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ABSTRACT 
A rapid assessment of the areal extent of landslide disasters is one of the main challenges facing 
by the scientific community. Satellite radar data represent a powerful tool for the rapid detection 
of landslides over large spatial scales, even in case of persistent cloud cover. To define landslide 
locations, radar data need to be firstly pre-processed and then elaborated for the extraction of the 
required information. Segmentation represents one of the most useful procedures for identifying 
land cover changes induced by landslides. In this study, we present an application of the 
i.segment module of GRASS GIS software for segmenting radar-derived data. As study area, we 
selected the Tagari River valley in Papua New Guinea, where massive landslides were triggered 
by a M7.5 earthquake on February 25, 2018. A comparison with ground truth data revealed a 
suitable performance of i.segment. Particular segmentation patterns, in fact, resulted in the areas 
affected by landslides with respect to the external ones, or to the same areas before the 
earthquake. These patterns highlighted a relevant contrast of radar backscattering values 
recorded before and after the landslides. With our procedure, we were able to define the 
extension of the mass movements that occurred in the study area, just three days after the M7.5 
earthquake. 
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INTRODUCTION 

Optical and radar satellite imagery allow obtaining information on changes in land cover induced 
by anthropic activities or natural phenomena (e.g., wildfires, floods, landslides). Synthetic 
Aperture Radar (SAR) sensors have the unique advantage to transmit electromagnetic radiations 
in the microwave wavelength region, and to receive the backscattered signal without the cloud 
cover disturbance. Amplitude of the backscattered signal is influenced by the  type of target and 
vary according to several factors, such as the land use (e.g. water bodies, ice cover, forest type, 
bare soil), surface roughness, terrain slope. By comparing amplitudes of signals acquired in 
different times, it is possible to get valuable evidences of the land cover changes occurred in a 
specific area.  
Amplitude-based methods have been successfully applied for the detection of landslides 
inducing sharp modifications of the land cover (Mondini, 2017; Tessari et al., 2017; Konishi & 
Suga, 2018). Generally, extraction of landslide information from amplitude radar images is 
performed by means of segmentation and classification procedures. Segmentation aims at 
redefining the basic spatial unit from a single grid cell to a group of adjoining cells characterized 
by similar properties, and referred to as objects. This is a crucial operation, given that unreliable 
segmentation algorithms could lead to inaccurate identification of objects and to a wrong 
classification of them.  
The current study focuses on the segmentation of radar-derived images by means of the 
segmentation module i.segment (Momsen & Metz, 2017), included in the open-source GRASS 
GIS software. As test site, we selected part of the Tagari River valley in Papua New Guinea (Fig. 
1), which was struck by a M7.5 earthquake on February 25, 2018. The earthquake triggered 
massive landslides that killed dozens of people and caused relevant geomorphic effects (e.g., 
river dams). Segmentation was thus aimed at identifying areas affected by landslides, starting 
from multi-temporal radar images, and  at exploring the performance of i.segment with this type 
of data. 
The research activities described in this manuscript have been developed in the framework of 
STRESS (Strategies, Tools and new data for REsilient Smart Societies), a project focusing on the 
designing, implementing and testing of a Spatial Information Infrastructure (SII), as a support for 
spatial planners and risk managers involved in the analysis of hazard and impact assessment of 
geo-hydrological phenomena.  
 

MATERIALS & METHODS 
Data used in this study are C-band SAR images acquired by the Sentinel-1 satellites in 
Interferometric Wide swath (IW) mode, with a VV+VH dual polarization. A total of 5 Level-1 
single look complex (SLC) consecutive images were downloaded from the ESA Sentinel Data 
Hub (https://scihub.copernicus.eu): two images were related to the period preceding the 
reference earthquake (February 25, 2018) and three images were related to the following time 
span. All the images were acquired along the satellite track n.82 in ascending orbit. Each image 
was pre-processed by means of the graph processing tool (GPT) of the ESA’s Sentinel-1 
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Toolbox (S1TBX), a module of the Open Source software SNAP (version 6.0). Pre-processing 
consisted in the following stages: (1) thermal noise removal, (2) radiometric calibration (β0), (3) 
TOPSAR deburst, and (4) Multilooking. For each couple of images, a co-registration procedure 
was carried out by using as support the Shuttle Radar Topography Mission (SRTM) 1 Sec 
Digital Elevation Model (DEM), auto-downloaded from the SNAP software. After the co-
registration, a change detection analysis was performed by calculating the Log-Ratio (LR) index 
as in Mondini (2017), with the following formula:     

𝐿𝑅  𝑙𝑛 
𝛽,

𝛽,
 

where i is the image index, with i ranging from 2 to the number of images, ln the natural 
logarithm and β0 is the radiometric calibrated backscatter. This index provides a measurement of 
land cover changes occurred in a specific time interval. For each couple of images, a LR layer 
was thus produced.  
Each LR layer was segmented by means of the i.segment module of GRASS GIS 7.4, by 
selecting the “mean shift” as algorithm, together with the “adaptive spectral bandwidth” option. 
The mean shift is a kernel-based nonparametric technique for finding the modes (i.e. local 
maxima) of probability density estimations (Fukunaga & Hostetler, 1975; Comaniciu & Meer, 
2002). In i.segment, the mean shift is implemented as an iterative two-step procedure, consisting 
in the anisotropic filtering and clustering of pixels. Basically, the mean shift algorithm 
recalculates cell values (shifted to the segment's mean) until a user-defined maximum number of 
iterations is reached, or until the largest shift is smaller than a threshold (convergence). The 
threshold must be larger than 0.0 and smaller than 1.0: a threshold of 0 would allow only 
identical valued pixels to be merged, while a threshold of 1 would allow everything to be merged 
(Momsen & Metz, 2017). A more or less conservative threshold needs to be selected taking into 
account spectral properties of the analyzed images. 
The i.segment module requires hs and hr parameters, selected by the user, corresponding 
respectively to the spatial and range bandwidths, as indicated by Mahmood et al. (2012). With 
the adaptive bandwidth option, the hs is fixed whereas the hr can vary depending on the local 
data.  
After convergence is reached, the second step of segmentation is the clustering of filtered data. 
Clusters are delineated starting from the basins of attraction of the corresponding modes. Pixels 
falling in such basins, consisting in the data points visited by all the mean shift procedures 
converging to that mode (Comaniciu & Meer, 2002), are grouped together in the same cluster. 
The cluster boundaries are then identified as loci where the force vectors diverge (Comaniciu & 
Meer, 2002).   
To reduce “the salt and pepper” effect, the segments (i.e. clusters) containing less than the 
preferred minimum number of pixels can be eliminated, by specifying the minsize parameter 
within the i.segment command.  
After clustering, a new layer showing the calculated segments is produced.  
In this study, preliminary segmentation parameters were defined taking into account the spatial 
and spectral properties of the LR layers to segment, as well as the shape and size of the expected 
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landslides. The selected parameters were then refined by using a “trial-and-error” approach 
relied on the visual assessment of the “pre-post earthquake” LR layer segmentation. The selected 
parameters resulted as follows: hs=10, hr=0.002, threshold=0.004, minsize=2, max number of 
iterations=100. 

 
RESULTS 
As shown in Figure 1, the Tagari River valley was affected by large-scale mass wasting 
processes triggered by the M7.5 earthquake and related aftershocks, with a consequent formation 
of river dams.  

 
 
Figure 1: The Tagari River valley (Papua New Guinea). Optical satellite images before (on the 
left) and after (on the right) the severe earthquake. Images were collected on the Planet explorer 
application (Planet, 2017). 
 
Both LR and segmentation layers derived from the change detection analyses are shown in 
Figure 2. In the two LR layers related to the time period between February 16 and March 12 
(which include the major earthquake shaking), the evidences of land cover changes (landslides) 
are highlighted. In the corresponding segmentation layers, some “objects” are delineated where 
those changes are observed. Those objects are made by a relevant amount of very small 
segments, which are probably delineated due to the high local variance of the values of the 
underlying LR layers (1.70 and 1.46 respectively for the 02/16 - 02/28 and 02/28 - 03/12 
periods). In the same areas of the preceding (02/04 - 02/16) and following (03/12 - 03/24) time 
periods, the variance of the LR values is significantly lower (0.24 and 0.33 respectively) and 
small segments are not created. 
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Figure 2: The Tagari River valley. Log-Ratio and Segmentation layers resulted from the change 

detection analyses. Extension of the area is the same of Figure 1. 
 

DISCUSSION AND CONCLUSIONS 
The segmentation of the Log-Ratio maps obtained through the GPT pre-processing chain of 
Sentinel 1 data seems promising for the development of automatic procedures aimed at 
monitoring a wide territory and detecting landslide events. 
Values of the  parameters selected for the segmentation procedure are user-defined and their 
tuning is generally related to different factors, such as the type of the images, their spatial and 
spectral resolution, the shape and size of the objects to be segmented. A ‘trial-and-error’ 
approach based on the visual assessment of the segmentation is therefore necessary to calibrate 
the parameters. The use of radar images allowed us to identify landslides after the most powerful 
earthquake (i.e. 02/28/2018). It is worth underlining that such products are not dependent from 
the cloud cover, as for example the optical images that are usually available several weeks after 
landslide occurrence. Following landslide disasters, maps showing the extension of the affected 
areas are crucial for the emergency operations. However, in remote areas of the world, like 
Papua New Guinea, it can be very difficult to obtain affordable data in a short time because of 
several reasons, including a limited availability of properly equipped helicopters/airplanes, 
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adverse weather conditions, and road damages. In these cases, the use of SAR satellites can be 
therefore essential. 
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