systems, the only condition that creates
a multi-niche environment is the fitness sharing condition in
NK Landscapes. Accordingly, that is the only condition in
which we observe ecology greater than 1 Figure 12. Because
fitness sharing specifically rewards organisms with less com-
mon genotypes, it promotes a stably high ecology value over
time. This result demonstrates the trade-off inherent in fit-
ness sharing because it leads to higher ecology at the ex-
pense of lower complexity.

Ecology is an incredibly powerful force in nature, leading
to feedback cycles of ever-increasing diversity. Like com-
plexity, diversity seems to be growing without bound in the
biosphere (Harmon and Harrison, 2015). Thus, it will be im-
portant to see what mechaisms are important to promoting it
in artificial life systems, too.
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Conclusions
We have proposed a suite of metrics that quantify the pres-
ence of four generally-accepted hallmarks of evolution.
These metrics build on prior work on evolutionary activ-
ity statistics and are largely compatible with them. Addi-
tionally, we have proposed techniques for reducing noise in
these statistics. By testing them on two very different well-
understood evolutionary systems, we have demonstrated that
our metrics respond in an intuitive way to the dynamics these
systems exhibit. Thus, these metrics should also be useful
in understanding the extent to which novel systems exhibit
hallmarks of open-ended evolution. Moreover, we can use
them to understand the impact of incremental changes to a
system. By breaking the seemingly monolithic problem of
designing an open-ended evolutionary system into smaller,
measurable pieces, we facilitate improved use of the sci-
entific method. One of the primary goals in building an
open-ended evolutionary system is to understand what com-
ponents are necessary to do so. By looking at the effects
that individual, controlled changes to a system have on this
suite of metrics, we can more effectively work towards these
goals.

Going forward, it will be interesting to see how a wider
variety of artificial life systems respond to the metrics in the
MODES toolbox. In particular, further investigation on the
differences between using a shadow run as a filter and using
the persistence filter described here would be highly worth-
while. Ultimately, these two techniques capture sufficiently
different information that it may be valuable to use each in
turn.

For a long time, the field of open-ended evolution has
been plagued by a lack of data that is comparable between
systems. We believe that the MODES toolbox will help rem-
edy this problem by making generally applicable metrics
easily accessible. As new hallmarks of open-ended evolu-
tion are identified and new techniques of filtering noise out
of populations are developed, we encourage contributions to
the toolbox. By working together as a community of users,
researchers, and developers we can dramatically increase the
rate at which open-ended evolution research progresses.
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