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How o�en do JavaScript programmers embed structured languages

into strings literals? We conduct an empirical investigating mining

nearly 500 thousand JavaScript source files from almost ten thou-

sand repositories from GitHub. We parsed each string literal with

seven separate common grammars, and found the most common

data type that is hidden within the confines of string literals. To

reduce the overuse of strings for structured data types, we present a

static program analyzer that finds embedded languages and warns

the developer, providing an optional fix.
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Abstract
How o�en do JavaScript programmers embed structured languages into strings

literals? We conduct an empirical investigating mining nearly 500 thousand

JavaScript source files from almost ten thousand repositories from GitHub. We

parsed each string literal with seven separate common grammars, and found the

most common data type that is hidden within the confines of string literals. To

reduce the overuse of strings for structured data types, we present a static program

analyzer that finds embedded languages and warns the developer, providing an

optional fix.
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1 function hostname(text) {
2 var matchResult =
3 text.match(/^https?:[/][/]([^/]+)/);
4 return matchResult[1];
5 }
6

7 console.log(hostname(
8 ’https://example.org’
9 ));

Listing 1 Using a regular expression to retrieve structured information from a string.

1. INTRODUCTION
Stringly-typed programming is a colloquial term used to describe:

an implementation that needlessly relies on strings when programmer & refactor

friendly options are available. [1]

Consider the JavaScript program given in Listing 1. A function calledhostname retrieves

the host information from a URL that is passed to the function as a string. hostname uses

a regular expression to partially parse the string, matching the desired content in capturing

group, and returning the result. While such a regular expression is su�cient for many URLs,

it is not appropriate in all cases. This is because URLs adhere to a syntax, which is formally

de�ned by a standard as published by the ietf [2].
1

Thus, when one encounters a URL

embedded within a string literal in source code, one is witnessing a language embedded

within a programming language. The embedding of other languages in source code, without

any explicit means of parsing and handling said string is a symptom of a stringly-typed

implementation.

What’s wrong with writing a stringly-typed implementation? The primary reason is that

the string provides an inappropriate level of abstraction for the structured data contained

within a string. Listing 1 reveals a value that adheres to an underlying URL syntax, yet

the developer opted to use ad hoc mechanisms of extracting structured data from within

the con�nes of the string. Using strings forces developers to resort to low-level string

operations such as indexing, or writing ad hoc regular expressions to parse out just the bit

of structured meaning that the developer needs. However, such low-level operations come

with a number of drawbacks. For example, indexing is notoriously prone to o�-by-one

errors. In the case of programming languages that do not perform bounds checking such

as C, invalid bounds checking can lead to bu�er over�ow exploits that have the capability

of executing arbitrary code written by a malicious user. As Listing 1 shows, the ad hoc

1
URLs are a subset of URIs in a semantic sense. While URIs identify resources, URLs are URIs that can be used to locate a

resource—that is, they provide a means of accessing a resource [2]. Henceforth in this paper, we will be using URIs and URLs

interchangeably.
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regular expression can easily become inadequate if given a di�erent, but valid URL such as

mailto:somebody@example.org.

What would be better is if the language provided �rst-class mechanisms to allow for

embedded languages. For example, the Wyvern language [15] has �rst-class support for

type-speci�c languages that allows the developer to write grammars that parse their own

custom data types in the language. Alas, this is not the case for JavaScript.

This paper seeks to help developers �nd symptoms of stringly-typed code in JavaScript.

We seek to answer the following research questions:

RQ1. How often do we �nd evidence of stringly-typed programming?

RQ2. What types are hiding within string literals?

RQ3. How can we support developers to detect and alleviate stringly-typed code?

With RQ1, we seek to get an understanding of the degree of stringly-typed code in open

source JavaScript projects. We elaborate on this with RQ2, in that we want to characterize

the di�erent languages that developers are embedding within string literals. Finally, with

RQ3, we seek to create a tool that can statically �nd instances of stringly-typed code and o�er

solutions.

2. DATA COLLECTION

Repositories 9,886

.js �les 594,681

Parsed .js �les 494,352

Table 1 Overview of the October 2016 GitHub JavaScript corpus.

To answer RQ1 and RQ2, regarding the frequency of stringly-typed implementations,

we require a corpus to study, In order to determine the frequency of embedded languages

within strings, we mined a corpus JavaScript projects (Table 1. This is the same corpus used

by Santos [18]). This corpus was collected by mining JavaScript repositories from GitHub

in October 2016.
2

Using GitHub’s search API, we queried for the top starred JavaScript

repositories. Since the search API only returns a maximum of 1000 results, after every

1000 repositories, we ran a new query with repositories whose stars were lower than the

lowest-starred repository of the previous batch.

For each of the 9,886 repositories, we downloaded the latest snapshot of its default

branch (usually master), and kept any �les with the .js extension. We computed the

2
Available: https://archive.org/details/javascript-sources-oct2016.sqlite3
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SHA512 hash of each �le, and used it to avoid storing any byte-for-byte duplicates of already

downloaded �les. For each of the byte-for-byte unique 594,681 �les, we used Esprima [6] to

obtain an abstract syntax tree (AST) of the JavaScript source code. Not only does this ensure

that we are studying only syntactically-valid JavaScript �les, but an AST greatly facilitates the

extraction of all string literals and their contexts in the source code. Esprima was not able to

parse 100,329 �les (16.87% of the corpus) according to the ECMAScript 2016 speci�cation [5];

thus, we were left with 494,352 parsed JavaScript source �les. All results that follow in this

paper are based on these parsed JavaScript �les.

3. LANGUAGES

Name Standard Grammar Example

IPv4 [4] RFC 1123 Core PEGjs 127.0.0.1

IPv6 [7] RFC 3513 Core PEGjs 2606:2800:220:1:248:1893:25c8:1946

ISO Date [8] ISO 8601:2004 Core PEGjs 1994-03-19

ISO Datetime [8] ISO 8601:2004 Core PEGjs 1994-03-19T10:00:00+09:00

SemVer [16] Semantic Versioning npm 2.0.0-rc.1

URI [2] RFC 3986 Core PEGjs mailto:nobody@example.org

UUID [10] RFC 4122 Paper’s authors 123e4567-e89b-12d3-a456-426655440000

Table 2 Summary of languages studied. “Grammar” refers to the source of the grammar

we used when parsing string literals.

We chose seven languages to �nd within JavaScript string literals. A summary of these

languages is provided in Table 2. These seven were chosen arbitrarily by the �rst author,

however with the rationale that that these languages may be popular among developers.

Empirically discovering an exhaustive list of the most popular embedded languages is

future work. Four of these languages—URIs, IPv4 addresses, IPv6 addresses, and UUID—

are standards as speci�ed by the Internet Engineering Task Force (ietf). Since JavaScript

is a programming language primarily made for the web, we expected many instances of

these within source code. “ISO date” and “ISO Datetime” are common date/time formats as

speci�ed by ISO 8601 [8]. “SemVer” refers to Semantic Versioning strings which is a guideline

for specifying software version numbers in a way to communicates progress and gives a idea

of backwards-compatibility [16]. The Node.JS community predominantly uses SemVer to

version their software [3].

We used three main grammar sources to parse these languages. With the exception of

SemVer, we used grammars written as parsing expressions grammars given as input to the
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PEG.js parser generator [11]. For IPv4, IPv6, ISO time and date formats, and URIs, we used

grammars provided by the Core PEGjs repository [13]. For UUIDs, the authors wrote a PEG.js

grammar according to the ietf speci�cation [10].
3

SemVer was parsed by the o�cial Node

npm client [19].

4. RESULTS

Min Max Range Median

All strings 1 367,414 367,413 14

Stringly-typed 0 27,097 27,097 0

Table 3 Summary of the number string literals found per �le. We �ltered only �les that

contained at least one string literal.

A summary string literals found per �le is given in Table 3. We found 66,936,913 string

literals in 468,129 �les. Given 494,352 parsed �les in our corpus total, that means that 94.70%

of all �les contained at least one string literal. Of these nearly 67 million string literals, we

found that 1,532,089 were parsed by at least one of our grammars. These stringly-typed literals

were spread over 90,004 �les—19.23% of �les with strings, or 18.21% of all �les. We wanted to

know, of the 90,004 �les that contains at least one stringly-typed literal, what proportion of

that �le is stringly-typed? Figure 1 is a density plot of this data. The density seems to follow

a power-law distribution, where 79,482 or 88.31% of �les are 20% stringly-typed or lower.

RQ1 How often do we �nd evidence of stringly-typed programming? About 18.21% of �les

are stringly-typed. Expect at most 20% of the literals within the �le to be stringly-typed.

For each of the chosen languages (Section 3), we counted how many string literals parsed

against the grammars. The results are ranked, from most common to least common in Table 4.

URIs are the most prevalent embedded language by far. Summing up the rest of the languages

gives 637,589 string literals. Thus, URIs outnumber all other embedded languages combined.

ISO dates are second, followed by ISO datetimes, which is an extension ISO dates.

RQ2 What types are hiding within string literals? URIs are by far the most prevalent type,

followed by ISO date and time formats.
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Figure 1 Density plot showing the percentage of strings in a �le that are stringly-typed.

Rank Syntax Occurrences Histogram

1 URI 894,507

2 ISO Date 410,369

3 ISO Datetime 119,071

4 SemVer 57,679

5 UUID 37,119

6 IPv4 10,197

7 IPv6 3,154

Table 4 Occurrences of each language parsed in the corpus.

5. LINTER PLUGIN
Given the results in Section 4, we were motivated to create a tool that would detect usages

of URIs in string literals. The server-side JavaScript runtime, Node.JS, is distributed with the

3https://github.com/eddieantonio/string-rewriter/blob/cmput620/grammars/
rfc4122-uuid.pegjs
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1 const URL = require(’url-tagged-template’);
2

3 let myBadURL1 = ’http://example.com/index.php?page=1’;
4 let myBadURL2 = String.raw‘http://example.net/#header‘;
5

6 let myGoodURL = URL‘http://example.org‘;
7

8 console.log(myBadURL1.hostname);
9 console.log(myBadURL2.hostname);

10 console.log(myGoodURL.hostname);

Listing 2 A �le with bare and parsed URLs

1 $ eslint index.js
2

3 /Users/eddieantonio/my-project/index.js
4 3:17 warning Unexpected bare URL: http://example.com/index.php?page=1 stringly-

typed/no-bare-url
5 4:27 warning Unexpected bare URL: http://example.net/#header stringly-

typed/no-bare-url

Listing 3 Using eslint-plugin-stringly-typed

url library [14] for parsing and manipulating URLs as standard JavaScript objects rather

than passing around bare string literals. To help developers detect bare URLs and encourage

them to use objects, we wrote an extension for the ESLint JavaScript linter.
4

A linter is a tool that statically analyzes source code for stylistic issues and usage of

deprecated or otherwise discouraged behaviour. ESLint [9] is a linter for JavaScript with

an extensible plugin architectures. ESLint provides several rules that can detect and report

issues and allows for plugin authors to extend ESLint with additional rules. Example rules

include no-extra-semi that forbids extraneous semi-colons in source code; indent,

a customizable rule that enforces the developers preferred amount of indentation (tabs, 2

spaces, 4 spaces, etc.); and eqeqeq which forbids the use of the weakly-typed equality

operator (==).

Our plugin implements one ESLint rule: no-bare-url. Given a �le with string literals

that encode URLs, our rule reports all instances that are not immediately parsed. Listing 3

shows the output of our tool given a JavaScript �le, Listing 2, which contains bare URLs as

well as parsed URLs.

ESLint allows rules to implement automated �xes. We implemented a �xer that simply

pre�xes URL tagged template [17], which automatically parses the given string literal and

4
Available: https://github.com/eddieantonio/eslint-plugin-stringly-typed
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returns a URL object, despite appearing in the source like a string literal. Hence, our ESLint

plugin does not warn when it encounters string literals with the URL tag.

6. FUTURE WORK
One of the drawbacks of our technique for �nding embedded languages was the reliance

of hand-picked languages. As mentioned, this is a threat to construct validity. For future

mining tasks, we would like to use an automated way of �nding embedded languages. That

is, a method that discovers systematic structures present among a small proportion of string

literals in an entire corpus. As a corollary to this, we would like for an analysis that discovers

many more languages than the seven we considered in this paper.

Our ESLint plugin is limited to string literals alone, and considers only the immediate

context of the literal. Instead, an interprocedural data-�ow analysis may be desired to �nd

the ultimate sinks of such string literals, to see how they are ultimately used. For example,

a string containing a URL may be considered safe if it is passed directly to a well-known

API call—for example, to perform an HTTP request. However, if in the process the string

undergoes some low-level string operations, then our tool would provide a warning, and

suggest using a parser instead.

Although the stringly-typed programming is a code smell, to our knowledge, there has

been minimal empirical study on determining whether code that exhibits stringly-typed

programming is more faulty, or perhaps introduces security vulnerabilities. One possible

study is to correlate the degree of stringly-typed programming, as determined in this paper,

with the amount of discovered security vulnerabilities produced by a program analysis tool

such as WALA [20]. Moreover, analyzing the structure of strings statically can unlock new

information for more precise taint analysis of JavaScript programs.

Even better is if the language had �rst-class support for textual literals that are parsed

at compile-time into an appropriate type. The JavaScript community is fond of languages

that “transpile” into JavaScript, including a statically-typed variant called TypeScript [12].

One could extend TypeScript such that it automatically parsed string literals with embedded

structure, and instead of emitting ordinary string literal code, it would emit an object that

contains a parsed representation of the string literal. Then, the type annotations provided in

the language could be used to designate the desire to use a well-de�ned type, such as a URL,

but use the exact same string literal notation as is used today.

7. THREATS TO VALIDITY
Internal The amount of true matches of each grammar may be less than what is reported

in this paper; simply matching a string against a grammar does not capture the programmer’s

intent, hence we may be reporting a number of false positives.
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External Our conclusions may not be safely generalized beyond the scope of open source

JavaScript repositories. There may be a di�erent distribution of stringly-typed literals in

other domains such as closed-source code.

Construct To ensure we were parsing code from non-trivial JavaScript projects, we chose

to take the top starred projects on GitHub. However, these projects skew towards libraries

and frameworks such as jQuery, and Angular.JS. Thus, the corpus we studied may not be

representative of application code. Stars on GitHub is more-or-less a popularity metric.

Thus, with so many eyes on these codebases, stylistic concerns, such as a high-degree of

stringly-typed code, may be less prevalent than in private, application code. We did not �lter

for test �les, so our results may include any string literals found in tests for parsing libraries.

The particular languages we chose in this paper add a huge amount of bias to our

conclusions. We did not consider many possible embedded languages, thus our results may

only report a small fraction of possible stringly-typed code.

8. CONCLUSION
In this paper, we sought to �nd out how prevalent stringly-typed coding is in open source

JavaScript projects. We found that about 18.21% of �les contain at least one string literal than

can be parsed by a common grammar. If a string literal is parsable by any grammar, it is most

likely a URI. Finally, we created eslint-plugin-stringly-typed that detects and

o�ers �xes for instances of bare URIs found in JavaScript source �les.

Stringly-typed code occurs often enough to warrant special attention. One way to imbue

string literals with meaning is creating new programming languages that allow the de�nition

of arbitrary literal types, such as Wyvern [15]. However, we cannot disregard existing

languages such as JavaScript. To help developers �nd suspicious instances of stringly-typed

code, we have provided a simple linting tool.
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