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The mechanisms underlying community dynamics, which govern the complicated

biogeographical patterns of microbes, have long been a research hotspot in community

ecology. However, the mixing of multiple ecological processes and the one-sidedness of

analytical methods make it difficult to draw inferences about the community assembly

mechanisms. In this study, we investigated the driving forces of the soil microbial

community in subalpine coniferous forests of the Loess Plateau in Shanxi, China, by

integrating multiple analytical methods. The results of the null model demonstrated that

deterministic processes (especially interspecific relationships) were the main driving force

of the soil microbial community assembly in this study area, relative to stochastic

processes. Based on the results of the net relatedness index (NRI) and nearest taxon index

(NTI), we inferred that historical and evolutionary factors, such as climate change and local

diversification, may have similar effects on microbial community structure based on the

climatic niche conservatism. Based on the results of a functional traits analysis, we found

that the effects of ongoing ecological processes on the microbial community assembly

varied among sites. Therefore, the functional structures seemed to be more related to

ongoing ecological processes, whereas the phylogenetic structures seemed to be more

related to historical and evolutionary factors, as well as the tradeoff between deterministic

and stochastic processes. The functional and phylogenetic structures were mainly shaped

by different ecological processes. By integrating multiple ecological processes, our results

provide more details of the mechanisms driving the community assembly
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22 Abstract The mechanisms underlying community dynamics, which govern the complicated biogeographical 

23 patterns of microbes, have long been a research hotspot in community ecology. However, the mixing of multiple 

24 ecological processes and the one-sidedness of analytical methods make it difficult to draw inferences about 

25 the community assembly mechanisms. In this study, we investigated the driving forces of the soil microbial 

26 community in subalpine coniferous forests of the Loess Plateau in Shanxi, China, by integrating multiple 

27 analytical methods. The results of the null model demonstrated that deterministic processes (especially 

28 interspecific relationships) were the main driving force of the soil microbial community assembly in this study 

29 area, relative to stochastic processes. Based on the results of the net relatedness index (NRI) and nearest taxon 

30 index (NTI), we inferred that historical and evolutionary factors, such as climate change and local diversification, 

31 may have similar effects on microbial community structure based on the climatic niche conservatism. Based on 

32 the results of a functional traits analysis, we found that the effects of ongoing ecological processes on the 

33 microbial community assembly varied among sites. Therefore, the functional structures seemed to be more 

34 related to ongoing ecological processes, whereas the phylogenetic structures seemed to be more related to 

35 historical and evolutionary factors, as well as the tradeoff between deterministic and stochastic processes. The 

36 functional and phylogenetic structures were mainly shaped by different ecological processes. By integrating 

37 multiple ecological processes, our results provide more details of the mechanisms driving the community 

38 assembly. 

39 Key words: ecological process; community assembly; phylogenetic structure; functional traits; soil microbial 

40 community

41 Introduction

42 Understanding the fundamental ecological mechanisms that drive the assembly process of microbial 
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43 communities is a major challenge in community ecology [1]. The assembly process of the microbial community 

44 in a local community is generally influenced by two types of ecological processes, namely deterministic and 

45 stochastic processes. The deterministic process hypothesizes that deterministic factors such as organism traits, 

46 interspecies relationships (e.g., competition, predation, mutualisms), and environmental stresses (e.g., pH, 

47 temperature, salt, and moisture) govern community succession [2-4]. For example, ecologists have traditionally 

48 tended to consider that the environmental context determines the assembly process of microbial communities: 

49 <Everything is everywhere, but the environment selects= [5]. For example, environmental factors such as pH [6], 

50 temperature [7], and nitrogen levels [8] may be major determinants of microbial community structure. However, 

51 there is no doubt that interspecies relationships may also be an important force that influences community 

52 structure and dynamics [9]. Although ecologists accept that competition and environmental processes act 

53 simultaneously [10], biogeographic patterns have usually been ascribed to environmental filtering alone [11]. 

54 Little attention has been paid to the relative contributions of competition and environmental stress.

55  For the other types of community assembly processes (i.e., stochastic processes), it is assumed that 

56 community structures are independent of organism traits and are governed by birth, death, colonization, 

57 extinction, drift, and speciation [12], and it is hypothesized that species are all ecologically equivalent [13]. It 

58 has recently been accepted that the two ecological processes are not mutually exclusive, but rather form a 

59 continuum [14]. However, Clark [11] argued that stochasticity could occur only in mathematical models and not 

60 in nature, and therefore questioned the universality of the continuum hypothesis [12]. Therefore, to interpret a 

61 global map of bacterial diversity patterns, more studies are necessary to characterize the biogeographic patterns 

62 and assembly processes in different environmental contexts or conditions.

63 Communities at different stages of succession [15] or in different sub-communities[16] are driven by 
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64 different assembly processes. Most studies of ecological mechanisms have been limited to specific spatial or 

65 temporal scales [6, 17-19]. For example, stochastic processes may dominate microbial community assembly 

66 within successional stages, while deterministic processes may prevail during the transition periods between 

67 successional stages. Moreover, some of the conclusions reached in typical examples do not apply to all 

68 environmental contexts [20]. This may be related to the mixing of multiple ecological processes and the one-

69 sidedness of analytical methods.

70 The biogeographic patterns of the community are the aggregate of multiple ecological processes (e.g., the 

71 evolutionary process [21, 22] and ongoing ecological processes [23]) operating on multiple axes. This 

72 aggregation severely complicates the identification of causal relationships in a local community [20]. Therefore, 

73 the aggregation of multiple ecological processes makes it difficult to draw inferences about the community 

74 assembly [20]. 

75 On the other hand, the one-sidedness of analytical methods also makes it difficult to draw inferences about 

76 the ecological processes. Ecologists investigating the community assembly process mainly rely on community 

77 ³-diversity [2, 24-26], phylogenetic structure [6, 27], and functional traits [28]. First, the ³-null deviation 

78 measure can be used to create stochastically assembled communities from the regional species pool and 

79 investigate the degree to which the observed ³-diversity patterns deviate from the stochastic assembly [2, 25, 

80 26]. However, it is difficult to precisely and robustly disentangle the different multiple ecological processes 

81 structuring communities [26]. Second, the net relatedness index (NRI) [29] and nearest taxon index (NTI) are 

82 two important indexes that can be used to characterize phylogenetic structure. Both the NRI and NTI increase 

83 with increasing clustering and become negative with over-dispersion [29]. However, little attention has been 

84 given to the differences or relationships between NRI and NTI. In most cases, this approach completely relies 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27223v1 | CC BY 4.0 Open Access | rec: 18 Sep 2018, publ: 18 Sep 2018



85 on phylogenetic relatedness being a strong proxy of ecological similarity. The result of this is the aggregation of 

86 multiple processes. Thus, it is difficult to draw inferences of the complete community assembly process. Finally, 

87 the functional traits should be closely linked to ongoing ecological processes [30]. Functional trait analyses have 

88 followed an almost identical trajectory to the phylogenetically-based analyses [28, 30]. However, the measured 

89 traits cannot represent the whole functioning of an organism. It would be incorrect to describe the process of 

90 community assembly only according to functional traits. In essence, the different analytic methods infer the 

91 process of community assembly based on different perspectives. Therefore, by integrating these three analytical 

92 methods, more information is provided regarding the biogeographic distribution patterns of the community.

93 In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located on the Loess 

94 Plateau in Shanxi Province, China. Microbial communities have a high taxonomic and metabolic diversity [31, 

95 32], and perform important ecological functions [33]. Thus, microorganisms are ideal research objects for the 

96 study of community assembly mechanisms. The 16S ribosomal RNA genes of bacteria were analyzed using 

97 high-throughput sequencing. Linking data on soil microbial communities to data on the community turnover 

98 rate, historical or evolutionary factors, and ongoing ecological processes to investigate the community assembly 

99 process may provide more evidence of the biogeographic distribution patterns of a community. Specifically, we 

100 aimed to (i) quantify the relative roles of deterministic and stochastic processes in bacterial community 

101 dynamics; (ii) disentangle the relative importance of environmental filtering and interspecific relationships on 

102 the community assembly process; and (iii) determine the effects of historical or evolutionary factors and the 

103 ongoing ecological processes on the assembly of microbial communities.

104 1. Materials and methods

105 2.1 Study site and sampling
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106 A total of 23 soil plots were sampled (Figure 1) in August 2016 and 2017. The plots were located in 

107 subalpine coniferous forests at an altitude between 1900 and 3055 m above mean sea level. In addition, the 

108 distance between the samples of each plot was more than 50 m. All samples were collected from the 0310 cm 

109 soil horizon. Soil samples were sealed in plastic bags and refrigerated, immediately transported to the laboratory, 

110 and sieved through a 2-mm mesh. The soil samples were stored at -80°C prior to analysis.

111 The soil samples were subsampled for a molecular analysis, with the extraction of 1 g of soil using an 

112 E.Z.N.A. ® Soil DNA Kit (Omega Bio-tek, Inc., Norcross, GA USA). The quality and quantity of DNA extracts 

113 were then measured by an Infinite 200 PRO plate reader (Tecan, Männedorf, Switzerland). The DNA purity was 

114 assessed by a determination of the A260/A280 absorbance ratios, and only DNA extracts with absorbance ratios 

115 of 1.832.0 were used in further analyses. Three DNA samples were extracted from each soil sample and were 

116 then mixed and sequenced on the Illumina MiSeq sequencing platform (Majorbio Biotechnology Co., 

117 Ltd.,Shanghai, China) in the bacterial v3-v4 hypervariable region using the bacterial 16S universal primers (341F 

118 52-ACTCCTACGAGGAGCA-32 and 805R 52- TTACCGCGGCTGCTGGCAC -32) [34]. 

119 2.2 Bioinformatics analysis

120 The sequencing data were analyzed by the QIIME (v1.8.0, http://qiime.org/) pipeline [35]. The filtered 

121 sequence alignments were denoised by DeNoiser [36] and then screened for chimeras by UCHIME [37]. The 

122 Eukaryota, Archaea, and unknown sequences were removed. The sequences were clustered into operational 

123 taxonomic units (OTUs) at a 97% similarity level by the average neighbor method and taxonomy was blasted to 

124 the SILVA database by the k-mer searching method using MOTHUR [38]. The OTU table was rarefied to 4020 

125 sequences per sample. Ten independent maximum-likelihood phylogenetic trees, with the Jukes-Cantor distance, 

126 were then constructed using FastTree2 [39] after removing gaps and hypervariable regions using a Lane mask 
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127 wrapped within QIIME to support the phylogenetic diversity (pd) calculations.

128 2.3 Environmental variables

129 In the laboratory, soil total carbon (TC), total nitrogen (TN) and total sulfur (TS) were measured using an 

130 elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany); nitrate nitrogen (NO3
-_N), 

131 ammonium nitrogen (NH4
+_N), and nitrite nitrogen (NO2

-_N) were measured using an automated discrete 

132 analysis instrument (CleverChem 380, DeChem-Tech. GmbH, Hamburg, Germany). After shaking the soil : 

133 water (1:2.5 mass/volume) suspension for 30 min, the soil pH was measured by a pH meter (Hl 3221, HANNA 

134 Instruments Inc., Woonsocket, RI, USA). The soil organic carbon in each soil sample was measured by the 

135 potassium dichromate volumetric method [40].

136 2.4 Null model analysis

137 The null model accounted for such changes in ³-diversity, while controlling for stochastic variation and 

138 associated changes in ñ-diversity (i.e., local species richness) [25]. We considered the null deviation to be the 

139 relative difference between the observed ³-diversity and the null-model ³-diversity, ³obs 3 E(³null), and the ³-

140 diversity was measured as the Sorenson-Czekanowski dissimilarity [26]. As such, null deviation values may 

141 represent communities that are more similar than expected by chance (a negative null deviation value), less 

142 similar than expected by chance (a positive null deviation value), or close to the chance expectation (values near 

143 zero). The detailed calculation process is provided in previous studies [15, 26, 41, 42]. 

144 2.5 Phylogenetic analysis

145 The pd was determined with the method of Stegen et al. using the picante library for R [43]. The NRI and 

146 the NTI were used to quantify the phylogenetic structure. The NRI measures the mean pairwise phylogenetic 

147 distance between all species or individuals in a sample (MPD), while the NTI measures the mean phylogenetic 
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148 distance between a species or individual and its closest relative mean nearest taxon distance (MNTD), in both 

149 cases adjusting for the null-model expectation by random sampling from a species pool. They are calculated as 

150 follows:

151 2 1 × ÿýÿý 2 ÿÿÿÿ(ÿÿÿÿý)ýý(ÿÿÿÿý)
152 where robs is the observed NRI/NTI and rrand is the MPD/MNTD from a null model, which is built by permuting 

153 the species labels across a phylogeny covering all species in a given species pool and using the <taxa labels in 

154 phylum level= null model in picante, to preserve the community structure and achieve a reliable randomization 

155 [44]. Positive values represent phylogenetic clustering, whereas species in the community are more closed 

156 related than expected. The negative values indicate phylogenetic over-dispersion, where species in the 

157 community are more distantly related than expected. 

158 2.6 Functional attributes

159 Functional community structure was calculated based on a single functional trait of key importance in 

160 microbial communities, e.g., niche breadth [45]. This was because the niche breadth was the only trait broadly 

161 available for the species studied. The formula below was used:

162 ýÿ= 1ý3
i= 1

ÿ2ÿÿ
163 where Bj indicates niche breadth and Pij is the relative abundance of species j present in habitat i [46, 47]. 

164 Niche breadth is the sum of all the resources that can be used by organisms. The abundance of a given bacterial 

165 species is the result of the balance between its growth rate and loss factors [48]. Thus, the niche breadth can 

166 reflect important functional information of the community.

167 A functional traits analysis was conducted in the same way that the NRI was calculated [49], but using the 
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168 functional niche breadth-based dendrogram. A similarity distance matrix for the niche breadth of all species was 

169 then constructed, comparing the niche breadth values of all pairs of species using the Euclidian distance. 

170 Subsequently, we conducted a cluster analysis (i.e., a complete linkage method that identified similar clusters) 

171 of this distance matrix and constructed a dendrogram based on the results of the cluster analysis. Finally, 

172 functional trees were calculated.

173 2.7 Statistical analysis 

174 All statistical analyses were performed in the R environment using the vegan, gplots, ggpubr. and corrplot 

175 packages. A Venn diagram was used to show the shared OTUs among the sites. A correlation matrix graph was 

176 used to demonstrate the correlation between soil physicochemical factors. A multivariate regression tree (MRT) 

177 analysis was used to explain the relationship between bacterial ³-diversity estimates and environmental variables 

178 in a visualized tree, and the diversity indices were normalized to the same mean before performing the MRT 

179 analysis [50]. To test the effects of soil physical and chemical factors on NRI across all datasets, we used a 

180 generalized additive mixed model (GAMM). The GAMM was fitted using the <gamm= function in the <mgcv= 

181 R package. A combination of soil physicochemical data and community matrices were used in a redundancy 

182 analysis (RDA) to visualize the e�ects of soil physicochemical properties on the structure of soil microbial 

183 communities (Hellinger-transformed data) using the vegan package in R. The forward selection of the principal 

184 coordinates of neighbor matrices (PCNM) variables based on permutation tests was chosen to identify two of 

185 the 23 extracted PCNM variables, which could significantly (P <0.05) explain the spatial structure. The PCNM 

186 eigenfunctions, which represent the 8spectral decomposition of the spatial relationship across sampling 

187 locations9, were considered to be the spatial variables in the ordination-based analysis. The contributions of 

188 environmental filtering and the space variable (PCNM) to the variation of the bacterial community composition 
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189 were calculated using the variance partitioning analysis (VPA) (CANOCO for Windows Version 5.0).

190 Results 

191 Physicochemical properties of the soils at different sites

192 The soil physicochemical properties varied across the different sampling sites (Figure 2). Briefly, the 

193 ammonium nitrogen and nitrite nitrogen concentrations were highest in LY sites and lowest in WT sites (P 

194 <0.05). The nitrate nitrogen, SOC, TC, and TN concentrations were highest in WT sites and lowest in LY sites 

195 (P <0.05). TN was significantly positively correlated with TC and SOC (P <0.05) and significantly negatively 

196 correlated with pH (P <0.05). TC and pH were significantly negatively correlated (P <0.05). SOC was 

197 significantly positively correlated with nitrate nitrogen (P <0.0.5), and was significantly negatively correlated 

198 with nitrite nitrogen (P <0.05). Ammonium nitrogen was significantly negatively correlated with ammonium 

199 nitrogen, nitrate nitrogen, and nitrite nitrogen (P <0.05). The difference in the environmental factors formed an 

200 ecological gradient along the different sites. Based on this ecological gradient, the study aimed to investigate the 

201 assembly process of the bacterial community by integrating multiple analytical methods.

202 Dynamics of the bacterial community composition and diversity

203 A total of 4258 OTUs were identified by 1,062,241 high-quality sequences recovered from 23 soil samples. 

204 Good9s coverage index ranged from 95.19 to 99.75%, indicating that the sequences identified represented the 

205 majority of the bacterial sequences in the soil samples. 

206 As shown in the Venn diagram, 869 bacterial shared OTUs were observed from all sampling sites. There 

207 were 46 bacterial phylum identified (Figure 3). There were 15 bacterial phylum with a relative abundance of 

208 more than 0.01%. The highest abundance at all sites was recorded for Proteobacteria (mean relative abundance 

209 = 30.59%), followed by Acidobacteria (19.63%), Actinobacteria (16.51%), and Chloroflexi (13.22%). The mean 
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210 relative abundance of Proteobacteria was highest in PQG sites (34.39%), while the abundance of Actinobacteria 

211 was highest in LY sites (26.29%). The mean relative abundances of Acidobacteria (28.68%) and Chloroflexi 

212 (16.09%) were highest in WT sites. There were 20 bacterial classes with a relative abundance of more than 

213 0.01% in the study area. The sample plots for each site could be roughly clustered together (Figure 3d). 

214 The community ñ-diversity indices varied at the different sites (Figure 4). Briefly, the pd and the number of 

215 observed species (sobs) were greater in WT sites (P <0.05). There was no significant differences in the Ace, 

216 Chao, Shannon, and Simpson indexes among the different sites (P >0.05). 

217 Effects of environmental factors on microbiome dynamics

218 Redundancy analyses were used to identify the abiotic environmental drivers that inûuenced bacterial 

219 community composition. The results demonstrated that Proteobacteria and Cyanobacteria were mainly shaped 

220 by pH, while SOC, TC, and TN were the main abiotic drivers of Parcubacteria and Planctomycetes (Figure 5). 

221 In addition, SOC made the largest contribution to the microbial community structure (i.e., the arrow had the 

222 longest length). From the MRT analysis (Figure 6), we found that normalized diversity estimates were mainly 

223 split by SOC, which explained 36.75% (in the first spilt), followed by pH (6.68%). 

224 The variation partitioning analysis showed that environmental factors (20.3%) and the spatial variables 

225 (1.9%) were minor contributors to the bacterial biogeographic distribution pattern, because there was a 78.6% 

226 contribution from an unexplained variable (Figure 7).

227 Because the NRI is a standardized measure of the mean pairwise phylogenetic distance of taxa in a given 

228 sample [29] and its calculation relies on both phylogenetic and species abundance information. The NRI can 

229 effectively reflect the process of community assembly. To investigate the effect of environmental factors on the 

230 NRI across all datasets, we used a GAMM (Table 1). Our results showed that SOC had a slight (the estimate 
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231 was 0.004) but significant (P <0.05) effect on the NRI.

232 Nonrandom co-occurrence patterns of the microbial community

233 Network analysis was applied to explore interspecific relationship patterns in the complex microbial 

234 communities. The results demonstrated that the number of edges (595675), vertices (4014), and the average 

235 degree (296.799) were greater in the WT sites (Figure 8). The diameter (5) and modularity (0.975) were greater 

236 in the LY site. The significant and strongly correlated OTUs were mainly distributed in the different modules in 

237 the network. The modules were more frequently observed in PQG sites (9), followed by WT sites (7) and LY 

238 sites (6). A module is a group of OTUs that are highly connected within the group, but with very few connections 

239 outside the group [51]. Thus, we considered that the changes of modules represented changes in interspecific 

240 relationships.

241 The bacterial community assembly process

242 According to the null model analysis, our results demonstrated that the null deviation values varied at 

243 different sites (ranging from 0.29 to 0.57) (Figure 9). Positive null deviation values can represent communities 

244 that are more dissimilar than the null expectation [2, 25]. The bacterial communities in WT sites deviated 

245 significantly from the null expected value (relative null deviation = 0.45) and there were more communities in 

246 WT sites than in the LY and PQG sites (relative null deviation = 0.32 and 0.34) (P <0.05). 

247 The functional community structure (NRI(FUN)) varied among the different sites (ranging from -1.02 to -

248 0.31,) (P >0.05). The NRI(FUN) was negative, indicating a traits divergence in communities. The (NRI(FUN)) was 

249 lowest in WT sites (-0.75).

250 The NRI (ranging from -0.94 to -0.38) and NTI (ranging from -1.04 to -0.46) varied among the different 

251 sites (P >0.05). Both the NRI and NTI were negative, indicating over-disperse phylogenetic patterns. There were 
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252 no significant differences between the NRI and NTI (P >0.05). 

253 Disscussion

254 Microorganisms typically form diverse communities of interacting species, whose activities have a 

255 tremendous impact on the plants, animals, and humans they associate with [52]. The mechanism or ecological 

256 processes that drives the structure of these complex communities is crucial to understanding and managing them. 

257 The integration of multiple ecological processes can provide more clues for drawing the biogeographic patterns 

258 of communities. The results of this study indicate that the ongoing ecological processes and historical or 

259 evolutionary factors, as well as the trade-off between deterministic and stochastic processes, jointly drive the 

260 assembly processes of the soil microbial community in subalpine coniferous forests on the Loess Plateau, China. 

261 By integrating multiple analytical methods, the one-sidedness of a single method can be avoided and a more 

262 scientific and accurate conclusion can be drawn. There are some inconsistencies in the results obtained for the 

263 same microbial community data when using different analytical methods, and this may be the main reason why 

264 the universality of ecological mechanisms is often challenged. What these conclusions have in common is that 

265 interspecific relationships are driving factors in the process of community assembly. 

266 Trade-off between deterministic and stochastic process in driving the community assembly process 

267  In the null model analysis, the degree of deviation from the random expectation is understood to reflect 

268 community assemble processes through environmental filtering (negative values; communities less dissimilar 

269 than expected by chance) or competitive interactions (positive values; communities more dissimilar than 

270 expected by chance) [2, 26]. The large deviations from the random expectation could be interpreted as reûecting 

271 communities structured by deterministic assembly mechanisms [26]. The results demonstrated that null deviation 

272 values varied among sites (P <0.05); thus, we inferred that the trade-offs between deterministic and stochastic 
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273 processes drove the composition of microbial communities in the study area [25, 26]. Previous studies have 

274 confirmed that the trade-off could be dependent on varying environmental conditions or the characteristics 

275 of organisms [53]. The null deviation in WT sites significantly deviated from the stochastic assembly model to 

276 a greater extent than for the other two sites, indicating a stronger deterministic process. From the VPA, the spatial 

277 variables (1.9%) were found to be the minimal contributor to the bacterial biogeographic distribution pattern, 

278 indicating the minimal role of stochastic processes. Therefore, we inferred that a deterministic process was 

279 predominant for governing the biogeographic distribution patterns of the microbial community in current study.

280 Relative to environmental filtering, interspecific relationships dominate the biogeographic patterns of 

281 microbial communities

282 Environmental factors, such as salinity [54], pH [55, 56], C/N ratio [57], soil C [58], soil N [59], and the 

283 structure of the plant community [60] may be major determinants of microbial community structure. Our results 

284 demonstrated that pH, SOC, TC, and TN were the main abiotic drivers of microbial community composition. 

285 More importantly, it was SOC that had the most significant effects on community diversity (MRT analysis), 

286 structures (RDA), and NRI (GAMM). We observed that SOC was significantly different at different sites, and 

287 was significantly correlated with nitrate nitrogen, nitrite nitrogen, and TN (P <0.05). Thus, SOC was found to 

288 be closely related to many soil environmental factors and had the highest weighting. Along the northern slope 

289 of the Changbai Mountains, the SOM decomposition rate had a significant positive relationship with the total 

290 microbial, bacterial, and Actinomycetes PLFAs and soil enzyme activity [61]. Thus, SOC was closely related to 

291 microbial community structure, composition, and diversity [62], and was therefore related to the community 

292 assembly process.

293 The VPA showed that environmental factors and spatial variables were minor contributors to the bacterial 
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294 biogeographic distribution pattern, explaining only 21.4% of the total variation. The sample plots used in this 

295 study were established under subalpine coniferous forest. The environmental context of subalpine regions 

296 includes pronounced climatic gradients and climosequences within short distances, with a high level of 

297 environmental heterogeneity [17]. However, crowded coniferous forests can block most of the sunlight and 

298 reduce wind, reducing environmental heterogeneity. In addition, the current study was initiated in a subalpine 

299 coniferous forest soil, where the composition of litter was relatively simple. Although the sites were different, 

300 there was little variation in the aboveground vegetation (dominant species: C. breviculmis, Stipa capillata Linn.). 

301 This could be the reason why environmental filtering made only a minor contribution to the bacterial 

302 biogeographic distribution pattern.

303 The unexplained variation in VPA (78.6%) could also be due to unmeasured environmental variables and 

304 unincorporated neutral factors. We inferred that this was more related to the interspecific relationship.

305 We observed that the null deviations were positive in the null model, which were interpreted as showing 

306 competitive interactions within the community, because communities were more dissimilar than expected by 

307 chance [2, 25]. In addition, we also observed an over-dispersion of phylogenetic patterns (NRI and NTI) and 

308 trait divergence in communities (NRI (fun)) [10]. By integrating the results of the three analytical methods, we 

309 inferred a consistent conclusion that interspecific relationships were the driving factor of community assembly 

310 processes rather than environmental filtering. The driving effect of interspecific relationships in the process of 

311 community assembly can be represented by the changes of modules in the network analysis (Figure 8).

312 Many analytical methods can be used to separate the relative roles of competition and abiotic filtering, but 

313 their distinction is frequently fuzzy. This may be because competitive interaction and environmental stress act 

314 synchronously, as suggested by the existence of a balance between stress tolerance and nutrient access [11]. 
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315 Many ecologists tend to appreciate that environmental filtering is the dominant process in community assembly, 

316 because such conditions have traditionally been ascribed to environmental filtering alone in most cases [9]. 

317 However, it is not correct to ignore the roles of interspecific relationships to infer the process of community 

318 assembly. Many studies have confirmed the importance of interspecific relationships. For microorganisms, 

319 competition is most important under conditions of high resource availability while abiotic filtering prevails 

320 during periods of high environmental stress [63]. For macroorganisms, the interactions due to competition were 

321 more important than the regional climate in governing long-term changes in tree mortality [64]. In the current 

322 study, the dense coverage of coniferous forest litter on the surface of the soil formed an unventilated 

323 environment, which was conducive to the accumulation of soil nutrients. This nutrient accumulation promoted 

324 substrate availability. The high resource availability then accelerated interspecies competition [63]. 

325 Effects of historical factors and ongoing ecological processes on community assembly

326 The phylogenetic patterns could reflect the imprints of evolutionary and biogeographic history on 

327 community structure [65]. The NRI primarily reflects the structure in deeper parts of the phylogeny, while NTI 

328 mainly reflects the shallow parts of the phylogeny [29, 49]. For example, previous studies found that broad scale 

329 deep-time intercontinental migration (inferred by the NRI index), together with climatic niche conservatism, 

330 appear to influence the tree community phylogenetic structure in East Asian forests, with a shallow phylogenetic 

331 imprint of local diversification (inferred by the NTI index) [27]. This may be because patterns of relatedness, 

332 where related taxa have disjunctive occurrences, often occur at the genus or higher taxonomic levels and could 

333 reflect historical factors (migrations that occurred millions of years ago) [66]. Climatic conservatism is a 

334 necessary component in maintaining such disjunctions [27]. The results of the current study demonstrated that 

335 there were no significant differences between the NRI and NTI, indicating little difference between the deeper 
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336 and the shallow parts of the phylogeny. We therefore inferred that historical and evolutionary factors, such as 

337 the paleoclimate, current climate, and local diversification, have similar effects on microbial community 

338 structure based on climatic niche conservatism [67, 68]. This may be because there is no significant difference 

339 between the paleoclimate and current climate, or that the difference between the two is not the driving factor in 

340 the process of microbial community assembly. 

341 The functional traits should be directly linked to ongoing ecological processes [30]. Because niche breadth 

342 is the sum of all the resources that can be used by organisms, it is an ideal proxy of the functional traits. The 

343 functional community structure (NRIfun) also showed functional dispersal patterns (traits divergence) [69]. The 

344 effects of ongoing ecological processes on microbial community assembly were greater in WT sites. Both the 

345 null deviation and the NRIfun were greater in WT sites, which is probably related to the larger elevation gradient 

346 in WT sites (Table S1). The ongoing ecological processes may be related to the community turnover. The 

347 functional and phylogenetic structure were shaped by divergent processes, which is consist with the results of 

348 previous studies [27, 28].

349 Conclusion

350 The most important finding in this study was that deterministic processes (especially interspecific 

351 relationships) drove the bacterial community assembly in subalpine coniferous forests on the Loess Plateau, 

352 China. Historical and evolutionary factors, such as the paleoclimate and current climate, had similar effects on 

353 microbial community structure based on climatic niche conservatism. The effects of ongoing ecological 

354 processes on microbial community assembly were largest in WT sites. The functional and phylogenetic 

355 structures were shaped by divergent processes. The results of this study will improve our understanding of the 

356 trade-off between deterministic versus stochastic process in bacterial community assemblages and the shaping 
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357 of bacterial biogeography from multiple dimensions.
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Figure 1(on next page)

Figure 1 Geographic distribution of the 23 sampling plots located on Loess Plateau,

China

WT: Wutai mountain; LY: Luya mountain; PQG: Yunding mountain located on Pang Quangou

National Nature Reserve
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Figure 2(on next page)

Figure 2 Barplots (a) show the soil physicochemical factors of each sites. Correlation

matrix graph (b) shows the correlation between soil physicochemical factors
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Figure 3(on next page)

Figure 3 Relative abundance of the dominant bacterial phylum (a) and class (c) across

the sites. Venn Diagram (b) showed the shared OTUs in all plots. The heat map (d)

shows clustering patterns in different plots
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Figure 4(on next page)

Figure 4 Bacterial community diversity on different sites

ace: ACE index; chao: Chao index; shannon: Shannon index; simpson: Simpson index
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Figure 5(on next page)

Figure 5 Redundancy analysis (RDA) plots of bacterial communities and the response of

these communities to significant soil physicochemical properties
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Figure 6(on next page)

Figure 6 Multivariate regression tree (MRT) of bacterial ³-diversity data associated with

key environmental factors

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27223v1 | CC BY 4.0 Open Access | rec: 18 Sep 2018, publ: 18 Sep 2018



 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27223v1 | CC BY 4.0 Open Access | rec: 18 Sep 2018, publ: 18 Sep 2018



Figure 7(on next page)

Figure 7 Variation partitioning analysis showing the percentages of variance in bacterial

communities explained by environment factor, spatial variable (PCNM)
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Figure 8(on next page)

Figure 8 Network of co-occurring OTUs colored by modularity class

A connection stands for a strong (Spearman's Ã > 0.6) and significant (p-value < 0.01)

correlation network. For each panel, the size of each node is proportional to the betweenness

centrality; the thickness of each connection between two nodes (edge) is proportional to the

value of Spearman's correlation coefficients (> 0.6)
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Table 1(on next page)

Table 1 Generalized Additive Mixed Model fitted to the NRI data across all sites
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Table 1 Generalized Additive Mixed Model (GAMM) fitted to the 

NRI data across all sites

� Estimate SE T Pr(>|t|)

(Intercept) -1.044 0.676 -1.546 0.141

TN -0.129 0.578 -0.223 0.826

TC 0.014 0.034 0.411 0.686

pH 0.023 0.096 0.24 0.813

SOC 0.004 0.002 2.472   0.024 *

PCNM 0.0001 0.0001 1.158 0.263

SE: standard error

1
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Figure 9(on next page)

Figure 9 The community assembly preocesses in different sites

a: null deviation values; b:NRI(fun); c: NRI(phy); d: NTI
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