
An example of SAR-derived image segmentation for landslides
detection

A rapid assessment of the areal extent of landslide disasters is one of the main challenges

facing by the scientific community. Satellite radar data represent a powerful tool for the

rapid detection of landslides over large spatial scales, even in case of persistent cloud

cover. To define landslide locations, radar data need to be firstly pre-processed and then

elaborated for the extraction of the required information. Segmentation represents one of

the most useful procedures for identifying land cover changes induced by landslides. In

this study, we present an application of the i.segment module of GRASS GIS software for

segmenting radar-derived data. As study area, we selected the Tagari River valley in

Papua New Guinea, where massive landslides were triggered by a M7.5 earthquake on

February 25, 2018. A comparison with ground truth data revealed a suitable performance

of i.segment. Particular segmentation patterns, in fact, resulted in the areas affected by

landslides with respect to the external ones, or to the same areas before the earthquake.

These patterns highlighted a relevant contrast of radar backscattering values recorded

before and after the landslides. With our procedure, we were able to define the extension

of the mass movements that occurred in the study area, just three days after the M7.5

earthquake.
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ABSTRACT 17 

A rapid assessment of the areal extent of landslide disasters is one of the main challenges facing 18 

by the scientific community. Satellite radar data represent a powerful tool for the rapid detection 19 

of landslides over large spatial scales, even in case of persistent cloud cover. To define landslide 20 

locations, radar data need to be firstly pre-processed and then elaborated for the extraction of the 21 

required information. Segmentation represents one of the most useful procedures for identifying 22 

land cover changes induced by landslides. In this study, we present an application of the 23 

i.segment module of GRASS GIS software for segmenting radar-derived data. As study area, we 24 

selected the Tagari River valley in Papua New Guinea, where massive landslides were triggered 25 

by a M7.5 earthquake on February 25, 2018. A comparison with ground truth data revealed a 26 

suitable performance of i.segment. Particular segmentation patterns, in fact, resulted in the areas 27 

affected by landslides with respect to the external ones, or to the same areas before the 28 

earthquake. These patterns highlighted a relevant contrast of radar backscattering values 29 

recorded before and after the landslides. With our procedure, we were able to define the 30 

extension of the mass movements that occurred in the study area, just three days after the M7.5 31 

earthquake. 32 
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INTRODUCTION 40 

Optical and radar satellite imagery allow obtaining information on changes in land cover induced 41 

by anthropic activities or natural phenomena (e.g., wildfires, floods, landslides). Synthetic 42 

Aperture Radar (SAR) sensors have the unique advantage to transmit electromagnetic radiations 43 

in the microwave wavelength region, and to receive the backscattered signal without the cloud 44 

cover disturbance. Amplitude of the backscattered signal is influenced by the  type of target and 45 

vary according to several factors, such as the land use (e.g. water bodies, ice cover, forest type, 46 

bare soil), surface roughness, terrain slope. By comparing amplitudes of signals acquired in 47 

different times, it is possible to get valuable evidences of the land cover changes occurred in a 48 

specific area.  49 

Amplitude-based methods have been successfully applied for the detection of landslides 50 

inducing sharp modifications of the land cover (Mondini, 2017; Tessari et al., 2017; Konishi & 51 

Suga, 2018). Generally, extraction of landslide information from amplitude radar images is 52 

performed by means of segmentation and classification procedures. Segmentation aims at 53 

redefining the basic spatial unit from a single grid cell to a group of adjoining cells characterized 54 

by similar properties, and referred to as objects. This is a crucial operation, given that unreliable 55 

segmentation algorithms could lead to inaccurate identification of objects and to a wrong 56 

classification of them.  57 

The current study focuses on the segmentation of radar-derived images by means of the 58 

segmentation module i.segment (Momsen & Metz, 2017), included in the open-source GRASS 59 

GIS software. As test site, we selected part of the Tagari River valley in Papua New Guinea (Fig. 60 

1), which was struck by a M7.5 earthquake on February 25, 2018. The earthquake triggered 61 

massive landslides that killed dozens of people and caused relevant geomorphic effects (e.g., 62 

river dams). Segmentation was thus aimed at identifying areas affected by landslides, starting 63 

from multi-temporal radar images, and  at exploring the performance of i.segment with this type 64 

of data. 65 

The research activities described in this manuscript have been developed in the framework of 66 

STRESS (Strategies, Tools and new data for REsilient Smart Societies), a project focusing on the 67 

designing, implementing and testing of a Spatial Information Infrastructure (SII), as a support for 68 

spatial planners and risk managers involved in the analysis of hazard and impact assessment of 69 

geo-hydrological phenomena.  70 

 71 

MATERIALS & METHODS 72 

Data used in this study are C-band SAR images acquired by the Sentinel-1 satellites in 73 

Interferometric Wide swath (IW) mode, with a VV+VH dual polarization. A total of 5 Level-1 74 

single look complex (SLC) consecutive images were downloaded from the ESA Sentinel Data 75 

Hub (https://scihub.copernicus.eu): two images were related to the period preceding the 76 

reference earthquake (February 25, 2018) and three images were related to the following time 77 

span. All the images were acquired along the satellite track n.82 in ascending orbit. Each image 78 

was pre-processed by means of the graph processing tool (GPT) of the ESA’s Sentinel-1 79 
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Toolbox (S1TBX), a module of the Open Source software SNAP (version 6.0). Pre-processing 80 

consisted in the following stages: (1) thermal noise removal, (2) radiometric calibration (β0), (3) 81 

TOPSAR deburst, and (4) Multilooking. For each couple of images, a co-registration procedure 82 

was carried out by using as support the Shuttle Radar Topography Mission (SRTM) 1 Sec 83 

Digital Elevation Model (DEM), auto-downloaded from the SNAP software. After the co-84 

registration, a change detection analysis was performed by calculating the Log-Ratio (LR) index 85 

as in Mondini (2017), with the following formula:     86 

𝐿𝑅 ൌ 𝑙𝑛 ሺ
𝛽଴,௜

𝛽଴,௜ିଵ
ሻ 87 

where i is the image index, with i ranging from 2 to the number of images, ln the natural 88 

logarithm and β0 is the radiometric calibrated backscatter. This index provides a measurement of 89 

land cover changes occurred in a specific time interval. For each couple of images, a LR layer 90 

was thus produced.  91 

Each LR layer was segmented by means of the i.segment module of GRASS GIS 7.4, by 92 

selecting the “mean shift” as algorithm, together with the “adaptive spectral bandwidth” option. 93 

The mean shift is a kernel-based nonparametric technique for finding the modes (i.e. local 94 

maxima) of probability density estimations (Fukunaga & Hostetler, 1975; Comaniciu & Meer, 95 

2002). In i.segment, the mean shift is implemented as an iterative two-step procedure, consisting 96 

in the anisotropic filtering and clustering of pixels. Basically, the mean shift algorithm 97 

recalculates cell values (shifted to the segment's mean) until a user-defined maximum number of 98 

iterations is reached, or until the largest shift is smaller than a threshold (convergence). The 99 

threshold must be larger than 0.0 and smaller than 1.0: a threshold of 0 would allow only 100 

identical valued pixels to be merged, while a threshold of 1 would allow everything to be merged 101 

(Momsen & Metz, 2017). A more or less conservative threshold needs to be selected taking into 102 

account spectral properties of the analyzed images. 103 

The i.segment module requires hs and hr parameters, selected by the user, corresponding 104 

respectively to the spatial and range bandwidths, as indicated by Mahmood et al. (2012). With 105 

the adaptive bandwidth option, the hs is fixed whereas the hr can vary depending on the local 106 

data.  107 

After convergence is reached, the second step of segmentation is the clustering of filtered data. 108 

Clusters are delineated starting from the basins of attraction of the corresponding modes. Pixels 109 

falling in such basins, consisting in the data points visited by all the mean shift procedures 110 

converging to that mode (Comaniciu & Meer, 2002), are grouped together in the same cluster. 111 

The cluster boundaries are then identified as loci where the force vectors diverge (Comaniciu & 112 

Meer, 2002).   113 

To reduce “the salt and pepper” effect, the segments (i.e. clusters) containing less than the 114 

preferred minimum number of pixels can be eliminated, by specifying the minsize parameter 115 

within the i.segment command.  116 

After clustering, a new layer showing the calculated segments is produced.  117 

In this study, preliminary segmentation parameters were defined taking into account the spatial 118 

and spectral properties of the LR layers to segment, as well as the shape and size of the expected 119 
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landslides. The selected parameters were then refined by using a “trial-and-error” approach 120 

relied on the visual assessment of the “pre-post earthquake” LR layer segmentation. The selected 121 

parameters resulted as follows: hs=10, hr=0.002, threshold=0.004, minsize=2, max number of 122 

iterations=100. 123 

 124 

RESULTS 125 

As shown in Figure 1, the Tagari River valley was affected by large-scale mass wasting 126 

processes triggered by the M7.5 earthquake and related aftershocks, with a consequent formation 127 

of river dams.  128 

 129 
 130 

Figure 1: The Tagari River valley (Papua New Guinea). Optical satellite images before (on the 131 

left) and after (on the right) the severe earthquake. Images were collected on the Planet explorer 132 

application (Planet, 2017). 133 

 134 

Both LR and segmentation layers derived from the change detection analyses are shown in 135 

Figure 2. In the two LR layers related to the time period between February 16 and March 12 136 

(which include the major earthquake shaking), the evidences of land cover changes (landslides) 137 

are highlighted. In the corresponding segmentation layers, some “objects” are delineated where 138 

those changes are observed. Those objects are made by a relevant amount of very small 139 

segments, which are probably delineated due to the high local variance of the values of the 140 

underlying LR layers (1.70 and 1.46 respectively for the 02/16 - 02/28 and 02/28 - 03/12 141 

periods). In the same areas of the preceding (02/04 - 02/16) and following (03/12 - 03/24) time 142 

periods, the variance of the LR values is significantly lower (0.24 and 0.33 respectively) and 143 

small segments are not created. 144 
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 145 
Figure 2: The Tagari River valley. Log-Ratio and Segmentation layers resulted from the change 146 

detection analyses. Extension of the area is the same of Figure 1. 147 

 148 

DISCUSSION AND CONCLUSIONS 149 

The segmentation of the Log-Ratio maps obtained through the GPT pre-processing chain of 150 

Sentinel 1 data seems promising for the development of automatic procedures aimed at 151 

monitoring a wide territory and detecting landslide events. 152 

Values of the  parameters selected for the segmentation procedure are user-defined and their 153 

tuning is generally related to different factors, such as the type of the images, their spatial and 154 

spectral resolution, the shape and size of the objects to be segmented. A ‘trial-and-error’ 155 

approach based on the visual assessment of the segmentation is therefore necessary to calibrate 156 

the parameters. The use of radar images allowed us to identify landslides after the most powerful 157 

earthquake (i.e. 02/28/2018). It is worth underlining that such products are not dependent from 158 

the cloud cover, as for example the optical images that are usually available several weeks after 159 

landslide occurrence. Following landslide disasters, maps showing the extension of the affected 160 

areas are crucial for the emergency operations. However, in remote areas of the world, like 161 

Papua New Guinea, it can be very difficult to obtain affordable data in a short time because of 162 

several reasons, including a limited availability of properly equipped helicopters/airplanes, 163 
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adverse weather conditions, and road damages. In these cases, the use of SAR satellites can be 164 

therefore essential. 165 

 166 
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