An example of SAR-derived image segmentation for landslides
detection

A rapid assessment of the areal extent of landslide disasters is one of the main challenges
facing by the scientific community. Satellite radar data represent a powerful tool for the
rapid detection of landslides over large spatial scales, even in case of persistent cloud
cover. To define landslide locations, radar data need to be firstly pre-processed and then
elaborated for the extraction of the required information. Segmentation represents one of
the most useful procedures for identifying land cover changes induced by landslides. In
this study, we present an application of the i.segment module of GRASS GIS software for
segmenting radar-derived data. As study area, we selected the Tagari River valley in
Papua New Guinea, where massive landslides were triggered by a M7.5 earthquake on
February 25, 2018. A comparison with ground truth data revealed a suitable performance
of i.segment. Particular segmentation patterns, in fact, resulted in the areas affected by
landslides with respect to the external ones, or to the same areas before the earthquake.
These patterns highlighted a relevant contrast of radar backscattering values recorded
before and after the landslides. With our procedure, we were able to define the extension
of the mass movements that occurred in the study area, just three days after the M7.5

earthquake.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27212v1 | CC BY 4.0 Open Access | rec: 16 Sep 2018, publ: 16 Sep 2018




An example of SAR-derived image segmentation for
landslides detection

Giuseppe Esposito!, Alessandro Cesare Mondini', Ivan Marchesini', Paola Reichenbach!, Paola
Salvati!, Mauro Rossi!

! National Research Council (CNR), Research Institute for geo-hydrological protection (IRPI),
Perugia, Italy

Corresponding Author:
Giuseppe Esposito!
Via della Madonna Alta 126, Perugia, 06128, Italy

Email address: giuseppe.esposito@irpi.cnr.it

ABSTRACT

A rapid assessment of the areal extent of landslide disasters is one of the main challenges facing
by the scientific community. Satellite radar data represent a powerful tool for the rapid detection
of landslides over large spatial scales, even in case of persistent cloud cover. To define landslide
locations, radar data need to be firstly pre-processed and then elaborated for the extraction of the
required information. Segmentation represents one of the most useful procedures for identifying
land cover changes induced by landslides. In this study, we present an application of the
i.segment module of GRASS GIS software for segmenting radar-derived data. As study area, we
selected the Tagari River valley in Papua New Guinea, where massive landslides were triggered
by a M7.5 earthquake on February 25, 2018. A comparison with ground truth data revealed a
suitable performance of i.segment. Particular segmentation patterns, in fact, resulted in the areas
affected by landslides with respect to the external ones, or to the same areas before the
earthquake. These patterns highlighted a relevant contrast of radar backscattering values
recorded before and after the landslides. With our procedure, we were able to define the
extension of the mass movements that occurred in the study area, just three days after the M7.5
earthquake.
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INTRODUCTION

Optical and radar satellite imagery allow obtaining information on changes in land cover induced
by anthropic activities or natural phenomena (e.g., wildfires, floods, landslides). Synthetic
Aperture Radar (SAR) sensors have the unique advantage to transmit electromagnetic radiations
in the microwave wavelength region, and to receive the backscattered signal without the cloud
cover disturbance. Amplitude of the backscattered signal is influenced by the type of target and
vary according to several factors, such as the land use (e.g. water bodies, ice cover, forest type,
bare soil), surface roughness, terrain slope. By comparing amplitudes of signals acquired in
different times, it is possible to get valuable evidences of the land cover changes occurred in a
specific area.

Amplitude-based methods have been successfully applied for the detection of landslides
inducing sharp modifications of the land cover (Mondini, 2017; Tessari et al., 2017; Konishi &
Suga, 2018). Generally, extraction of landslide information from amplitude radar images is
performed by means of segmentation and classification procedures. Segmentation aims at
redefining the basic spatial unit from a single grid cell to a group of adjoining cells characterized
by similar properties, and referred to as objects. This is a crucial operation, given that unreliable
segmentation algorithms could lead to inaccurate identification of objects and to a wrong
classification of them.

The current study focuses on the segmentation of radar-derived images by means of the
segmentation module i.segment (Momsen & Metz, 2017), included in the open-source GRASS
GIS software. As test site, we selected part of the Tagari River valley in Papua New Guinea (Fig.
1), which was struck by a M7.5 earthquake on February 25, 2018. The earthquake triggered
massive landslides that killed dozens of people and caused relevant geomorphic effects (e.g.,
river dams). Segmentation was thus aimed at identifying areas affected by landslides, starting
from multi-temporal radar images, and at exploring the performance of i.segment with this type
of data.

The research activities described in this manuscript have been developed in the framework of
STRESS (Strategies, Tools and new data for REsilient Smart Societies), a project focusing on the
designing, implementing and testing of a Spatial Information Infrastructure (SII), as a support for
spatial planners and risk managers involved in the analysis of hazard and impact assessment of
geo-hydrological phenomena.

MATERIALS & METHODS

Data used in this study are C-band SAR images acquired by the Sentinel-1 satellites in
Interferometric Wide swath (IW) mode, with a VV+VH dual polarization. A total of 5 Level-1
single look complex (SLC) consecutive images were downloaded from the ESA Sentinel Data
Hub (https://scihub.copernicus.eu): two images were related to the period preceding the
reference earthquake (February 25, 2018) and three images were related to the following time
span. All the images were acquired along the satellite track n.82 in ascending orbit. Each image
was pre-processed by means of the graph processing tool (GPT) of the ESA’s Sentinel-1
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80  Toolbox (SITBX), a module of the Open Source software SNAP (version 6.0). Pre-processing
81  consisted in the following stages: (1) thermal noise removal, (2) radiometric calibration (Po), (3)
82  TOPSAR deburst, and (4) Multilooking. For each couple of images, a co-registration procedure
83  was carried out by using as support the Shuttle Radar Topography Mission (SRTM) 1 Sec

84  Digital Elevation Model (DEM), auto-downloaded from the SNAP software. After the co-

85  registration, a change detection analysis was performed by calculating the Log-Ratio (LR) index
86  asin Mondini (2017), with the following formula:

:8(?,1 )
0,i-1

88  where i is the image index, with i ranging from 2 to the number of images, /n the natural

87 LR =In(

89  logarithm and Po is the radiometric calibrated backscatter. This index provides a measurement of
90 Iand cover changes occurred in a specific time interval. For each couple of images, a LR layer
91  was thus produced.
92  Each LR layer was segmented by means of the i.segment module of GRASS GIS 7.4, by
93  selecting the “mean shift” as algorithm, together with the “adaptive spectral bandwidth” option.
94  The mean shift is a kernel-based nonparametric technique for finding the modes (i.e. local
95 maxima) of probability density estimations (Fukunaga & Hostetler, 1975; Comaniciu & Meer,
96  2002). In i.segment, the mean shift is implemented as an iterative two-step procedure, consisting
97  in the anisotropic filtering and clustering of pixels. Basically, the mean shift algorithm
98 recalculates cell values (shifted to the segment's mean) until a user-defined maximum number of
99 iterations is reached, or until the largest shift is smaller than a threshold (convergence). The
100  threshold must be larger than 0.0 and smaller than 1.0: a threshold of 0 would allow only
101  identical valued pixels to be merged, while a threshold of 1 would allow everything to be merged
102 (Momsen & Metz, 2017). A more or less conservative threshold needs to be selected taking into
103  account spectral properties of the analyzed images.
104  The i.segment module requires hs and hr parameters, selected by the user, corresponding
105  respectively to the spatial and range bandwidths, as indicated by Mahmood et al. (2012). With
106  the adaptive bandwidth option, the hs is fixed whereas the hr can vary depending on the local
107  data.
108  After convergence is reached, the second step of segmentation is the clustering of filtered data.
109  Clusters are delineated starting from the basins of attraction of the corresponding modes. Pixels
110  falling in such basins, consisting in the data points visited by all the mean shift procedures
111 converging to that mode (Comaniciu & Meer, 2002), are grouped together in the same cluster.
112  The cluster boundaries are then identified as loci where the force vectors diverge (Comaniciu &
113 Meer, 2002).
114 To reduce “the salt and pepper” effect, the segments (i.e. clusters) containing less than the
115  preferred minimum number of pixels can be eliminated, by specifying the minsize parameter
116  within the i.segment command.
117  After clustering, a new layer showing the calculated segments is produced.
118  In this study, preliminary segmentation parameters were defined taking into account the spatial
119  and spectral properties of the LR layers to segment, as well as the shape and size of the expected
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120  landslides. The selected parameters were then refined by using a “trial-and-error” approach

121  relied on the visual assessment of the “pre-post earthquake” LR layer segmentation. The selected
122  parameters resulted as follows: hs=10, h=0.002, threshold=0.004, minsize=2, max number of
123  iterations=100.

124

125 RESULTS

126  As shown in Figure 1, the Tagari River valley was affected by large-scale mass wasting

127  processes triggered by the M7.5 earthquake and related aftershocks, with a consequent formation
128  of river dams.

Papua New Guinea

129
130

131 Figure I: The Tagari River valley (Papua New Guinea). Optical satellite images before (on the
132 left) and after (on the right) the severe earthquake. Images were collected on the Planet explorer
133  application (Planet, 2017).

134

135  Both LR and segmentation layers derived from the change detection analyses are shown in

136  Figure 2. In the two LR layers related to the time period between February 16 and March 12
137  (which include the major earthquake shaking), the evidences of land cover changes (landslides)
138  are highlighted. In the corresponding segmentation layers, some “objects” are delineated where
139  those changes are observed. Those objects are made by a relevant amount of very small

140  segments, which are probably delineated due to the high local variance of the values of the

141 underlying LR layers (1.70 and 1.46 respectively for the 02/16 - 02/28 and 02/28 - 03/12

142  periods). In the same areas of the preceding (02/04 - 02/16) and following (03/12 - 03/24) time
143  periods, the variance of the LR values is significantly lower (0.24 and 0.33 respectively) and
144  small segments are not created.
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145
146  Figure 2: The Tagari River valley. Log-Ratio and Segmentation layers resulted from the change

147  detection analyses. Extension of the area is the same of Figure 1.
148

149 DISCUSSION AND CONCLUSIONS

150  The segmentation of the Log-Ratio maps obtained through the GPT pre-processing chain of
151  Sentinel 1 data seems promising for the development of automatic procedures aimed at

152  monitoring a wide territory and detecting landslide events.

153  Values of the parameters selected for the segmentation procedure are user-defined and their
154  tuning is generally related to different factors, such as the type of the images, their spatial and
155  spectral resolution, the shape and size of the objects to be segmented. A ‘trial-and-error’

156  approach based on the visual assessment of the segmentation is therefore necessary to calibrate
157  the parameters. The use of radar images allowed us to identify landslides after the most powerful
158  earthquake (i.e. 02/28/2018). It is worth underlining that such products are not dependent from
159  the cloud cover, as for example the optical images that are usually available several weeks after
160 landslide occurrence. Following landslide disasters, maps showing the extension of the affected
161  areas are crucial for the emergency operations. However, in remote areas of the world, like

162  Papua New Guinea, it can be very difficult to obtain affordable data in a short time because of
163  several reasons, including a limited availability of properly equipped helicopters/airplanes,
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adverse weather conditions, and road damages. In these cases, the use of SAR satellites can be
therefore essential.
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