

An interactive tool for teaching map projections

Map projections are one of the fundamental concepts of geographic information science and cartography. An understanding of the different variants and properties is critical when creating maps or carrying out geospatial analyses. To support learning about map projections, we present an online tool that allows to interactively explore the construction process of map projections. A central 3D view shows the three main building blocks for perspective map projections: the globe, the projection surface (cone, cylinder, plane) and the projection center. Interactively adjusting these objects allows to create a multitude of arrangements forming the basis for common map projections. Further insights can be gained by adding supplementary information, such as projection lines and Tissot's indicatrices. Once all objects have been arranged in a desired way, the projection surface can be unrolled to form the final flat map. Currently, the tool is limited to visualize the construction of true perspective map projections. In the future, prime concerns are to increase the genericity of the application to support more map projections and to integrate it into the GITTA (Geographic Information Technology Training Alliance) platform.

1 An Interactive Tool for Teaching Map 2 Projections

3 **Magnus Heitzler¹, Hans-Rudolf Bär¹, Roland Schenkel², and Lorenz
4 Hurni¹**

5 **¹Institute of Cartography and Geoinformation, ETH Zurich, Zurich, Switzerland**

6 **²ESRI Schweiz AG, Zurich, Switzerland**

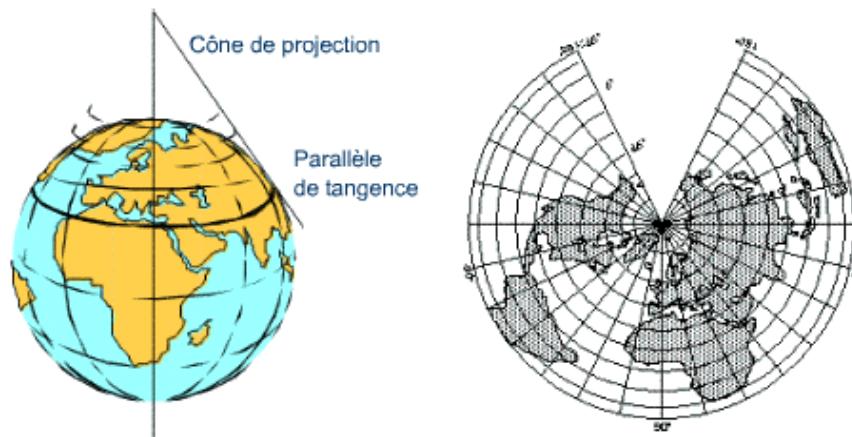
7 Corresponding author:

8 Magnus Heitzler¹

9 Email address: hmagnus@ethz.ch

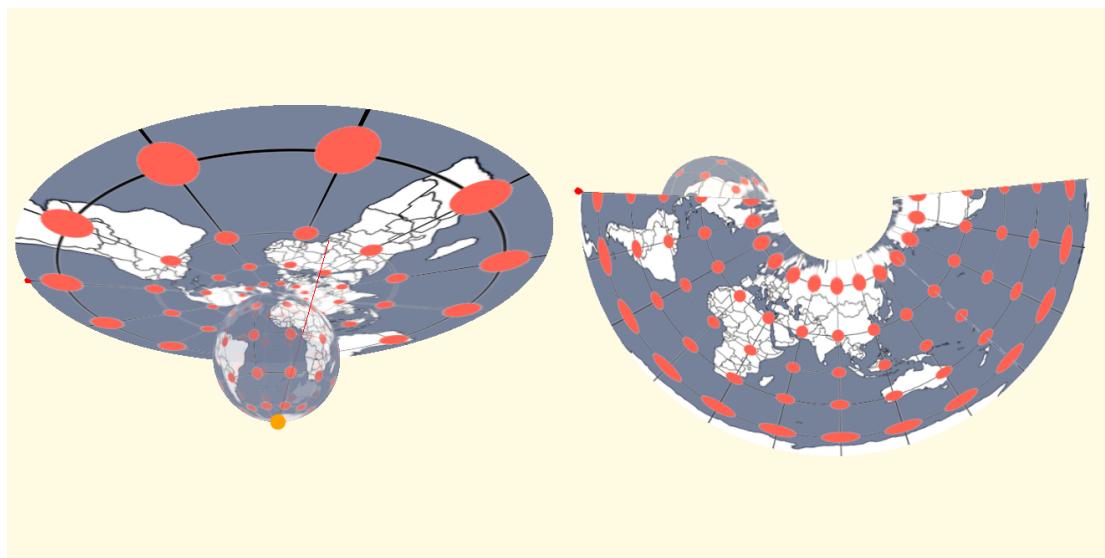
10 ABSTRACT

11 Map projections are one of the fundamental concepts of geographic information science and cartography.
12 An understanding of the different variants and properties is critical when creating maps or carrying out
13 geospatial analyses. To support learning about map projections, we present an online tool that allows
14 to interactively explore the construction process of map projections. A central 3D view shows the three
15 main building blocks for perspective map projections: the globe, the projection surface (cone, cylinder,
16 plane) and the projection center. Interactively adjusting these objects allows to create a multitude of
17 arrangements forming the basis for common map projections. Further insights can be gained by adding
18 supplementary information, such as projection lines and Tissot's indicatrices. Once all objects have been
19 arranged in a desired way, the projection surface can be unrolled to form the final flat map. Currently,
20 the tool is limited to visualize the construction of true perspective map projections. In the future, prime
21 concerns are to increase the genericity of the application to support more map projections and to integrate
22 it into the GITTA (Geographic Information Technology Training Alliance) platform.


23 INTRODUCTION

24 Map projections are a key concept in cartography and geographic information science. Choosing an
25 inappropriate map projection may cause severely flawed results when carrying out geospatial analyses
26 or may distort a map reader's view on the world when exploring a thematic or topographic map. Hence,
27 a thorough understanding of the construction process and map properties is important. While mapping
28 software typically implement map projections as a set of equations (e.g., kartograph.js (Aisch, 2014)
29 or d3.js (Bostock et al., 2011)), educational resources follow a more graphical approach to explain the
30 underlying geometrical meaning of the construction process. For example, the construction process for
31 the Lambert conformal conic projection is explained in the GITTA (Geographic Information Technology
32 Training Alliance) learning platform using the two illustrations given in Figure 1 (GITTA, 2018). On
33 the left, a cone surrounding the globe is sketched, touching it at the standard parallel. On the right, it is
34 indicated how the final 2D map looks like, which is obtained by flattening the cone. Similar depictions can
35 be found in other sources such as textbooks and manuals (e.g., those by Iliffe and Lott (2008) and Snyder
36 (1987)). Such depictions give a better impression of the construction process than mathematical formulas.
37 However, they only show snapshots of an actually continuous procedure and thus leave considerable
38 mental workload to the reader. In this paper, we present a tool, which allows to explore this process in a
39 more flexible way.

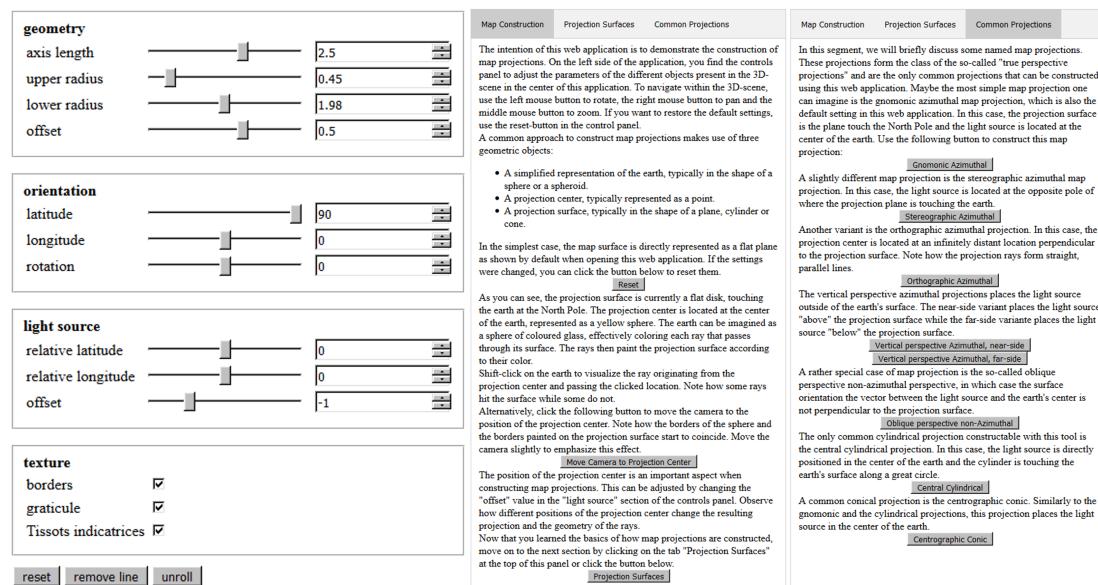
40 PROJECTION TOOL


41 The educational tool for the construction of map projections is an interactive 3D web application that
42 enables the user to explore the map construction process in a comprehensive and interactive manner¹.
43 It consists of a central 3D view in which the different arrangements of the required objects are shown:

¹The prototype can be tested at <https://gevian.github.io/GITTA-MP/>

Figure 1. Typical illustrations on the map construction process exemplified for Lambert's conformal conic projection. Left: 2D illustration of the positioning of the cone and the globe to carry out the projection process. Right: Illustration of the final 2D map obtained by flattening the cone. Source: GITTA (2018).

44 The globe (simplified as a unit sphere), the projection surface and the projection center. Two examples
45 on possible arrangements in the 3D scene are given in Figure 2. The projection center is represented as
46 an orange sphere to follow the light bulb metaphor when explaining map projections: Rays are being
47 sent out from this point light source, intersecting the globe and hitting the projection surface. Such a ray
48 is displayed in red color on the left side of Figure 2. The color on the projection surface is determined
49 by the color where the ray intersects the globe, thus giving a direct impression of how features on the
50 surface of the globe are represented on the projection surface. The shape of the projection surface and the
51 positioning of the projection center can be interactively manipulated.


Figure 2. Different configurations of map projections as visualized in the 3D view. Left: the stereographic azimuthal projection constructed by placing the plane on the North pole and setting the projection center to the South pole. Right: a conical projection has been constructed and subsequently unrolled to obtain the flat map.

52 Traditionally, three main projection surfaces are described in the literature: the plane, the cylinder
53 and the cone. Each of these surfaces has distinct properties, such as its standard parallels, its orientation
54 around the globe, etc. Rather than providing different interfaces for each of these surfaces, we exploit

55 the fact that these surfaces are special cases of the conical frustum. Each of them can be constructed by
 56 modifying the frustum's upper and lower radii, height and position in respect to the globe. This simplifies
 57 the user interface and at the same time makes this relationship obvious. The corresponding parameters are
 58 shown on the left side of Figure 3.

59 The position of the projection center is critical for map projections. It typically resides anywhere along
 60 the local y-axis of the projection surface. Hence, the position of the projection center is directly coupled
 61 to the orientation of the projection surface. For rare cases, such as the oblique perspective projection, it
 62 is possible to move the projection center away from the y-axis, using the respective sliders for relative
 63 latitude and longitude. To create orthographic projections, the projection center needs to be positioned at
 64 positive or negative infinity, which can be approximated with high or low numerical values (e.g., ± 100).

65 Finally, the projection surface can be unrolled, which is visualized using a smooth animation, resulting
 66 in the flat map. One result of this process is depicted in Figure 2 on the right. This final representation
 67 typically completes the map construction process. If other configurations are to be investigated, it is
 68 possible to roll the map again. Apart from the standard texture depicting the world's borders and land
 69 areas, it is possible to include a graticule and Tissot's indicatrices to investigate distortions.

Figure 3. Controls and tutorial of the projection tool. Left: User interface elements to explore different configurations of map projections. Center: The first page of the accompanying tutorial. Right: Brief explanations on common map projections along with buttons to construct them automatically.

70 The general controls allow for an unguided exploration of the map construction process. A more
 71 focused approach is included in the form of a tutorial, which explains general concepts and guides the
 72 user in adjusting certain parameters or showcasing relationships using pre-defined buttons. The tutorial
 73 is accompanied with a list of common projections that can be constructed with the tool. Shortcuts are
 74 provided that automatically adjust the parameters to obtain the respective map projection.

75 OUTLOOK

76 The current version of the projection tool is limited in several ways. First, only true perspective map
 77 projections can be directly generated by constructing straight lines originating from a single projection
 78 center. Examples for currently unsupported map projection are those requiring the construction of circular
 79 arcs instead of straight lines, such as the azimuthal equidistant projection, and those requiring to scale the
 80 resulting flat map, such as the Mercator projection. Second, the graphical quality of the constructed map
 81 projections does not suffice cartographic standards. Blurriness and other artifacts are common. Third,
 82 the user interface and the tutorial need to be improved to provide a better learning experience. These
 83 limitations will be addressed in next versions of the projection tool. In the near future, the focus will be

⁸⁴ to improve the tutorial, clean up the user interface and improve the robustness of the tool to ensure its
⁸⁵ smooth integration into the GITTA platform.

⁸⁶ CONCLUSION

⁸⁷ Allowing to interactively construct map projections in a 3D environment as provided by the described
⁸⁸ projection tool goes beyond the common static approaches provided by conventional educational resources.
⁸⁹ Hence, it is expected that the projection tool will be a valuable add-on to the GITTA learning platform.
⁹⁰ However, remaining shortcomings, such as its restriction to true perspective map projections limit its use.
⁹¹ To overcome these, it is aimed to continuously refine the projection tool with regards to the number of
⁹² supported projection types, the graphical quality of the rendering process and the didactic quality of the
⁹³ accompanying tutorial.

⁹⁴ REFERENCES

⁹⁵ Aisch, G. (2014). Kartograph. <https://kartograph.org/>. Accessed 2018-08-27.

⁹⁶ Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents. *IEEE Transactions on
97 Visualization and Computer Graphics*, 17(12):2301–2309.

⁹⁸ GITTA (2018). Gitta - geographic information technology training alliance. <http://www.gitta.info>.
⁹⁹ Accessed 2018-08-27.

¹⁰⁰ Iliffe, J. and Lott, R. (2008). *Datums and Map Projections: For Remote Sensing, GIS and Surveying*.
¹⁰¹ Whittles Pub.

¹⁰² Snyder, J. (1987). *Map Projections-a Working Manual*. U.S. Geological Survey professional paper. U.S.
¹⁰³ Government Printing Office.