Pattern recognition techniques for the identification of Activities of Daily Living using mobile device accelerometer

Ivan Miguel Pires ^{Corresp., 1, 2, 3}, Nuno M. Garcia ^{Corresp., 1}, Nuno Pombo¹, Francisco Flórez-Revuelta⁴, Susanna Spinsante⁵, Maria Canavarro Teixeira^{6, 7}, Eftim Zdravevski⁸

¹ Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal

² Altranportugal, Lisbon, Portugal

³ ALLab - Assisted Living Computing and Telecommunication Laboratory, Computer Science Department, Universidade da Beira Interior, Covilhã, Portugal

⁴ Department of Computer Technology, Universidad de Alicante, Alicante, Spain

⁵ Università Politecnica delle Marche, Ancona, Italy

⁶ UTC de Recursos Naturais e Desenvolvimento Sustentável, Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal

⁷ CERNAS - Research Centre for Natural Resources, Environment and Society, Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal

⁸ Faculty of Computer Science and Engineering, St. Cyril and Methodius University, Skopje, Macedonia

Corresponding Authors: Ivan Miguel Pires, Nuno M. Garcia Email address: impires@it.ubi.pt, ngarcia@di.ubi.pt

This paper focuses on the recognition of Activities of Daily Living (ADL) applying pattern recognition techniques to the data acquired by the accelerometer available in the mobile devices. The recognition of ADL is composed by several stages, including data acquisition, data processing, and artificial intelligence methods. The artificial intelligence methods used are related to pattern recognition, and this study focuses on the use of Artificial Neural Networks (ANN). The data processing includes data cleaning, and the feature extraction techniques to define the inputs for the ANN. Due to the low processing power and memory of the mobile devices, they should be mainly used to acquire the data, applying an ANN previously trained for the identification of the ADL. The main purpose of this paper is to present a new method based on ANN for the identification of a defined set of ADL with a reliable accuracy. This paper also presents a comparison of different types of ANN in order to choose the type for the implementation of the final model. Results of this research probes that the best accuracies are achieved with Deep Neural Networks (DNN) with an accuracy higher than 80%. The results obtained are similar with other studies, but we compared tree types of ANN in order to discover the best method in order to obtain these results with less memory, verifying that, after the generation of the model, the DNN method, when compared with others, is also the fastest to obtain the results with better accuracy.

Li

Ye

Pattern recognition techniques for the identification of Activities of Daily Living using mobile device accelerometer

- 6 Ivan Miguel Pires^{1,2,3}, Nuno M. Garcia¹, Nuno Pombo¹, Francisco Flórez-Revuelta⁴, Susanna
- 7 Spinsante⁵, Maria Canavarro Teixeira^{6,7} and Eftim Zdravevski⁸
- 8

5

- 9 ¹ Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal
- 10 ² Altranportugal, Lisbon, Portugal
- 11 ³ ALLab Assisted Living Computing and Telecommunications Laboratory,
- 12 Computer Science Department, Universidade da Beira Interior, Covilhã, Portugal
- 13 ⁴ Department of Computer Technology, Universidad de Alicante, Spain
- 14 ⁵ Department of Information Engineering, Marche Polytechnic University, Ancona, Italy
- 15 ⁶UTC de Recursos Naturais e Desenvolvimento Sustentável, Polytechnique Institute of Castelo
- 16 Branco, Castelo Branco, Portugal
- 17 ⁷ CERNAS Research Centre for Natural Resources, Environment and Society, Polytechnique
- 18 Institute of Castelo Branco, Castelo Branco, Portugal
- 19 ⁸Faculty of Computer Science and Engineering, University Ss Cyril and Methodius,
- 20 Skopje, Macedonia
- 21
- 22
- 23 Corresponding Author:
- 24 Ivan Miguel Pires
- 25 Computer Science Department,
- 26 Universidade da Beira Interior,
- 27 Rua Marquês d'Ávila e Bolama
- 28 6201-001 Covilhã, Portugal
- 29 Email address: impires@it.ubi.pt
- 30

31 ABSTRACT

- This paper focuses on the recognition of Activities of Daily Living (ADL) applying pattern recognition techniques to the data acquired by the accelerometer available in the mobile devices.
- 34 The recognition of ADL is composed by several stages, including data acquisition, data processing,
- 35 and artificial intelligence methods. The artificial intelligence methods used are related to pattern
- 36 recognition, and this study focuses on the use of Artificial Neural Networks (ANN). The data
- 37 processing includes data cleaning, and the feature extraction techniques to define the inputs for the
- 38 ANN. Due to the low processing power and memory of the mobile devices, they should be mainly

39 used to acquire the data, applying an ANN previously trained for the identification of the ADL.

40 The main purpose of this paper is to present a new method based on ANN for the identification of

41 a defined set of ADL with a reliable accuracy. This paper also presents a comparison of different

42 types of ANN in order to choose the type for the implementation of the final model. Results of this

43 research probes that the best accuracies are achieved with Deep Neural Networks (DNN) with an

44 accuracy higher than 80%. The results obtained are similar with other studies, but we compared

45 tree types of ANN in order to discover the best method in order to obtain these results with less

46 memory, verifying that, after the generation of the model, the DNN method, when compared with47 others, is also the fastest to obtain the results with better accuracy.

48

49 INTRODUCTION

An accelerometer is a sensor commonly available in off-the-shelf mobile devices (Salazar, Lacerda et al. 2013) that measures the acceleration of the movement of the mobile device, allowing the creation of a method for the recognition of Activities of Daily Living (ADL) (Foti and Koketsu 2013). After the development of a method for the identification of ADL, it could be integrated in the creation of a personal digital life coach (Garcia 2016), important for the monitoring of elderly persons, and persons with some type of impairment, or for the training of the lifestyle.

The methods related to the recognition of the ADL with accelerometer may be used for the 56 recognition of the daily activities with movement, including running, walking, walking on stairs, 57 and standing. Following the previous research studies (Pires, Garcia et al. 2015, Pires, Garcia et 58 59 al. 2016, Pires, Garcia et al. 2016), the recognition of the ADL is composed by several steps, such as data acquisition, data processing, composed of data cleaning, data imputation, and feature 60 61 extraction, data fusion, and artificial intelligence methods for concrete identification of the ADL. However, this study only uses the accelerometer sensor, removing some steps of the proposed 62 63 architecture. Based on the assumption that the sensor was always acquiring the data, the final steps 64 used are the data acquisition, the data cleaning, and the application of the artificial intelligence methods. 65

66 During the last years, the recognition of ADL has been studied by several authors (Akhoundi and Valavi 2010, Banos, Damas et al. 2012, Dernbach, Das et al. 2012, Paul and George 2015, 67 Hsu, Chen et al. 2016, Shen, Chen et al. 2016), where Artificial Neural Networks (ANN) are 68 widely used (Wang 1993, Dova and Wang 2015). This paper proposes the creation of a method 69 for the recognition of ADL using the accelerometer, comparing three types of ANN, such as 70 71 Multilayer Perception (MLP) with Backpropagation, Feedforward Neural Network (FNN) with 72 Backpropagation, and Deep Neural Network (DNN), in order to verify the method that achieves 73 the best accuracy in the recognition of running, walking, going upstairs, going downstairs, and 74 standing. The ADL were selected based on the literature review, where the different studies analysed and reported reliable results for these activities. The main contribution of this study is the 75 76 comparison of three different architectures of ANN methods in order to achieve the best results in 77 the recognition of the considered ADL. The datasets used are composed with the raw accelerometer data acquired by individuals aged between 16 and 60 years old and with distinct 78

79 lifestyles, performing their activities with a mobile device in the front pocket of the pants for the

80 acquisition of the different data from the sensors available. For the implementation of these types

81 of ANN are used several datasets with different sets of features, identifying the best features to

increase the accuracy of the recognition, and three Java libraries are used for the implementationof the different methods, such as Neuroph (Neuroph 2017), Encog (Research 2017), and

84 DeepLearning4j (Chris Nicholson 2017), reporting the best average accuracy with DNN method.

The remaining sections of this paper are organized as follows: Section 2 presents a brief literature review related to the identification of ADL using accelerometer. Section 3 presents the methodology used for the creation of a solution for the recognition of the ADL using the accelerometer sensor. Section 4 presents the results obtained during the research presented. In section 5, the discussion and conclusions about the results are presented.

90

91 2. RELATED WORK

92

93 The identification of the Activities of Daily Living (ADL) (Foti and Koketsu 2013) may be performed with several classification methods using the data acquired from the accelerometer 94 sensor available in the off-the-shelf mobile devices. To data, based on the studies available in the 95 96 IEEE Xplore library, presented in the Table 1, which only uses the accelerometer data for the recognition of several ADL, there are verified that the different authors recognized between 1 and 97 7 ADL, where the most used methods with best accuracy are the different types of Artificial Neural 98 Networks (ANN), including MLP and DNN methods, reporting reliable results with statistic 99 features (*i.e.*, mean, standard deviation, maximum, minimum, median, and others). 100

With the studies presented in the Table 1, we can verify that the most recognized ADL are
the walking, standing, going up stairs going down stairs, sitting, running and jogging, reporting an
average of accuracies between 83.97% and 89.21% with the different methods used (see Table 2).

Regarding the ADL recognized in the analysed studies, the Table 3 shows the distribution of the different features used, verifying that the mean, minimum, maximum, standard deviation, correlation, median, FFT spectral energy, and variance are the most used features, with more relevance for mean and standard deviation.

The distribution of the classification methods used in the studies analyzed is presented in the Table 4, verifying that the methods that reports better accuracy than others are ANN methods, decision tree methods, KNN methods and their variants, and the Random Forest method, reporting and average accuracy between 90.39% and 92.84%.

In conclusion, the accuracies reported depends on the number of ADL recognized with the different methods used, as well as the particular dataset, where the best accuracies reported were achieved in studies that recognized few ADL. Therefore, our study is focused on the recognition of 5 ADL, including standing, walking, running, going up stairs and going down stairs, implementing different types of ANN, because these are ones of the most recognized ADL and methods that reported better accuracies in their recognition.

120 **3. METHODS**

121

122 Following the previous research studies analyzed in the section 2, and based on the proposed architecture of a framework for the recognition of ADL in (Pires, Garcia et al. 2015, Pires, Garcia 123 et al. 2016, Pires, Garcia et al. 2016), the methods that should be defined for each module of the 124 125 framework, are: data acquisition, data processing, data fusion, and artificial intelligence. The data processing methods proposed include the data cleaning, data imputation, and feature extraction 126 127 methods. However, this study assumes that the data acquired from the accelerometer is always 128 complete, therefore not considering the use of the data imputation methods in this study. Due to 129 the fact that this study only uses the accelerometer available in off-the-shelf mobile devices, the data fusion methods are not necessary. As for data cleansing, because the mobile application was 130 developed by us, it already collected properly aligned data which is already clean. 131

Firstly, the data acquisition method for the architecture implemented is presented in the section 3.1. Secondly, in the presentation of the data processing methods, in section 3.2, the solution is forked in data cleaning (section 3.2.1), and feature extraction methods (section 3.2.2). Finally, the implementation of artificial intelligence methods is detailed in the section 3.3.

136

137 3.1 Data Acquisition

138

The data acquisition process was performed with a mobile application developed for Android 139 platform (Bojinov, Michalevsky et al. 2014, Katevas, Haddadi et al. 2016) with a BQ Aquaris 140 device (Bq.com 2017), where the values of the accelerometer data are received every 10ms, but 141 142 the frequency of the capture may varies based on the processing capabilities available at the moment. The mobile application acquires 5 seconds of accelerometer data every 5 minutes. The 143 captures where performed with the mobile device in the front pocket of the user's pants. For the 144 145 definition of the experiments, 25 individuals aged between 16 and 60 years old were selected. The 146 individuals selected had distinct lifestyles, where 10 individuals are active and the remaining 15 individuals are mainly sedentary. During the data acquisition, the ADL captured were running, 147 walking, going upstairs, going downstairs, and standing, because these ADL are included in the 148 most recognized ADL with the best reported accuracies in the previous studies. The data acquired 149 was saved in text files, and it has 2000 captures of 5 seconds for each ADL. The mobile application 150 151 allows the user to select the ADL performed, for further processing. The data acquired is available 152 in the ALLab MediaWiki (ALLab 2017).

153

154 3.2 Data Processing

155

After the data acquisition, the data processing is performed with data cleaning and feature extraction methods. The first stage of the data processing is data cleaning, where the data is filtered, removing the noise. The filter used in the mobile application for the data acquired from

Peer Preprints

159

on the literature, it reports better results than other methods (Graizer 2012). After the application 160 of the low-pass filter, the noise will be removed, allowing the correct extraction of the features. 161 Based on the related work presented in the section 2, a set of features was extracted from the 162 163 filtered data with lightweight methods, where the considered features are the 5 greatest distances between the maximum peaks, the Mean, Standard Deviation, Variance of the maximum peaks and 164 Median of the maximum peaks, and the Standard Deviation, Mean, Maximum, Minimum, 165 Variance and Median of the raw signal. 166 167 3.3 Artificial Intelligence 168 169 170 After the extraction of the features, five datasets of features have been created with 2000 records for each ADL, these are: 171 172 • **Dataset 1:** Composed by the 5 greatest distances between the maximum peaks, the 173 mean, standard deviation, variance and median of the maximum peaks, and the 174 standard deviation, mean, maximum, minimum, variance and median of the raw 175 signal; • **Dataset 2:** Composed by the mean, standard deviation, variance and median of the 176 maximum peaks, and the standard deviation, mean, maximum, minimum, variance and 177 178 median of the raw signal; Dataset 3: Composed by the standard deviation, mean, maximum, minimum, variance 179 • and median of the raw signal; 180 181 • **Dataset 4:** Composed by the standard deviation, mean, variance and median of the 182 raw signal; • **Dataset 5:** Composed by the standard deviation and mean of the raw signal. 183 184 The goal of creating these 5 different datasets is to identify the best features for the recognition of ADL, which achieves better results than others, because in the literature different 185 sets of features have been used. 186 Following the previous studies presented in the section 2 and shown in Table 3, the method 187 188 selected for the implementation of the framework for the recognition of ADL, based on the accelerometer of the mobile device are the different types of ANN, because the ANN and DNN 189 methods reports highest accuracies than the other analyzed studies. 190 After the creation of the datasets, three types of ANN were applied for the verification of the 191 192 best type of ANN for the recognition of ADL, these are: • MLP method with Backpropagation, applied with Neuroph framework (Neuroph 2017); 193 194 • FNN method with Backpropagation, applied with Encog framework (Research 2017); DNN method, applied with DeepLearning4j framework (Chris Nicholson 2017). 195 There are different configurations of the neural networks implemented that are presented in 196 the Table 5, and the Sigmoid as activation function and backpropagation parameters are 197 implemented in all neural networks. 198

accelerometer is the low-pass filter, because this method allows the cleaning of the data, and, based

The MLP with Backpropagation was applied to each dataset in two variants, these are the application with dataset without normalization, and the application with the dataset with the application of a MIN/MAX normalizer (Jain, Nandakumar et al. 2005).

The FNN with Backpropagation was applied to each dataset in two variants, these are the application in a dataset without normalization, and the application in a the dataset with the application of a MIN/MAX normalizer (Jain, Nandakumar et al. 2005).

The DNN was applied to each dataset in two variants, these are the application in a dataset with the L_2 regularization (Ng 2004), and the application in a dataset with the L_2 regularization and normalized with mean and standard deviation (Ng 2004, Brocca, Melone et al. 2010).

For the application of these neural networks, three maximum numbers (*i.e.*, 10^6 , $2x10^6$, and $4x10^6$) of training iterations have been defined for the identification of the correct number of iterations for the training stage of the neural network.

Finally, the best ANN method should be implemented in the framework for the recognition of ADL using the mobile devices' accelerometer.

- 214 **4. RESULTS**
- 215

213

216 The three types of neural networks, proposed in the previous section, were implemented with the three different frameworks and a training dataset with a total of 10000 records. After the 217 creation of the neural network with Neuroph framework as MLP with Backpropagation, the neural 218 network was tested, and the results obtained are presented in the figure 1. In general, the results 219 obtained with the trained neural networks with 10^6 , $2x10^6$, and $4x10^6$ iterations, and different sets 220 of features have very low accuracy (between 20% and 40%) with data without normalization, 221 222 presented in figure 1-a, and very low accuracy (between 20% and 30%) with normalized data, presented in figure 1-b. 223

224 After the test of the MLP with Backpropagation, the FNN with Backpropagation was created 225 with Encog framework, obtaining the results presented in the figure 2. In general, the results 226 obtained with the trained neural networks with 10^6 , $2x10^6$, and $4x10^6$ iterations, and different sets of features have very low accuracy (between 20% and 40%) with data without normalization, 227 presented in figure 2-a, where, as exceptions, the neural networks trained with the dataset 3 with 228 $2x10^6$ iterations obtains an accuracy around 50%, and with the dataset 5 with $4x10^6$ iterations 229 obtains an accuracy around 75%. On the other hand, when the data is normalized, the results 230 231 presented in figure 2-b, shows that the reduction of the number of the features in the datasets increases the accuracy of the neural network. 232

After the verification that results obtained with MLP with Backpropagation, and FNN are not satisfactory, the DNN method was implemented with DeepLearning4j framework, obtaining the results presented in the Figure 3. In general, the results obtained with the trained neural networks with 10^6 , $2x10^6$, and $4x10^6$ iterations, and the different sets of features have an accuracy higher than 70%, but, with data without normalization (Figure 3-a), the results obtained with the datasets 1 and 2 are above the expectations with an accuracy lower than 40%, and, with the normalized data (figure 3-b), the results obtained are higher with dataset 1, decreasing with thereduction of the number of features in the dataset.

The maximum accuracies obtained with the MLP with Backpropagation, FNN with Backpropagation, and DNN methods are shown in the Table 6, concluding that the results obtained by MLP with Backpropagation and FNN with Backpropagation are not satisfactory, obtaining best accuracies with the DNN method.

In conclusion, the type of neural networks that should be used in the framework for the identification of ADL is the DNN method with all features extracted from the accelerometer data (dataset 1), normalizing the data with mean and standard deviation method and applying the L_2 regularization method, because, based on the tests performed with the acquired data, the results obtained are constantly higher than the reported other methods, showing the results with *precision* value of 86.21%, a *recall* value of 85.89% and a *F1 score* value of 86.05%.

251

252 5. DISCUSSION

253

The comparison between MLP with Backpropagation, applied with Neuroph framework (Neuroph 2017), FNN with Backpropagation, applied with Encog framework (Research 2017), and DNN method, applied with DeepLearning4j framework (Chris Nicholson 2017), reports that the use of DNN method increases the accuracy of the recognition of the ADL. The datasets used in the neural networks were composed by 10000 records, *i.e.*, 2000 records for each ADL. The best results are obtained with DNN method with L_2 regularization and normalized data.

The low accuracies verified with MLP with Backpropagation, and FNN with Backpropagation are related to the fact of the neural networks created are overfitting, and the possible solutions are the acquisition of more data, the stopping of the training when the network error increases for several iterations, the application of dropout regularization, the application of L₂ regularization, the application of the batch normalization, or the reduction of the number of features in the neural network.

The number of the maximum iterations may influence the training of the neural network, and, in some cases, it also increases the accuracy of the neural network, but the influence if the number of iterations are not substantial.

Although the accuracy obtained in this study with DNN method is lower than the accuracy reported in (Zhang, Wu et al. 2015), this is probably due to the fact that the number of ADL recognized, the number of records for each ADL, and the features extracted are different in our study. We expect that in similar conditions of (Zhang, Wu et al. 2015) we obtain the same or better results. Nevertheless, this will be impossible to test as authors in (Zhang, Wu et al. 2015) did not make their data publicly available.

- 275
- 276
- 277
- 278

279 6. CONCLUSIONS

280

This paper presents a method for the identification of several ADL, including running, walking, going upstairs, going downstairs, and standing, comparing the results obtained with different types of neural networks. The development of the method presented in this paper was based in (Pires, Garcia et al. 2015, Pires, Garcia et al. 2016, Pires, Garcia et al. 2016), including only the data acquisition, data processing with data cleaning and feature extraction, and artificial intelligence methods, requiring low processing for the correct implementation in the mobile devices.

288 In conclusion, the method implemented in the framework for the recognition of the ADL using only the accelerometer sensor available in off-the-shelf mobile devices should be based in 289 DNN method, applied with DeepLearning4j framework (Chris Nicholson 2017), because it 290 achieves an accuracy above 80% with a neural network trained with all features proposed in this 291 study, these are the 5 greatest distances between the maximum peaks, the mean, standard deviation, 292 variance and median of the maximum peaks, the standard deviation, mean, maximum value, 293 minimum value, variance and median of the raw signal. This research proves the reliability of the 294 use of ANN for the identification of the ADL using the accelerometer. 295

296

297 ACKNOWLEDGEMENTS

This work was supported by FCT project UID/EEA/50008/2013 (*Este trabalho foi suportado pelo projecto FCT UID/EEA/50008/2013*).

The authors would also like to acknowledge the contribution of the COST Action IC1303 –
 AAPELE – Architectures, Algorithms and Protocols for Enhanced Living Environments.

302

303 **REFERENCES**

- Aguiar, B., J. Silva, T. Rocha, S. Carneiro and I. Sousa (2014). "Monitoring Physical Activity
 and Energy Expenditure with Smartphones." <u>2014 Ieee-Embs International Conference on</u>
 Biomedical and Health Informatics (Bhi): 664-667.
- Akhoundi, M. A. A. and E. Valavi (2010). "Multi-Sensor Fuzzy Data Fusion Using Sensors with
 Different Characteristics." <u>arXiv preprint arXiv:1010.6096</u>.
- ALLab. (2017). "August 2017- Multi-sensor data fusion in mobile devices for the identification
 of activities of daily living ALLab Signals." Retrieved September 2nd, 2017, from
- 311 <u>https://allab.di.ubi.pt/mediawiki/index.php/August_2017-_Multi-</u>
- 312 sensor_data_fusion_in_mobile_devices_for_the_identification_of_activities_of_daily_livin
 313 g.
- Anjum, A. and M. U. Ilyas (2013). "Activity Recognition Using Smartphone Sensors." <u>2013 Ieee</u>
 <u>Consumer Communications and Networking Conference (Cenc)</u>: 914-919.
- 316 Bai, L., C. Efstratiou and C. S. Ang (2016). "weSport: Utilising Wrist-Band Sensing to Detect
- 317 Player Activities in Basketball Games." <u>2016 Ieee International Conference on Pervasive</u>
- 318 <u>Computing and Communication Workshops (Percom Workshops)</u>: 1-6.

Peer Preprints

319 320	Bajpai, A., V. Jilla, V. N. Tiwari, S. M. Venkatesan and R. Narayanan (2015). "Quantifiable fitness tracking using wearable devices." <u>Conf Proc IEEE Eng Med Biol Soc</u> 2015: 1633-
321	1637.
322	Banos, O., M. Damas, H. Pomares and I. Rojas (2012). "On the use of sensor fusion to reduce
323	the impact of rotational and additive noise in human activity recognition." Sensors (Basel)
324	12 (6): 8039-8054.
325	Bayat, A., M. Pomplun and D. A. Tran (2014). "A Study on Human Activity Recognition Using
326	Accelerometer Data from Smartphones." 9th International Conference on Future Networks
327	and Communications (Fnc'14) / the 11th International Conference on Mobile Systems and
328	Pervasive Computing (Mobispc'14) / Affiliated Workshops 34: 450-457.
329	Bojinov, H., Y. Michalevsky, G. Nakibly and D. Boneh (2014). "Mobile device identification via
330	sensor fingerprinting." arXiv preprint arXiv:1408.1416.
331	Bq.com. (2017). "Smartphones BQ Aquaris BQ Portugal." Retrieved 2 Sep. 2017, from
332	https://www.bq.com/pt/smartphones.
333	Brocca, L., F. Melone, T. Moramarco, W. Wagner, V. Naeimi, Z. Bartalis and S. Hasenauer
334	(2010). "Improving runoff prediction through the assimilation of the ASCAT soil moisture
335	product." Hydrology and Earth System Sciences 14(10): 1881-1893.
336	Bujari, A., B. Licar and C. E. Palazzi (2012). "Movement Pattern Recognition through
337	Smartphone's Accelerometer." 2012 Ieee Consumer Communications and Networking
338	Conference (Ccnc): 502-506.
339	Cardoso, N., J. Madureira and N. Pereira (2016). "Smartphone-based Transport Mode Detection
340	for Elderly Care." 2016 Ieee 18th International Conference on E-Health Networking,
341	Applications and Services (Healthcom): 261-266.
342	Chris Nicholson, A. (2017). "Deeplearning4j: Open-source, Distributed Deep Learning for the
343	JVM." Retrieved 2 Sep. 2017, from <u>https://deeplearning4j.org/</u> .
344	Dangu Elu Beily, M., M. D. Badjowawo, D. O. Bekak and S. Dana (2016). <u>A sensor based on</u>
345	recognition activities using smartphone. 2016 International Seminar on Intelligent
346	Technology and Its Applications (ISITIA), Lombok, Indonesia, IEEE.
347	Dernbach, S., B. Das, N. C. Krishnan, B. L. Thomas and D. J. Cook (2012). Simple and
348	Complex Activity Recognition through Smart Phones. 2012 8th International Conference
349	on Intelligent Environments (IE), Guanajuato, Mexico, IEEE.
350	Doya, K. and D. Wang (2015). "Exciting Time for Neural Networks." <u>Neural Networks</u> 61: xv-
351	xvi.
352	Duarte, F., A. Lourenco and A. Abrantes (2013). Activity classification using a smartphone. e-
353	Health Networking, Applications & Services (Healthcom), 2013 IEEE 15th International
354	Conference on, Lisbon, Portugal, IEEE.
355	Fahim, M., S. Lee and Y. Yoon (2014). "SUPAR: Smartphone as a ubiquitous physical activity
356	recognizer for u-healthcare services." Conf Proc IEEE Eng Med Biol Soc 2014: 3666-
357	3669.

Peer Preprints

358	Fan, L., Z. M. Wang and H. Wang (2013). "Human activity recognition model based on Decision						
359	tree." 2013 International Conference on Advanced Cloud and Big Data (Cbd): 64-68.						
360	Foti, D. and J. S. Koketsu (2013). "Activities of daily living." Pedretti's Occupational Therapy:						
361	Practical Skills for Physical Dysfunction 7: 157-232.						
362	Garcia, N. M. (2016). A Roadmap to the Design of a Personal Digital Life Coach. ICT						
363	Innovations 2015, Springer.						
364	Graizer, V. (2012). Effect of low-pass filtering and re-sampling on spectral and peak ground						
365	acceleration in strong-motion records. Proc. 15th World Conference of Earthquake						
366	Engineering, Lisbon, Portugal.						
367	Guo, H., L. Chen, G. Chen and M. Lv (2015). An Interpretable Orientation and Placement						
368	Invariant Approach for Smartphone Based Activity Recognition. Ubiquitous Intelligence						
369	and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and						
370	2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated						
371	Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on, Beijing, China, IEEE.						
372	Hsu, YW., KH. Chen, JJ. Yang and FS. Jaw (2016). Smartphone-based fall detection						
373	algorithm using feature extraction. 2016 9th International Congress on Image and Signal						
374	Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, IEEE.						
375	Jain, A., K. Nandakumar and A. Ross (2005). "Score normalization in multimodal biometric						
376	systems." <u>Pattern Recognition</u> 38 (12): 2270-2285.						
377	Katevas, K., H. Haddadi and L. Tokarchuk (2016). Sensingkit: Evaluating the sensor power						
378	consumption in ios devices. Intelligent Environments (IE), 2016 12th International						
379	Conference on, IEEE.						
380	Khalifa, S., M. Hassan and A. Seneviratne (2014). Feature selection for floor-changing activity						
381	recognition in multi-floor pedestrian navigation. Mobile Computing and Ubiquitous						
382	Networking (ICMU), 2014 Seventh International Conference on, Singapore, Singapore,						
383	IEEE.						
384	Kim, Y. J., B. N. Kang and D. Kim (2015). "Hidden Markov Model Ensemble for Activity						
385	Recognition using Tri-axis Accelerometer." 2015 Ieee International Conference on						
386	Systems, Man, and Cybernetics (Smc 2015): Big Data Analytics for Human-Centric						
387	<u>Systems</u> : 3036-3041.						
388	Kumar, A. and S. Gupta (2015). "Human Activity Recognition through Smartphone's Tri-Axial						
389	Accelerometer using Time Domain Wave Analysis and Machine Learning." International						
390	Journal of Computer Applications 127(18): 22-26.						
391	Kwapisz, J. R., G. M. Weiss and S. A. Moore (2011). "Activity recognition using cell phone						
392	accelerometers." ACM SIGKDD Explorations Newsletter 12(2): 74.						
393	Kwon, Y., K. Kang and C. Bae (2015). "Analysis and Evaluation of Smartphone-based Human						
394	Activity Recognition Using a Neural Network Approach." 2015 International Joint						
395	Conference on Neural Networks (Ijcnn): 1-5.						

396	Lau, S. L. (2013). Comparison of orientation-independent-based-independent-based movement						
397	recognition system using classification algorithms. Wireless Technology and Applications						
398	(ISWTA), 2013 IEEE Symposium on, Kuching, Malaysia, IEEE.						
399	Lau, S. L. and K. David (2010). Movement recognition using the accelerometer in smartphones.						
400	Future Network and Mobile Summit, 2010, IEEE.						
401	Lau, S. L., I. Konig, K. David, B. Parandian, C. Carius-Dussel and M. Schultz (2010).						
402	Supporting patient monitoring using activity recognition with a smartphone. Wireless						
403	Communication Systems (ISWCS), 2010 7th International Symposium on, York, UK,						
404	IEEE.						
405	Ling, Y. and H. Wang (2015). "Unsupervised Human Activity Segmentation Applying						
406	Smartphone Sensor for Healthcare." 1730-1734.						
407	Liu, Y. Y., F. Zhao, W. H. Shao and H. Y. Luo (2016). "An Hidden Markov Model based						
408	Complex Walking Pattern Recognition Algorithm." Proceedings of 2016 Fourth						
409	International Conference on Ubiquitous Positioning, Indoor Navigation and Location						
410	Based Services (Ieee Upinlbs 2016): 223-229.						
411	Mitchell, E., D. Monaghan and N. E. O'Connor (2013). "Classification of sporting activities						
412	using smartphone accelerometers." <u>Sensors (Basel)</u> 13 (4): 5317-5337.						
413	Neuroph. (2017). "Java Neural Network Framework Neuroph." Retrieved 2 Sep. 2017, from						
414	http://neuroph.sourceforge.net/.						
415	Ng, A. Y. (2004). Feature selection, L 1 vs. L 2 regularization, and rotational invariance.						
416	Proceedings of the twenty-first international conference on Machine learning, ACM.						
417	Nguyen, P., T. Akiyama, H. Ohashi, G. Nakahara, K. Yamasaki and S. Hikaru (2015). "User-						
418	friendly Activity Recognition Using SVM Classifier and Informative Features." 2015						
419	International Conference on Indoor Positioning and Indoor Navigation (Ipin): 1-8.						
420	Oshin, T. O. and S. Poslad (2013). "ERSP: An Energy-efficient Real-time Smartphone						
421	Pedometer." 2013 Ieee International Conference on Systems, Man, and Cybernetics (Smc						
422	<u>2013)</u> : 2067-2072.						
423	Paul, P. and T. George (2015). "An Effective Approach for Human Activity Recognition on						
424	Smartphone." 2015 Ieee International Conference on Engineering and Technology						
425	<u>(Icetech)</u> : 45-47.						
426	Pires, I., N. Garcia, N. Pombo and F. Flórez-Revuelta (2016). "From Data Acquisition to Data						
427	Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of						
428	Daily Living Using Mobile Devices." <u>Sensors</u> 16 (2): 184.						
429	Pires, I. M., N. M. Garcia and F. Flórez-Revuelta (2015). <u>Multi-sensor data fusion techniques for</u>						
430	the identification of activities of daily living using mobile devices. Proceedings of the						
431	ECMLPKDD 2015 Doctoral Consortium, European Conference on Machine Learning and						
432	Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal.						
433	Pires, I. M., N. M. Garcia, N. Pombo and F. Flórez-Revuelta (2016). <u>Identification of Activities</u>						
434	of Daily Living Using Sensors Available in off-the-shelf Mobile Devices: Research and						

PeerJ Preprints

435	Hypothesis. Ambient Intelligence-Software and Applications–7th International Symposium
436	on Ambient Intelligence (ISAmI 2016), Springer, Cham.
437	Piyare, R. and S. R. Lee (2014). "Mobile Sensing Platform for Personal Health Management."
438	18th Ieee International Symposium on Consumer Electronics (Isce 2014): 1-2.
439	Research, H. (2017). "Encog Machine Learning Framework." Retrieved 2 Sep. 2017, from
440	http://www.heatonresearch.com/encog/.
441	Salazar, L. H. A., T. Lacerda, J. V. Nunes and C. Gresse von Wangenheim (2013). "A
442	Systematic Literature Review on Usability Heuristics for Mobile Phones." International
443	Journal of Mobile Human Computer Interaction 5(2): 50-61.
444	Sen, S., K. K. Rachuri, A. Mukherji and A. Misra (2016). Did you take a break today? Detecting
445	playing foosball using your smartwatch. 2016 IEEE International Conference on Pervasive
446	Computing and Communication Workshops (PerCom Workshops), Sydney, NSW,
447	Australia, IEEE.
448	Shen, C., Y. F. Chen and G. S. Yang (2016). On Motion-Sensor Behavior Analysis for Human-
449	Activity Recognition via Smartphones. 2016 Ieee International Conference on Identity,
450	Security and Behavior Analysis (Isba), Sendai, Japan, IEEE.
451	Torres-Huitzil, C. and M. Nuno-Maganda (2015). "Robust smartphone-based human activity
452	recognition using a tri-axial accelerometer." 2015 Ieee 6th Latin American Symposium on
453	Circuits & Systems (Lascas): 1-4.
454	Vavoulas, G., C. Chatzaki, T. Malliotakis, M. Pediaditis and M. Tsiknakis (2016). "The MobiAct
455	Dataset: Recognition of Activities of Daily Living using Smartphones." Proceedings of the
456	International Conference on Information and Communication Technologies for Ageing
457	Well and E-Health (Ict4awe): 143-151.
458	Wang, C., Y. Xu, J. Zhang and W. Yu (2016). SW-HMM: A Method for Evaluating Confidence
459	of Smartphone-Based Activity Recognition. Trustcom/BigDataSE/ISPA, 2016 IEEE,
460	Tianjin, China, IEEE.
461	Wang, C. and W. Zhang (2015). "Activity Recognition Based on Smartphone and Dual-tree
462	Complex Wavelet Transform." 2015 8th International Symposium on Computational
463	Intelligence and Design (Iscid), Vol 2: 267-270.
464	Wang, D. (1993). "Pattern recognition: neural networks in perspective." IEEE Expert 8(4): 52-
465	60.
466	Wannenburg, J. and R. Malekian (2016). "Physical Activity Recognition From Smartphone
467	Accelerometer Data for User Context Awareness Sensing." IEEE Transactions on Systems,
468	Man, and Cybernetics: Systems: 1-8.
469	Weiss, G. M., J. W. Lockhart, T. T. Pulickal, P. T. McHugh, I. H. Ronan and J. L. Timko (2016).
470	"Actitracker: A Smartphone-based Activity Recognition System for Improving Health and
471	Well-Being." Proceedings of 3rd Ieee/Acm International Conference on Data Science and
472	Advanced Analytics, (Dsaa 2016): 682-688.

PeerJ Preprints

473	Zainudin, M. N. S., M. N. Sulaiman, N. Mustapha and T. Perumal (2015). "Activity Recognition
474	based on Accelerometer Sensor using Combinational Classifiers." 2015 Ieee Conference
475	on Open Systems (Icos): 68-73.
476	Zdravevski, E., P. Lameski, V. Trajkovik, A. Kulakov, I. Chorbev, R. Goleva, N. Pombo and N.
477	Garcia (2017). "Improving Activity Recognition Accuracy in Ambient-Assisted Living
478	Systems by Automated Feature Engineering." IEEE Access 5: 5262-5280.
479	Zhang, L., X. Wu and D. Luo (2015). Real-Time Activity Recognition on Smartphones Using
480	Deep Neural Networks. Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
481	Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable
482	Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
483	2015 IEEE 12th Intl Conf on, Beijing, China, IEEE.
484	Zhao, K. L., J. Z. Du, C. Q. Li, C. L. Zhang, H. Liu and C. Xu (2013). "Healthy: A Diary System
485	Based on Activity Recognition Using Smartphone." 2013 Ieee 10th International
486	Conference on Mobile Ad-Hoc and Sensor Systems (Mass 2013): 290-294.
487	
488	

Peer Preprints

Table 1(on next page)

Summary of the studies available in the IEEE Xplore library

Summary of the studies available in the IEEE Xplore library

 Table 1. Summary of the studies available in the IEEE Xplore library

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognized:			
Aguiar, B., <i>et</i> <i>al.</i> (Aguiar, Silva et al. 2014)	5	running; walking; standing; sitting; laying	decision tree	Mean; Median; Maximum; Minimum; Root Mean Square (RMS); standard deviation; interquartile range; energy; entropy; skewness; kurtosis	99.5% (decision tree)
Anjum, A., <i>et al.</i> (Anjum and Ilyas 2013)		waiking; running; going up stairs; going down stairs; driving; cycling; standing	Naive Bayes; C4.5 Decision Tree; K- Nearest Neighbor (KNN); Support Vector Machine (SVM)	Mean; standard deviation; cross-axis signals correlation; Fast Fourier Transform (FFT) spectral energy; frequency domain entropy; log of FFT	84.7% (Naive Bayes); 95.2% (C4.5 Decision Tree); 88.7% (KNN); 73.8% (SVM)
Bai, L., <i>et al.</i> (Bai, Efstratiou et al. 2016)	1	shooting	Combination of Random Forest, SVM and KNN methods	Mean; standard deviation; median; maximum; minimum; zero crossing rate; number of peaks; correlation; FFT coefficients	94.31%
Bajpai, A., <i>et</i> <i>al.</i> (Bajpai, Jilla et al. 2015)	6	standing; walking; cycling; jogging; running; driving	MLP	Mean; Maximum; Minimum; difference between maximum and minimum; standard deviation; RMS; correlation between axis; kurtosis; skewness; ratio and difference of the maximum and minimum values in the FFT; median and number of peaks and troughs; average distance between two consecutive peaks and between two consecutive troughs; ratio of the average values of peaks and troughs	97.58% (MLP)
Bayat, A., <i>et</i> <i>al.</i> (Bayat, Pomplun et al. 2014)	5	running; walking; aerobic dancing; going up stairs; going down stairs	MLP; SVM; Random Forest; Logistic Model Trees (LMT);	mean along z-axis; maximum, minimum, standard deviation and RMS from the magnitude of the acceleration; average of peak frequency (APF),	89.48% (MLP); 72.27% (SVM); 85.15% (Random Forest); 85.04% (LMT); 85.05% (Simple Logistic);

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognizea:	Simple Logistic; Logit Boost	standard deviation, RMS, maximum and minimum along x-axis, y-axis and z- axis; correlation between z- axis and y-axis	82.24% (Logit Boost)
Bujari, A., <i>et</i> <i>al.</i> (Bujari, Licar et al. 2012)	1	walking	MLP	Mean; standard deviation	98% (MLP)
Cardoso, N., <i>et</i> <i>al.</i> (Cardoso, Madureira et al. 2016)	6	walking; standing; travel by car; travel by bus; travel by train; travel by metro	J48 decision tree; SMO; Naïve Bayes	Mean; Median; Maximum; Minimum; RMS; standard deviation; interquartile range; minimum average; maximum average; maximum peak height; average peak height; entropy; FFT spectral energy; Skewness; kurtosis	95.6% (J48 decision tree); 92.4% (SMO); 61.9% (Naïve Bayes)
Dangu Elu Beily, M., <i>et</i> <i>al.</i> (Dangu Elu Beily, Badjowawo et al. 2016)	1	playing tennis	Naïve Bayes; MLP; J48 decision tree; SVM	Mean; Variance; correlation	98.12% (Naïve Bayes); 99.61% (MLP); 99.91% (J48 decision tree); 100% (SVM)
Duarte, F., <i>et</i> <i>al.</i> (Duarte, Lourenco et al. 2013)	4	walking; cycling; running; standing	Naïve Bayes; KNN; Decision Tree; SVM	Mean; standard deviation; correlation; power spectral density	98% (Naïve Bayes); 83% (KNN); 95% (Decision Tree); 96% (SVM)
Fahim, M., <i>et</i> <i>al.</i> (Fahim, Lee et al. 2014)	4	walking; running; cycling; hopping	SVM	RMS; Variance; Correlation; energy	97.69% (SVM)
Fan, L., <i>et al.</i> (Fan, Wang et al. 2013)	5	standing; walking; running; going up stairs; going down stairs	decision tree	Mean; Median; Variance; standard deviation; maximum; minimum; range; RMS; FFT coefficients; FFT spectral energy	88.32% (decision tree)
Guo, H., <i>et al.</i> (Guo, Chen et al. 2015)	5	running; walking; sitting; going up stairs; going down stairs	SVM	Mean; Variance; standard deviation; median; maximum; minimum; RMS; zero crossing rate; skewness; kurtosis; spectral entropy	80% (SVM)
Khalifa S et	3	going un stairs.	Decision	mean standard deviation	80.59% (decision

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognized:			-
<i>al.</i> (Khalifa,		going up on an	tables; J48	skewness, kurtosis, average	tables); 82.97%
Hassan et al.		escalator;	Decision tree;	absolute deviation, and	(J48 Decision
2014)		walking on a	Naïve Bayes;	pairwise correlation of the	tree); 87.49%
		ramp	KNN; MLP	tree axis of accelerometer;	(Naive Bayes);
				mean of the resultant	89.20% (KNN);
IZ:			TT: 11	Acceleration	87.86% (MLP)
Kim, Y.J., el	0	waiking, going	Markov	Mean; standard deviation	83.33% (HIVINE)
u. (Kill, Kallg		down stairs:	Model		
et al. 2013)		sitting.	Ensemble		
		standing.	(HMME)		
		laving			
Kumar. A., et	4	sitting:	Combination	average of peak values:	98.8283%
al. (Kumar and		standing;	of SVM, J48	average of peak rising time;	
Gupta 2015)		walking;	decision tree	average of peak fall time;	
		running	and Random	average time per sample;	
			Forest	average time between peaks	
			methods		
Kwapisz, J.R.,	6	walking;	J48 decision	Mean; standard deviation;	85.1% (J48
et al.		jogging; going	tree; logistic	average absolute difference;	decision tree);
(Kwapisz,		up stairs; going	regression;	average resultant	78.1% (logistic
Weiss et al.		down stairs;	MLP; Straw	acceleration; time between	regression); 91.7%
2011)		sitting;	Man	peaks; binned distribution	(MLP); 37.2%
Vuuon V ot	1	standing	MID	Moon: Movimum:	(Straw Man)
Kwoli, Y., el	4	waikilig,	IVILP	Minimum: Median:	99% (WILP)
Kang et al		standing.		standard deviation	
2015)		sitting		Standard deviation	
Lau, S.L. (Lau	5	walking:	KNN:	Mean: standard deviation:	92.44% (KNN):
2013)		sitting;	decision tree;	variance	90.77% (decision
,		standing; going	rule-based		tree); 90.4%
		up stairs; going	learner (JRip);		(JRip); 92.91%
		down stairs	MLP		(MLP)
Lau, S.L., et	5	walking;	decision tree;	Mean; standard deviation;	91.37% (decision
al. (Lau,		sitting;	KNN; SMO	variance; FFT energy; FFT	tree); 94.29%
Konig et al.		standing; going		information entropy	(KNN); 84.42%
2010)		up stairs; going			(SMO)
Lau SI of	5	walking.	decision tree	mean standard deviation	95.62% (Bayesian
al (Lau and	5	standing.	Bayesian	and correlation of the raw	Network): 97 81%
David 2010)		sitting: going	Network:	data; energy of FFT: mean	(Naïve Baves):
		up stairs; going	Naïve Bayes:	and standard deviation of	99.27% (KNN);
		down stairs	KNN; rule-	the FFT components in the	93.53% (JRip)
			based learner	frequency domain	× 1/
			(JRip)		

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognized:			
Ling, Y., <i>et al.</i> (Ling and Wang 2015)	4	walking; running; sitting; standing	decision tree	Mean; Variance; bin distribution in time and frequency domain; FFT spectral energy; correlation of the magnitude	98.69% (decision tree)
Liu, Y.Y., <i>et</i> <i>al.</i> (Liu, Zhao et al. 2016)	3	walking; going up stairs; going down stairs	Combination of Hidden Markov Model (HMM), decision tree and Random Forest methods	Mean; Variance; standard deviation; median; minimum; maximum; range; Interquartile range; Kurtosis; Skewness; spectrum peak position	93.8%
Mitchell, E., <i>et</i> <i>al.</i> (Mitchell, Monaghan et al. 2013)	6	walking; jogging; going up stairs; going down stairs; sitting; standing	Naïve Bayes; MLP	energy and variances of the coefficients of discrete wavelet transform (DWT)	79.9% (Naïve Bayes); 82.3% (MLP)
Nguyen, P., <i>et</i> <i>al.</i> (Nguyen, Akiyama et al. 2015)	5	running; standing; walking; going up stairs; going down stairs	SVM	Mean; Minimum; Maximum; standard deviation; energy; mean absolute deviation; binned distribution; percentiles	94.3% (SVM)
Oshin, T.O., <i>et</i> <i>al.</i> (Oshin and Poslad 2013)	3	walking; jogging; marching	Combination of J48 decision tree, decision table and Naïve Bayes	number of peaks; number of troughs; difference between the maximum peak and the minimum trough; sum of all peaks and troughs	93.4%
Paul, P., <i>et al.</i> (Paul and George 2015)	4	walking; running; standing; sitting	Clustered KNN	Mean; Minimum; Maximum; standard deviation	92% (Clustered KNN)
Piyare, R., <i>et</i> <i>al.</i> (Piyare and Lee 2014)	7	walking; jogging; going up stairs; going down stairs; sitting; standing; laying down	Bayesian Network; MLP; Naïve Bayes; C4.5 decision tree; Random Tree; Radial Basis; Function Network; Sequential Minimal	Mean; standard deviation; mean absolute deviation; time between peaks	77.81% (Bayesian Network); 94.44% (MLP); 58.06% (Naïve Bayes); 95.40% (C4.5 decision tree); 94.67% (Random Tree); 73.03% (Radial Basis Function Network); 90.27%

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognized:			-
			Optimization (SMO); Logistic Regression		(SMO); 92.71% (Logistic Regression)
Sen, S., <i>et al.</i> (Sen, Rachuri et al. 2016)	1	playing fosball	MLP	Mean; Variance; Covariance; Energy; entropy	95% (MLP)
Torres-Huitzil, C., <i>et al.</i> (Torres-Huitzil and Nuno- Maganda 2015)	5	standing; walking; going up stairs; going down stairs; running	MLP	Mean; standard deviation; percentiles	92% (MLP)
Vavoulas, G., <i>et al.</i> (Vavoulas, Chatzaki et al. 2016)	7	standing; walking; jogging; jumping; going up stairs; going down stairs; sitting	J48 decision tree; Logistic regression; MLP	Mean, Median, standard deviation, skewness, kurtosis, minimum, maximum and slope for each axis and for the absolute value	85.1% (J48 decision tree); 78.1% (Logistic regression); 91.7% (MLP)
Wang, C., <i>et</i> <i>al.</i> (Wang, Xu et al. 2016)	5	walking; standing; running; going up stairs; going down stairs	Sliding- Window- based Hidden Markov Model (SW- HMM)	Mean; Variance; quartiles	80% (SW-HMM)
Wang, C., <i>et</i> <i>al.</i> (Wang and Zhang 2015)	6	standing; sitting; going up stairs; going down stairs; walking; jogging	J48 decision tree; Random Forest; Instance- based learning (IBk); rule based (J-Rip)	Dual-tree complex wavelet transform (DT-CWT) statistical information and orientation	76% (Random Forest); 73.8% (IBk); 67.4% (J48 decision tree); 67.4% (J-Rip)
Wannenburg, J., <i>et al.</i> (Wannenburg and Malekian 2016)	5	sitting; standing; laying; walking; jogging	SVM; MLP; Naïve Bayes; KNN; Decision tree; kStart	Mean; Maximum; Minimum; Median; standard deviation; Signal Magnitude Area (SMA); mean deviation; Principal Component Analysis (PCA); Interquartile range; Skewness; kurtosis	94.32% (SVM); 98.74% (MLP); 91.1% (Naïve Bayes); 99% (KNN); 98.8% (Decision tree); 99.01% (kStart)
Weiss, G.M., <i>et al.</i> (Weiss, Lockhart et al. 2016)	7	walking; jogging; going up stairs; going down stairs; standing;	Random Forest	mean and standard deviation for each axis; bin distribution; heuristic measure of wave periodicity	90% (Random Forest)

Study:	# of	ADL	Methods:	Features:	Accuracy:
	ADL:	recognized:			
		sitting; lying			
		down			
Zainudin,	6	going down	J48 decision	Minimum; Maximum;	92.4% (J48
M.N.S., <i>et al</i> .		stairs; jogging;	tree; MLP;	Mean; standard deviation;	decision tree);
(Zainudin,		sitting;	Likelihood	zero crossing rate for each	91.7% (MLP);
Sulaiman et al.		standing; going	Ratio (LR)	axis; correlation between	84.3% (LR)
2015)		up stairs;		axis	
		walking			
Zdravevski, E.,	6	walking,	SVM;	Automated feature selection	From 83% to 99%
et al.		standing,	Random	from a variety of time and	(pocket with
(Zdravevski,		sitting, walking	Forest (RF);	frequency domain features	SVM), depending
Lameski et al.		up-stairs,	Extremely		on used dataset and
2017)		walking down-	Randomized		smartphone
		stairs, lying	Trees (ERT),		position.
			Naive Bayes		
			(NB), KNN,		
			Logistic		
			regression		
71	7	11	(LK)	Maria Minimum	770/ (DNINI)
Zhang, L., <i>et</i>	/	walking;	DNN	Mean; Minimum;	//% (DNN)
ai. (Znang, wu		running;		Maximum; standard	
et al. 2015)		standing;		deviation	
		sitting, lying,			
		going up stans,			
		stoirs			
Zhao K Let	5	walking.	Combination	mean of the acceleration.	97.1%
al (Zhao Du	5	ingging.	of decision	standard deviation binned	77.170
et al. 2013)		cycling, going	tree and	distribution and average	
et al. 2015)		up stairs: going	probabilistic	energy for each axis	
		down stairs	neural		
			network		
			(PNN)		
			methods		

Table 2(on next page)

Distribution of the ADL extracted in the studies analyzed.

Distribution of the ADL extracted in the studies analyzed.

Table 2. Distribution of the ADL extracted in the studies analyzed.

ADL:	Number of studies:	Average of accuracy:
Walking	36	87.29%
Standing	29	87.07%
Going up stairs	22	84.41%
Going down stairs	21	84.30%
Sitting	17	86.37%
Running	16	89.21%
Jogging	11	83.97%
Laying down	7	89.30%
Cycling	5	91.52%
Driving	2	97.58%
Playing tennis	1	99.41%
Hopping	1	97.69%
Playing fosball	1	95.00%
Shooting	1	94.31%
Marching	1	93.40%
Going up on an escalator	1	85.62%
Walking on a ramp	1	85.62%
Jumping	1	84.97%
Travel by car	1	83.30%
Travel by bus	1	83.30%
Travel by train	1	83.30%
Travel by metro	1	83.30%
Aerobic dancing	1	83.21%

Table 3(on next page)

Distribution of the features extracted in the studies analyzed.

Distribution of the features extracted in the studies analyzed.

 Table 3. Distribution of the features extracted in the studies analyzed.

Features:	Number of	Average of	
	Studies:	accuracy:	
Mean (Z axis, X axis, Y axis, Acceleration, Velocity, Gravity,	32	89.05%	
Peaks, Toughs)			
Standard Deviation (Acceleration, X axis, Y axis, Z axis,	28	88.38%	
Gravity)			
Minimum (Acceleration, X axis, Y axis, Z axis)	15	89.33%	
Maximum (Acceleration, X axis, Y axis, Z axis)	15	89.33%	
FFT spectral energy (Acceleration)	11	91.41%	
Variance (Acceleration, X axis, Y axis, Z axis)	10	92.65%	
Correlation (X axis, Y axis, Z axis)	10	91.52%	
Median (Acceleration, Peaks, Toughs)	7	89.98%	
Skewness (Acceleration, X axis, Y axis, Z axis)	7	89.36%	
Kurtosis (Acceleration, X axis, Y axis, Z axis)	7	89.36%	
Root Mean Square (Acceleration, X axis, Y axis, Z axis)	7	86.59%	
Entropy (Acceleration)	5	88.28%	
Interquartile-Range (Acceleration)	3	96.78%	
Number of peaks (Acceleration)	3	95.10%	
zero crossing rate (Acceleration)	3	88.54%	
Mean Absolute Deviation (X axis, Y axis, Z axis)	3	85.63%	
time between peaks (Acceleration)	3	82.10%	
Number of troughs (Acceleration)	2	95.49%	
Percentiles (10, 25, 75, and 90) (Acceleration)	2	93.15%	
FFT coefficients (Acceleration)	2	91.32%	
Range (Acceleration, X axis, Y axis, Z axis)	2	91.06%	
Average Peak rising time (Acceleration)	1	98.83%	
Average Peak fall time (Acceleration)	1	98.83%	
Average Time per sample (Acceleration)	1	98.83%	
Average Time between peaks (Acceleration)	1	98.83%	
Difference between the maximum peak and minimum trough	1	97.58%	
(Acceleration)			
Signal Magnitude Area (SMA) (Acceleration)	1	96.83%	
Principal Component Analysis (PCA) (Acceleration)	1	96.83%	
Covariance (Acceleration, X axis, Y axis, Z axis)	1	95.00%	
Spectrum peak position (Acceleration)	1	93.80%	
Sum (Acceleration, Peaks, Troughs)	1	93.40%	
Log of FFT (Acceleration)	1	85.60%	
Slope (Acceleration)	1	84.97%	
Quartiles (Acceleration)	1	80.00%	

Table 4(on next page)

Distribution of the classification methods used in the studies analyzed.

Distribution of the classification methods used in the studies analyzed.

2 Table 4. Distribution of the classification methods used in the studies analyzed.

Method:	Number of Studies:	Average of accuracy:
ANN (MLP, PNN, DNN)	18	92.84%
Decision Tree (C4.5, J48)	20	92.23%
KNN/IBk/kStart	10	92.20%
Random Forest	7	90.39%
SVM/SMO	13	89.89%
Decision tables	2	87.00%
Bayesian Network	2	86.72%
Hidden Markov Model (HMME, HMM, SW-HMM)	3	85.78%
Naïve Bayes	10	85.05%
Simple Logistic	1	85.05%
LMT	1	85.04%
LR	1	84.30%
Rule-based learner (JRip)	3	83.78%
Logistic Regression	3	82.97%
Logit Boost	1	82.24%
Radial Basis Function Network	1	73.03%
Straw Man	1	37.20%

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27225v1 | CC BY 4.0 Open Access | rec: 19 Sep 2018, publ: 19 Sep 2018

¹

Peer Preprints

Table 5(on next page)

Configurations of the neural networks implemented.

Configurations of the neural networks implemented.

Table 5. Configurations of the neural networks implemented.

Parameters	MLP	FNN	DNN
Activation function	Sigmoid	Sigmoid	Sigmoid
Learning rate	0.6	0.6	0.1
Momentum	0.4	0.4	N/A
Maximum number of training iterations	4x10 ⁶	4x10 ⁶	4x10 ⁶
Number of hidden layers	0	0	3
Weight function	N/A	N/A	Xavier
Seed value	N/A	N/A	6
Backpropagation	Yes	Yes	Yes
Regularization	N/A	N/A	L ₂

3

Table 6(on next page)

Best accuracies obtained with the different frameworks, datasets and number of iterations.

Best accuracies obtained with the different frameworks, datasets and number of iterations.

2 Table 6. Best accuracies obtained with the different frameworks, datasets and number of iterations.

	FRAMEWORK	DATASET	ITERATIONS NEEDED FOR TRAINING	BEST ACCURACY ACHIEVED (%)
NOT NORMALIZED DATA	NEUROPH	1	2x10 ⁶	34.76
	ENCOG	5	4x10 ⁶	74.45
	DEEPLEARNING4J	3	4x10 ⁶	80.35
NORMALIZED DATA	NEUROPH	3	106	24.03
	ENCOG	4	106	37.07
	DEEPLEARNING4J	1	4x10 ⁶	85.89

Figure 1

Results obtained with Neuroph framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normalization

Results obtained with Neuroph framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normalization. The figure b) shows the results with normalized data.

Figure 2

Results obtained with Encog framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normalization.

Results obtained with Encog framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normalization. The figure b) shows the results with normalized data.

Figure 3

Results obtained with DeepLearning4j framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normal

Results obtained with DeepLearning4j framework for the different datasets (horizontal axis) and different maximum number of iterations (series), obtaining the accuracy in percentage (vertical axis). The figure a) shows the results with data without normalization. The figure b) shows the results with normalized data.

