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The appropriate timing of flowering is crucial for the reproductive success of plants. Hence,

intricate genetic networks integrate various environmental and endogenous cues such as

temperature or hormonal statues. These signals integrate into a network of floral pathway

integrator genes. At a quantitative level, it is currently unclear how the impact of genetic

variation in signaling pathways on flowering time is mediated by floral pathway integrator

genes. Here, using datasets available from literature, we connect Arabidopsis thaliana

flowering time in genetic backgrounds varying in upstream signalling components with the

expression levels of floral pathway integrator genes in these genetic backgrounds. Our

modelling results indicate that flowering time depends in a quite linear way on expression

levels of floral pathway integrator genes. This gradual, proportional response of flowering

time to upstream changes enables a gradual adaptation to changing environmental factors

such as temperature and light.
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9 Abstract

10 The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, 

11 intricate genetic networks integrate various environmental and endogenous cues such as 

12 temperature or hormonal statues. These signals integrate into a network of floral pathway 

13 integrator genes. At a quantitative level, it is currently unclear how the impact of genetic 

14 variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. 

15 Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in 

16 genetic backgrounds varying in upstream signalling components with the expression levels of 

17 floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that 

18 flowering time depends in a quite linear way on expression levels of floral pathway integrator 

19 genes. This gradual, proportional response of flowering time to upstream changes enables a 

20 gradual adaptation to changing environmental factors such as temperature and light.

21
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22 Introduction

23 The reproductive success of flowering plants depends on flowering at the right moment. Hence, 

24 plants have evolved genetic and molecular networks integrating various environmental cues with 

25 endogenous signals in order to flower under optimal conditions [1]. The signal transduction 

26 pathways that receive and transmit input signals include the photoperiod pathway, the 

27 vernalization pathway, the ambient temperature pathway, and the autonomous pathway [2]. The 

28 input from these pathways is integrated by a core set of floral pathway integrator genes [3]. The 

29 regulation of flowering time by these various factors has been extensively studied experimentally 

30 in the plant model species Arabidopsis thaliana. Substantial qualitative information is available 

31 about the factors involved and how these interact genetically, both for the signal transduction 

32 pathways and the floral pathway integrator genes [4]. Activation of the photoperiodic flowering 

33 pathway leads to transcriptional activation of FLOWERING LOCUS T (FT), an activator of 

34 flowering. FT is produced in the leaves and moves to the shoot apical meristem  [5], leading to 

35 activation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) [6] and 

36 APETALA1 (AP1) expression [7, 8]. The vernalization (winter cold) pathway inhibits the 

37 transcription of FLOWERING LOCUS C (FLC). FLC, together with SHORT VEGETATIVE 

38 PHASE (SVP), represses the transcription of SOC1 and FT. Thus FLC acts as a flowering 

39 repressor by blocking the photoperiodic flowering pathway. In the ambient temperature pathway, 

40 which involves amongst other FLOWERING LOCUS M (FLM) and SVP, small fluctuations in 

41 temperature influence flowering time via floral pathway integrators including FT and SOC1 [9, 

42 10]. SOC1 integrates signals from multiple pathways and transmits the outcome to LEAFY (LFY) 

43 [11, 12]; SOC1 is supposed to act at least partially via a positive feed-back loop in which 

44 AGAMOUS-LIKE 24 (AGL24) is involved upon dimerizing with SOC1 [13]. Autonomous 

45 pathway mutants are characterized by delayed flowering irrespective of day length. The proteins 
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46 encoded by the genes in the autonomous pathway generally fall into two broad functional 

47 categories: general chromatin remodelling or maintenance factors, and proteins that affect RNA 

48 processing [1]. Gibberellins influence the floral transition through the regulation of SOC1 and 

49 LFY [14]. LFY is a positive regulator of AP1 [15] and the commitment to flower is ascertained 

50 by a direct positive feed-back interaction between AP1 and LFY. Once the expression of AP1 has 

51 been initiated, this transcription factor orchestrates the floral transition by specifying floral 

52 meristem identity and regulating the expression of genes involved in flower development [16].

53 In addition to qualitative information on pathways involved in flowering time regulation, 

54 recently quantitative information has become available. This includes flowering time 

55 measurements under various conditions and in different genetic backgrounds [17, 18], and time 

56 series of expression for key floral pathway integrator genes [18]. Such quantitative information 

57 has enabled construction of a set of models describing flowering time regulation at the molecular 

58 level [18-21]. Given the above-described complexity, computational models are useful tools to 

59 comprehend flowering time regulation. One example of a quantitative finding from our model 

60 [18] for the network of floral pathway integrator genes is that a disturbance in a particular gene 

61 has not necessarily the largest impact on directly connected genes. For example, the model 

62 predicts that SOC1 mutation has a larger impact on AP1, which is not directly regulated by 

63 SOC1, compared to its effect on LFY which is under direct control of SOC1. This prediction was 

64 confirmed by expression data.

65 Flowering time regulation facilitates the successful dispersion of flowering plants over the world 

66 [2] by contributing to the adaptation of plants to different environmental conditions. In this 

67 context, it is an important question how genetic variation in the various signaling pathways 

68 influences flowering time regulation. Can we describe the effect of genetic variation in these 
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69 signaling pathways by linking the magnitude of flowering time change to the magnitude of 

70 expression change of floral pathway integrator genes? If so, what type of relationship exists 

71 between expression levels of floral pathway integrator genes and flowering time in genetic 

72 backgrounds which differ in signaling components? 

73 The above-mentioned quantitative analyses focus on one specific Arabidopsis genetic 

74 background, without genetic difference in signaling pathways being taken into account, leaving 

75 these questions so far unanswered. In principle, one could imagine answering these questions by 

76 extending these models to include a large number of signaling pathway components. However, 

77 construction of such large models would lead to serious complications in terms of e.g. parameter 

78 estimation. Here we follow a different route to investigate how the effect of genetic variation in 

79 components of upstream signalling pathways on flowering time is mediated by floral pathway 

80 integrator genes. We establish a quantitative connection between expression levels of floral 

81 pathway integrator genes, and flowering times in various genetic backgrounds differing in 

82 upstream signal components. This demonstrates that in many cases, floral pathway integrator 

83 genes transmit perturbations to flowering time via gradual, proportional changes in their 

84 expression levels. Our current study is complementary to our previous modelling approach 

85 which focused on the floral pathway integrator gene network, and not on the input to this 

86 network by upstream signalling components. This analysis provides a quantitative understanding 

87 of the effect of variation in the various input pathways on flowering time, which will ultimately 

88 enable us to better understand plant adaptation.
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89 Methods

90 Simulations

91 Predictions from the dynamic flowering time model were obtained using the model as presented 

92 in ref. [18]. This consists of a set of Ordinary Differential Equations (ODEs) for the dynamics of 

93 AP1, LFY, SOC1, FD, FT and AGL24; SVP and FLC are present as external inputs in the model. 

94 In each of the six ODEs, regulation of gene expression is described by one or more terms of the 

95 form ³*f(x), where f is a function of concentrations x of one or more regulators. To simulate the 

96 effect of genetic variation in upstream signalling pathways influencing a given gene, the value of 

97 each parameter ³ in its equation was modified by multiplying it with a factor a ranging from 0.05 

98 to 10 in steps of 0.05 and subsequently from 10 to 100 in steps of 1. The resulting flowering time 

99 after simulating the modified model was obtained, as well as the expression value of the gene 

100 itself at day 10 (this timepoint was used because it matches closely with the timepoint used in 

101 much of the experimental datasets that we used). Out of the resulting expression values, a range 

102 of ten-fold expression change was chosen around the unperturbed expression level at day 10. For 

103 SVP and FLC there is no ODE because these genes are present as external inputs in the model. 

104 For these, variation in upstream signalling pathways was simulated by simply setting the level of 

105 the gene to different fixed levels. For SVP this again involved a range of ten-fold expression 

106 change; for FLC this range was arbitrarily made larger because of the small effect of ten-fold 

107 expression change.

108

109 Experimental data
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110 We use data from a randomly chosen subset of genes for which mutations are described as 

111 impacting flowering time [22]. Our dataset has at least several examples per floral pathway 

112 integrator gene. Data was extracted from figures or tables in papers describing the effect of 

113 mutations of particular genes on flowering time, and presenting the expression level of genes 

114 involved in signal integration. Expression measurements in different experiments are made at 

115 different days and/or different tissues, but such differences are not taken into account. Also, in 

116 particular for FT, often values are provided for several timepoints during one day (to capture the 

117 circadian rhythm). Although in such case in principle it would be best to record the total area 

118 under the curve (sum of expression), for simplicity, the highest observed value was used as 

119 approximation in this case. 

120 To analyse the data, a straight line was fitted through each of the datasets: T=Sensitivity*x+ T0, 

121 where T is flowering time and x is expression level; Sensitivity and T0 are parameters for which 

122 values are obtained in the fit. The R-function lm was used for the linear fit, and cor.test to test the 

123 statistical significance.

124 One important point in our data analysis is that various datasets were obtained using different 

125 ways of normalizing the expression values. Multiplicative normalization should effect Sensitivity 

126 in a multiplicative way: if T=S*x+T0, then for x9=a*x, T=(S/a)*x9+T0, i.e. S9=S/a. Hence, we 

127 can compare the value of Sensitivity for different genes only when the same reference gene is 

128 used for normalization, and no additional relative normalization is used. The parameter T0 should 

129 be independent of the normalization that is used for expression data. It would only depend on the 

130 unit of flowering time. This unit was either total leaf number or rosette leaf number; we did not 

131 observe a systematic difference for data reported in either unit and hence did not discriminate 

132 between these cases in presenting our results.
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133 In addition to separately fitting the various datasets available for a given floral pathway 

134 integrator gene, we also obtained one model for each floral pathway integrator gene in which the 

135 various datasets were fitted simultaneously. This was performed using the R-function nls. In 

136 these models, each dataset obtained its own value of Sensitivity, but only one global value of T0 

137 was used for each floral pathway integrator gene.
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138 Results

139 We aim to obtain a comprehensive picture of how variation in signalling pathways influences 

140 flowering time via affecting floral pathway integrator genes. To do so, we first analysed our 

141 recently published mechanistic model for the floral pathway integrator gene network [18]. This 

142 model describes regulatory interactions between the various integrator genes and is able to 

143 predict the effect of a specific perturbation in one of the genes, on all the other genes in the 

144 network. By assessing how this finally influences AP1 expression, the model predicts flowering 

145 time: flowering is predicted to start when AP1 expression passes a certain threshold. This model 

146 was developed using expression data and flowering time of wild-type Arabidopsis thaliana, as 

147 well as mutants of floral pathway integrator genes. In our current work, we focus on genetic 

148 variation in upstream signalling pathways, which were not used previously for modelling. To 

149 simulate variation in these upstream signalling pathways, parameters describing input to the 

150 floral pathway integrator genes were modified in the model (see Methods). This allowed to 

151 observe the dependency of predicted flowering time on expression levels of floral pathway 

152 integrator genes (Fig. 1). These plots indicate that for each gene, in an expression range of five- 

153 to tenfold around its nominal expression, the response of flowering time to expression change is 

154 approximately linear. To further analyse the response curves obtained from our model (Fig. 1) a 

155 linear model was fitted. The p-value associated with the linear fit is significant (<10-15) for all the 

156 genes over the full range of expression displayed in Fig. 1. The obtained Pearson R2 values for 

157 the linear fits are all above 0.75. 

158 Hence, analysis of our floral pathway integrator gene regulatory network model predicts a 

159 gradual and rather linear dependence of flowering time response on changes in input to the floral 

160 regulatory network. To assess the validity of this prediction, we chose to analyze large amounts 
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161 of datasets available in literature. Numerous studies present measurements of flowering times in 

162 various conditions and for various genetic backgrounds. Since one often knows which floral 

163 pathway integrator gene is relevant for the specific signalling pathway involved, the expression 

164 levels of the specific gene thought to be responsible for mitigating the input from the signal 

165 transduction pathway are measured as well. Although one has to extract most of this data 

166 manually from tables or figures in relevant publications, it is an advantage that large amounts of 

167 data can be analysed in this way. Even though some of the individual datasets are small, in its 

168 totality the data consists of over 200 pairs of measurements of expression level and flowering 

169 time. This data has so far been scattered throughout literature and we demonstrate that it can be 

170 integrated. We use this data as a means to describe in a quantitative way the effect of changes in 

171 genetic background in signalling pathway components on flowering time. We start with a 

172 specific example regarding the floral pathway integrator gene SOC1.

173

174 Introductory example for SOC1

175 SOC1 expression measurements (qPCR) were obtained in different genetic backgrounds (cry2 

176 and fri, affecting the photoperiod pathway and the vernalization pathway, respectively) and 

177 different conditions [23]. For the same conditions, flowering time was also measured [23]. It is 

178 straightforward to combine these two sets of measurements in a quantitative way, although this 

179 has not yet been done so far. As shown in Figure 2A, across the different genetic backgrounds, 

180 there is a quite strong linear dependency of flowering time on the expression level of SOC1 

181 (R2=0.80). It is this dependency that is the focus of investigation of this study, for SOC1 as well 

182 as for floral pathway integrator genes. In our analysis, we focus on the effect of differences in 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2724v1 | CC BY 4.0 Open Access | rec: 13 Jan 2017, publ: 13 Jan 2017



183 genetic backgrounds on each particular gene in the floral pathway integrator gene network. For 

184 that particular gene, expression level measurements might then be explanatory for flowering time 

185 changes. By analysing data as shown in Figure 2A from various publications, we are able to get a 

186 comprehensive quantitative picture how floral pathway integrator gene expression mediates 

187 transmission of environmental and endogenous cues to flowering time. 

188 When integrating and comparing data for different experiments or different genes, one particular 

189 complication is that reported qPCR gene expression levels are normalized in various ways. In 

190 order to be able to combine datasets from different publications, one of the two following 

191 conditions should hold: (1) The same reference gene was used for normalization, and we assume 

192 that the expression level of the reference gene is constant in the different conditions applied in 

193 the various publications. In this scenario, expression levels of different genes in various 

194 publications can be quantitatively compared. Alternatively, (2) the reported expression level was 

195 scaled using wildtype expression levels of the gene of interest. In this case, in order to compare 

196 data from different publications, it is essential that the wildtype expression level that is used is 

197 the same. This seems less likely than the assumption that a reference gene such as actin or 

198 tubulin has a constant gene expression level. In several cases, the two scenarios are combined, in 

199 the sense that qPCR data are first normalized to a reference gene but that the reported expression 

200 level is subsequently scaled to a wildtype expression level.

201 For SOC1, the data analysed above were reported after scaling the expression level to wildtype 

202 SOC1 expression levels. Two additional examples of data for flowering time and SOC1 

203 expression were obtained in which expression levels were normalized relative to a reference 

204 gene [24, 25] (Figure 2B-C). In one of these (Fig. 2B), there was again a clear linear 

205 relationships between the observed SOC1 expression levels and flowering time in various 
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206 backgrounds, with Pearson R2 value of 0.76. In the third one, there was less evidence for a linear 

207 relationship, with Pearson R2 value of 0.46 (p-value 0.3). Remarkably,  it can be observed in 

208 Figure 2 that one of the two parameters in the linear equation is quite similar for each of the three 

209 datasets (78, 98 and 91, respectively). This observation is more generally true, and we will come 

210 back to it in the next section. Note that the fits in Fig. 2B and 2C are less robust than the one in 

211 Fig. 2A, but we discuss below how we can combine multiple datasets for one gene in a 

212 simultaneous fit.

213

214 Dependency of flowering time on floral pathway integrator gene expression levels

215 Datasets reporting gene expression levels for various floral pathway integrator genes in  different 

216 genetic backgrounds, in combination with flowering time values in these genetic backgrounds, 

217 were obtained (Figure 3; Table I). We start by fitting multiple models for each gene (one per 

218 dataset). Because in some cases, the number of data points in a dataset is rather small, we 

219 subsequently fit one model per floral pathway integrator gene (see below).

220 As presented above for SOC1, linear relationships were observed between flowering time and 

221 gene expression levels (SI Figures 1-5; SI Table I). These can be described by the following 

222 equation:

223 T = Sensitivity*ExpressionLevel+T0 (1)

224 Here, T is the observed flowering time, and the coefficients Sensitivity and T0 are specific for 

225 each floral pathway integrator gene. This equation describes how the measured flowering time T 

226 in a given genetic background can be modelled as a linear function of the expression level of a 
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227 floral pathway integrator gene. The parameter Sensitivity describes the slope, in other words, the 

228 sensitivity of flowering time to changes in expression of the flowering time integrator network 

229 gene. Parameter T0 describes the intercept with the line where ExpressionLevel equals zero. 

230 Because, as explained above, expression data can only be directly compared if the same 

231 normalization has been applied, we present values of Sensitivity and T0 for each floral pathway 

232 integrator gene separately for each possible type of normalization (Table II; SI Table I). SI 

233 Figure 6 presents a histogram of the Pearson R2 values obtained with the different models, 

234 indicating that in the large majority of cases the value of R2 is higher than 0.75, meaning that 

235 more than 75% of the variation is explained by a simple linear model. The majority of the linear 

236 models has a significant p-value and this mainly depends on the number of datapoints available; 

237 for the cases with more than 5 datapoints, 9 out of 12 have a p-value below 0.05 (SI Table I).

238 In contrast to Sensitivity, T0 should not depend on normalization applied to the expression data 

239 (see Methods for explanation). Hence, T0 values for the same floral pathway integrator gene 

240 obtained from different datasets should be quite similar. This was indeed observed for the SOC1 

241 datasets presented above. More generally, although there is some variation, the different values 

242 of T0 obtained for a given gene are indeed significantly similar to each other compared to the 

243 values for the other genes (SI Text; SI Fig. 7). For the values of Sensitivity this is not the case, in 

244 line with our expectation.

245 One concern with respect to the analysis so far could be that for some of the datasets, the number 

246 of data points is rather small. We still chose to analyze such datasets initially separately because 

247 the combination of perturbations of various input pathways for the same floral pathway 

248 integrator gene allowed to demonstrate the similarity of T0 values. To further deal with the 

249 concern that some of the datasets are small, we subsequently fitted one final model per floral 
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250 pathway integrator gene. This was done by allowing one T0 value per floral pathway integrator 

251 gene, but a different value of Sensitivity per dataset. In this setup, the number of data points is for 

252 each gene larger than the number of parameters; the number of degrees of freedom ranges from 2  

253 for SVP to 72 for FT, and for all genes except SVP and LFY it is at least 30. Comparing the linear 

254 model predictions with the experimental flowering time values indicates in most cases a clear 

255 correspondence (Fig. 4A; SI Fig. 8). Note that FT has the most deviating behaviour in the sense 

256 that the relationship between experimental and predicted flowering time values is less linear.

257 The values of T0 are ordered as follows: T0,SVP < T0,FLC ~ T0,AGL24 ~ T0,LFY < T0,FT < T0,SOC1. T0 

258 indicates the flowering time predicted by the linear relation in case of zero gene expression, 

259 which should be later for a flowering activator than for a flowering repressor. Hence, one would 

260 expect activators to have higher values than repressors. This is indeed the case. Given that the 

261 values of T0 indicate the expected flowering time when the level of a specific floral pathway 

262 integrator gene is set to zero, the values of T0 can be used to predict the flowering time for 

263 knock-out mutants of each of the floral pathway integrator genes. To validate these predictions, 

264 we compare them with our recently obtained set of flowering times for knock-out mutants [18] 

265 (Fig. 4B). There is a good correspondence between predictions and experimental data, although 

266 FT deviates from this pattern (Pearson R2 including all cases is 0.38 between T0 and flowering 

267 time of knock-out mutants; excluding FT, the value of R2 is 0.96 and the p-value ~0.02). Note 

268 that LFY is not included in this figure because a lfy mutant does not flower properly at all [26]. 

269 The discordant behaviour of LFY cannot be predicted by the simple linear analysis presented 

270 here. We provide an alternative analysis of our flowering time ODE model for prediction of LFY 

271 mutant flowering time in SI Fig. 9. LFY expression was fixed at given levels and the resulting 

272 flowering time predicted by the ODE model was recorded. For values of LFY below ~ 1nM, the 
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273 model predicts that there is no flowering. This behaviour is in accordance with the known 

274 behaviour of the lfy null-mutant which was not used for training the model, providing additional 

275 independent validation for the model.

276 The value of the slope of the fitted line in Figure 4B is much lower than 1. This line relates the 

277 value of T0, our prediction of flowering time, to the observed flowering time in knock-out 

278 mutants. One reason for this small slope could be the fact that knock-out mutants in general will 

279 not have exactly zero expression in planta, leading to a smaller effect on flowering time than 

280 predicted. Nevertheless, the clear relationship between predicted and experimental flowering 

281 time provides independent validation of the simple linear model fits from which the value of T0 

282 was obtained. Note that the flowering time and expression data used to obtain these fits are from 

283 genetic backgrounds in which upstream signal components have been mutated. Hence, the input 

284 data are independent from the floral pathway integrator gene knock-out mutants from which 

285 flowering time data is used in Figure 4 for validation.
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286 Discussion

287 Input from the environment is transduced by signalling pathways and integrated by a small 

288 number of floral pathway integrator genes. The complexity of the signalling pathways and their 

289 connection with the floral pathway integrator genes is overwhelming. Hence, understanding the 

290 effect of genetic variation in signalling pathways on flowering time is a daunting task. Our 

291 analysis indicates that in spite of this complexity, the effect of differences in genetic background 

292 can be quantitatively understood by focussing on expression level changes of floral pathway 

293 integrator genes. Perturbations in upstream signalling pathways effect floral pathway integrator 

294 genes mostly in such a way that the effect on flowering time is linear in the change in gene 

295 expression level.  The fact that a linear response is significant in most cases, and that this 

296 response is observed for different floral pathway integrator genes, suggests that it is an import 

297 aspect of the way in which plants adapt to their local environment. The measured expression 

298 level changes are often up to tenfold or higher (Fig. 2, SI Fig 1-5). Hence, the linearity is 

299 observed over a large range of expression values.

300 Our findings on the role of gene expression variation in transducing the effect of genetic 

301 background variation to flowering time can be compared with more general analyses focusing on 

302 understanding the effect of variation in genetic background on phenotypes. For example, it was 

303 found in C. elegans that the effect of genetic background on the severity of RNAi and mutant 

304 phenotypes could be predicted from variation in the expression level of the affected gene [27]. 

305 Also, it has been observed that genetic variation associated with trait variation is likely to 

306 influence expression variation as well [28], suggesting that this expression variation is 

307 intermediate in establishing the link between change in genotype and change in phenotype. A 

308 recent method estimated genetically regulated gene expression and correlated these estimates 
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309 with phenotype values to identify genes involved in causing the phenotype [29]. In a broad 

310 perspective, our analysis demonstrates the possibility of analysing the dependence of quantitative 

311 traits on expression of key genes involved, which could be applied to a variety of plant traits.

312 Our findings are based on literature data that differ in experimental conditions such as the day or 

313 the timepoint during the day used for measurement. Although this obviously puts limit on the 

314 level of comparability between these data sets, our analysis shows that it is possible to integrate 

315 such data. One particular complicating factor is the fact that qPCR data are reported in a variety 

316 of ways. For one parameter in our model we overcome this problem by  comparing data 

317 normalized in the same way. For the other parameter, this is not needed because it is independent 

318 of normalization. Nevertheless, the use of multiple qPCR reference genes would be of great 

319 value, both for better comparability between studies and also to ensure accuracy of 

320 measurements [30]. 

321 In addition to different ways of reporting expression, also different ways of reporting flowering 

322 time are used. The data we used either reported the total number of leaves, or the number of 

323 rosette leaves. Days to flowering is not often reported but would be a useful addition, in 

324 particular since leaf number and days to flowering are not always congruent [31]. A more 

325 systematic storage of qPCR data and of phenotypic measurements [32] such as flowering time 

326 would clearly also be helpful to enable large scale comparative analyses such as we present.

327 The linear model appeared to be successful, but less so for FT than for other genes: the value of 

328 T0 obtained for FT did not correlate well with the experimental flowering time of an ft mutant 

329 (Fig. 4), and when fitting the various datasets simultaneously for each gene, there was a less 

330 clear linear relationship between predicted and observed expression for FT compared to the other 
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331 genes (SI Fig. 8). This might relate to the fact that in particular for FT, the mRNA levels 

332 measured by qPCR are only a weak proxy for the real amount of active component. This is 

333 because FT protein is transported from leaves to meristem before it may exert its effect on SOC1 

334 and FT. Molecular aspects of this transport are not known in much detail yet, but one could 

335 imagine that there would be some kind of threshold above which not all FT is transported. If this 

336 would be the case, the predicted value of T0 in our analysis would be too low, as is indeed 

337 observed when the predicted values are compared with experimental flowering times for mutants 

338 (Fig. 4). A similar threshold behaviour seems to be present in SI Figure 8 for FT. A more general 

339 scenario in which the response of flowering time to expression level of a particular floral 

340 pathway integrator gene would not necessarily be expected to be linear is if multiple floral 

341 pathway integrator genes are simultaneously effected by upstream changes.  Yet another 

342 complicating factor is the fact that various floral pathway integrator genes regulate each other. 

343 This could lead to correlations in expression levels of various floral pathway integrator genes, 

344 which in turn might influence our analysis. If a gene which is directly influenced by an upstream 

345 pathway regulates another floral pathway integrator gene, both might in principle display a clear 

346 correlation between flowering time response and expression level.

347 In the literature, the quantitative, continuous nature of flowering time and its gradual response to 

348 changing input is often neglected when analysing the effect of variation on flowering time. In 

349 many cases, the measured response of flowering time to perturbations is reported just as leading 

350 to early or late flowering. Only a few studies analyse quantitative relationships between gene 

351 expression levels and flowering time. This includes a study in which AGL24 is shown to be a 

352 dosage-dependent mediator of flowering signals [33]. FLC levels in Arabidopsis accessions are 

353 correlated to flowering times of these accessions [34].  For rice, there is one example of analysis 
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354 of quantitative relationship between expression of an FT ortholog and flowering time [35]. Our 

355 comprehensive quantitative analysis neatly fits with these previous findings and quantifies the 

356 dosage dependence of flowering time for various floral pathway integrator genes. It indicates that 

357 the effect size of genetic variation in input pathways on flowering time can be understood via 

358 expression changes of floral pathway integrator genes. This proportional response of flowering 

359 time to upstream changes enables a gradual adaptation to changing environmental factors such as 

360 temperature and light. The continuous nature of flowering time is therefore an essential aspect of 

361 the potential of plants to adapt to various environments.
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362 Figures

363

364

365

366 Figure 1. Dynamic model predicts linear dependency of flowering time in different genetic 

367 backgrounds on floral pathway integrator gene expression levels. The dynamic Ordinary 

368 Differential Equation (ODE) model for flowering time regulation in ref. [18] was used to 

369 simulate how flowering time (FLT) depends on gene expression level measured at day 10 for (A) 

370 AGL24 (B) SOC1 (C) LFY (D) FT (E) SVP (F) FLC. To mimic genetic variation in upstream 

371 signalling pathways, parameter values in the ODE model were modified as explained in 

372 Methods. Red points indicate the expression level of the gene at day 9-11 in the unperturbed 

373 model. Vertical dotted grey lines indicate five-fold expression range around the expression level 

374 at day 10. For FLC, the five-fold range is small compared to the displayed range and the two 

375 vertical lines fall on top of each other.
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376

377 Figure 2. Dependency of flowering time (vertical axis) on SOC1 expression levels 

378 (horizontal axis) in various genetic backgrounds and various conditions, obtained in three 

379 different studies (A-C). Flowering time is reported in number of leaves; expression is 

380 normalized by scaling to wildtype expression level (A), normalized to actin (B) or normalized to 

381 tubulin (C).
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382

383

384 Figure 3. Overview of data and analysis. Available flowering time measurements and 

385 expression levels of floral pathway integrator genes (right hand side) were obtained from 

386 literature for various genetic backgrounds. The genes from different upstream signalling 

387 pathways which were mutated in these genetic backgrounds are indicated at the left hand side. 

388 We analyse the data by modelling how expression level changes in floral pathway integrator 

389 genes (caused by genetic variation in the upstream signalling pathways) lead to quantitative 

390 changes in flowering time. In a first step, several models were obtained for each of the floral 

391 pathway integrator genes. Subsequently, one final model was obtained for each of these genes.

392
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393

394

395 Figure 4. Comparison between predictions and experimental data. (A) Comparison between 

396 predicted and experimental flowering time for single linear model fitted to various SOC1 

397 datasets. These datasets are the same as the ones used in Fig. 2, but here they are all fitted 

398 simultaneously using different values of Sensitivity but one single value of T0. The number of 

399 degrees of freedom in this fit is 30. (B) Comparison between T0 and flowering time of knock-out 

400 mutants. Based on fits of quantitative relationships between expression levels and flowering 

401 time, T0 predicts flowering time in knock-out mutants for different floral pathway integrator 

402 genes. These predictions show a good relationship with experimentally observed flowering time 

403 for these knock-outs. Each point in this plot represents one particular floral pathway integrator 

404 gene; red outlier point indicates ft.

405

406

407

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2724v1 | CC BY 4.0 Open Access | rec: 13 Jan 2017, publ: 13 Jan 2017



408 Table I. Datasets obtained from literaturea

Gene / 

reference

Mutant genotypes Wildtype 

genotype

Conditionsb Flowering 

time c

SOC1

[23] cry2,  FLC-Sf2, FRI-Sf2, cry2;FLC-Sf2, 

cry2;FRI-Sf2, cry2;FRI-Sf2;FLC-Sf2

Ler, Cvi LD,SD; 25C; 

day 21

TL

[25] gi,35S::GI, 35S::GI;gi Col LD; 22C; day 

15

TL

[24] 35S::AGL24, 35S::SOC1, agl24 Col SD; 22C; day 

21

RL

FT

[36] gi; 35S::GI,lhy,lhy;cca1,  35S::GI;lhy, 

gi;lhy;cca1

Ler SD; 22C; day 

10

TL

[37] agl24, 35S::SVP, svp, soc1 Col,Ler,C24 LD, SD; GA; 

22C; day 11

TL

[5] cry2, cyr2;spa1 Col,RLD LD; day 14 RL

[38] Cdf1,cdf2,cdf3,cdf5 Col LD,SD; day 10 RL

[39] 35S:JMJ18, jmj18, tissue specific JMJ18 Col LD;  22/18C; 

day 11

TL

[25] gi,35S::GI, 35S::GI;gi Col LD; 22C; day 

15

TL

[40] cry2, tissue specific CRY2 Col LD; day 9 RL

[41] elf3; elf3 enhancer and suppressor lines Col,Ler LL; day 14 RL

[42] gi; 35S::gi; tissue specific GI Col LD,SD; 

23/16C; day 

10

TL

[43] gi, spy Col,Ler LD; 22C; day 

14

TL

[44] lwd1;lwd2,lwd1;lwd2/LWD1 Col LD,SD; day 18 RL

FLC

[39] 35S:JMJ18, jmj18, tissue specific JMJ18 Col LD;  22/18C;  TL
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409 a Flowering time and expression data for specific floral pathway integrator genes were obtained from literature. 

410 Table includes data for each floral pathway integrator gene in which genetic background and expression data was 

411 measured. Values obtained from each dataset are presented in Fig. 2 and SI Figures 1-5. Results of fitting these data 

412 using a linear model are shown in Table II and SI Table I.

413 b Experimental conditions: LD indicates long day, SD indicates short day, LL indicates continuous light, GA 

414 indicates gibberellin. Day indicates age of plant for which measurements were taken. If reported, temperature is 

415 indicated as well.

day 11

[23] cry2,  FLC-Sf2, FRI-Sf2, cry2;FLC-Sf2, 

cry2;FRI-Sf2, cry2;FRI-Sf2;FLC-Sf2

Ler, Cvi LD,SD; 25C; 

day 21

TL

[45] nox1, nos1, NO-donor treatment Col LD; 22C; day 

10

RL

[46] prmt10, prmt5 Col LD; day 11 TL

[47] ldl1,ldl2,ldl1/ldl2 Col LD; day 10 TL

[48] ugt87a2 Col LD; 22C; day 

21

RL

SVP

[41] elf3; elf3 enhancer and suppressor lines Col,Ler LL; day 14 RL

[37] ft Col LD; 22C; day 

11

TL

LFY

[45] nox1, nos1 Col LD; 22C; day 

10

RL

[48] ugt87a2 Col LD; 22C; day 

21

RL

AGL24

[33] AGL24-RNAi, 35S-AGL24 Col,Ler LD; 23C; day 

5

RL

[37] agl24-1, 35S::SVP, svp-41, soc1-2 Col,Ler,C24 LD, SD; GA; 

22C; day 11

TL
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416 c Flowering time measurement: RL indicates number of rosette leaves, TL indicates total number of leaves.

417
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418 Table II. Linear dependencies of flowering time on expression levelsa

419

420 a Values for parameters in linear fit T = Sensitivity*ExpressionLevel + T0 for data shown in Fig. 2 and SI Figures 1-

421 5. Normalization method used in the different datasets is indicated (scaled means normalization by scaling with 

422 wildtype or maximum expression value). Different normalization renders values of Sensitivity incomparable, but 

423 should not affect comparisons between values of T0. Reported values are average (standard deviation) in case 

424 multiple datasets are available for the same normalization. Characteristics of individual datasets are reported in 

425 Table I. Values for Sensitivity and T0 in individual datasets are reported in SI Table I.

Gene Normalization (number 

of datasets)

Sensitivity T0

SOC1 scaled (1x) -0.74 78.3

actin (1x) -72 97.5

tubulin (1x) -478.9 90.8

FT scaled (3x) -0.30 (0.06) 38.5 (6.0)

actin (2x) -19.6 (9.95) 45.4 (11.2)

tubulin (1x) -11.5 29.9

IPP2 (4x) -4.0 (1.1) 53.4 (15)

UBQ10 (3x) -363 (451) 45.8 (24.0)

FLC scaled (7x) 5.8 (7.1) 12.7 (5.1)

actin (1x) 81.0 8.1

SVP scaled (1x) 0.29 4

tubulin (1x) 37.2 -12.5

LFY scaled (3x) -5.0 (1.5) 14.6 (2.7)

AGL24 scaled (3x) -1.7 (1.8) 19.6 (2.1)
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