
A semi-automatic tool to georeference historical landscape
images

Smapshot is a web-based participatory virtual globe where users can georeference historical images of
the landscape by clicking a minimum of six well identifiable correspondence points between the image
and a 3D virtual globe. The images database is expected to grow exponentially. In a near future, the
work of the web users will no longer be enough.

To tackle this issue, we developed a semi-automatic process to georeference images. The volunteers will
be shown only images having a maximum number of neighbour images in the matching graph. These
neighbour images are the ones with which they share some overlay. This overlap is detected using the
SIFT algorithm in a pairewise matching process.

For an image pair made of a reference image with a known pose and a query image we want to
georeference, we extracted the 3D world coordinates of the tie points from a digital elevation model.

Then, by running a perspective-n-point algorithm after having geometrically tested the resulting
homography between the two images, we compute the 6 degree of freedom pose, i.e. the position (X,Y,Z)
and orientation (azimuth, tilt and roll angles) of the query image. The query image then becomes a
reference and the georeference computation can be propagated more deeply in the graph structure.
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ABSTRACT

Smapshot is a web-based participatory virtual globe where users can georeference historical images of
the landscape by clicking a minimum of six well identifiable correspondence points between the image
and a 3D virtual globe. The images database is expected to grow exponentially. In a near future, the
work of the web users will no longer be enough.
To tackle this issue, we developed a semi-automatic process to georeference images. The volunteers will
be shown only images having a maximum number of neighbour images in the matching graph. These
neighbour images are the ones with which they share some overlay. This overlap is detected using the
SIFT algorithm in a pairewise matching process.
For an image pair made of a reference image with a known pose and a query image we want to
georeference, we extracted the 3D world coordinates of the tie points from a digital elevation model.
Then, by running a perspective-n-point algorithm after having geometrically tested the resulting homogra-
phy between the two images, we compute the 6 degree of freedom pose, i.e. the position (X,Y,Z) and
orientation (azimuth, tilt and roll angles) of the query image. The query image then becomes a reference
and the georeference computation can be propagated more deeply in the graph structure.

INTRODUCTION
Smapshot is a web-based participatory virtual globe. It uses crowdsourcing for the georeferencing
of historical images. These images come from various sources, such as public archives or private
libraries. Volunteers georeference images they know a prior coarse location by picking a minimum of six
identifiable correspondence points both in the image and the textured 3D model of the landscape (Produit
and Ingensand, 2018). A pose estimation algorithm computes the position and orientation of the camera
and the image is then superimposed with the 3D model giving the impression that the observer is looking
through a window of the past.

As every other online image databases, the smapshot one is expected to exponentially grow in a near
future. The georeferencing of the images currently carried out by volunteer Internet users will no longer
be enough. In order to considerably simplify their task, this work introduces a method to geolocate images
in a semi-automatic way.

Some studies have shown it is possible to geolocate large quantities of images only based on their
comparison with a database of millions of geotagged images (Hays and Efros, 2015; Weyand et al., 2016).
Object retrieval technique can also be used for spatial matching between images (Philbin et al., 2007).
Baatz et al. (2012) have used a sky segmentation method in mountaineous terrain to extract contour
informations and matched them with DEM data using a bag-of-word approach (Fei-Fei and Perona, 2005).
Produit et al. (2014) also makes use of a Kalman filter robust skyline matching approach with an initial
user input to compute the pose of an image.

In recent years, deep learning methods such as convolutional neural networks (LeCun et al., 2015)
have shown that they are also very well suited to classifying or searching images in very large databases,
even for geolocation purposes (Weyand et al., 2016).

This work brings an optimization method in volunteers based image georeferencing. They will only
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be shown central images in a pairewise matching graph. The geolocation they provide to these central
images will then be automatically propagated to other images in the graph in a 4 stages iteration process
involving: 1) a pairewise image matching to find images with overlay, 2) the extraction of highest valency
images (i.e. central images) on the pairewise resulting graph, 3) the georeferencing of central images by
volunteers, 4) the automatic georeferencing of images sharing overlay with the user georeferenced central
ones.

METHOD
Building a sample dataset
All images come from the smapshot database and are already geolocated. This geolocation was manually
verified prior to the work. Therefore their position and orientation can be used; 1) as a ground truth to
validate and evaluate the geolocation computation and 2) to build sets of images having high chances to
show some overlay, which is intended to drastically reduce the matching computation time. To build such
subsets we have run the DBSCAN clustering algorithm (Ester et al., 1996) on the database.

Computation steps
Local features extraction and images matching
In a first stage, the method used consists by first computing local images descriptors on all images of a
sample. Then, we used SIFT and its pairewise image matching algorithm based on the similarities of their
descriptor (Lowe, 1999). Since descriptors are fixed dimension vectors, these similarities also characterize
the distances between them within the descriptors space. By applying RANSAC (Fischler and Bolles,
1981) to compute the homography matrix for each image pair, we are able to remove some false positive
in this first matching results.

Geometrical filter
Finally, in order to eliminate the last false positive results, we developed a geometrical filter. This filter
works as follow: we first compute the projection of the frame of the first image onto the second one using
the homography matrix computed with RANSAC and then we make some simple tests on this geometry.
These tests only retains geometries with: 1) a non-intersecting shape 2) a convex shape 3) a shape surface
representing at least 10% of the image.

Pairwise image matching and graph analysis
In a second stage, by looking at the matching results through the graph theory magnifier, i.e. in a graph,
images are the nodes and positive matches are represented by edges, we can find the image(s) with the
highest valency for each connected component of the graph. These will be the ones that will be subjected
to georeferencing by users. As the 6 degree of freedom (DoF) of their pose (3 for their position + 3 for
their orientation) is assumed to be validated by an operator, they are tagged as "reference" images. All
other images are kept in the background for a geolocation automatic computation and are tagged "query"
images. Hence, we keep the ground truth pose values for references images and hide them for the query
images.

6DoF pose computation
In a last stage, we compute the 3D position and attitude angles defined by the azimuth, pitch and roll of
each image (more precisely of the camera that has taken the picture) using a perspective-n-point (PnP)
algorithm. Given an image pair consisting of a reference image and a query image showing some overlay,
this algorithm makes use of the 2D query image coordinates of all the tie points and the 3D ground
coordinates of these tie points to compute the pose of the query image. The 3D coordinates are prior
extracted from a virtual image of a 3D digital elevation model, which is generated by placing and orienting
a camera in a virtual globe with the exact same known pose of the reference image. The perspective-n-
point algorithm we used makes the most of all the tie points by using a Levenberg–Marquardt approach to
find a pose that minimizes reprojection errors of 3D points onto the image. It also uses RANSAC to filter
out some outliers.

To verify the results, we compared the 6DoF poses values obtained for a subset of query images with
the database ground truth. Once a query image has been successfully geolocalized, it becomes a reference
image and can be used to geolocate another one deeper in the graph structure. This process goes on till
the last image.

2/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27204v1 | CC BY 4.0 Open Access | rec: 14 Sep 2018, publ: 14 Sep 2018



Evaluation

For each of these stages we evaluated the sensitivity of the results to individual parameter changes based
on a confusion matrix (Stehman, 1997). We also checked how our outliers removal filter behaved. Finally,
the entire process was run on 22 true pairs of a 27 images cluster. We extracted the 3D coordinates of
tie points from the digital elevation model for the first image of the pair (reference) and computed the
geolocation of the second (query) image.

RESULTS

Clusters

The DBSCAN algorithm distance parameter was adjusted to 800m to have compact and relevant enough
clusters (fig. 1).

Figure 1. A view of some resulting images clusters.

Matching

Then, by making the nearest neighbour distance ratio of the SIFT matching procedure varying, we deduced
its best value equals to 2/3 for our dataset. Applying RANSAC improves the results (fig. 2b), but our
geometrical filter was much more better at this task (fig. 2c).

(a) After the simple matching. (b) After using RANSAC. (c) After applying our filter.

Figure 2. Results showing the improvement of the RANSAC outliers removal and our filter on the matches
recall as a function of the nearest neighbor distance ratio used by the SIFT algorithm.

Others parameters of the SIFT and RANSAC algorithms were also tested (not shown here) and led to
the values in table 1.
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Algorithm Parameter name
Value used

in this study

SIFT

Number of octaves 2
Contrast threshold 0.032
Edge threshold 18
Sigma 1.2

RANSAC
Reprojection error [px] 5
Max. number of iterations 2000
Confidence level 0.995

Table 1. Retained values for the SIFT and RANSAC algorithms.

Georeferencing
On the sample cluster, the 22 position results range from 15 m to 8 km (fig. 3a) and 3 were discarded
because of a lack in DEM values (no data).
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(a) Position errors. 70% of these values are under 2 km.
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(b) Angular errors. The [-5, 5] range is greyed out.

Figure 3. Camera pose (ground truth minus computed position) results on 19 query images.

DISCUSSION
Results that are close to the user provided position (which is taken as ground truth) are often obtained
when the camera was closed to the part of the landscape captured (fig. 4).

Figure 4. The pose result of the query image (right) is only 15 m close to the position in database.
Images source: EPFL, Archives de la construction moderne.

In some cases, a large position or angular shifts may be explained by tie points not homogeneously
distributed on the images. In addition to a small overlap, figure 5 shows that tie points on these two images
are almost along a vertical line. This may explained why the azimuth is 16°away from the database value.
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Figure 5. The pose result of the query image (right) is 2.3 km and an azimuth 16°away from the values
in database.
Images source: EPFL, Archives de la construction moderne.

Other position shifts are explained by tie points beeing located close to a breakline in the image depth.
Figure 6b shows such a case; tie points are in the background on the images, but their 3D coordinates are
taken on the forground on the DEM, which is approximately 2 km away from their real location in the
background.

(a) Tie points are located near a breakline in the image
depth.

(b) When superimposed with the DEM, the breakline
between the forground and the background is higher on
the DEM than on the image.

Figure 6. The pose of the query image (right) is 1.7 km away from its position in database.
Images source: EPFL, Archives de la construction moderne.

CONCLUSION
Results showed that the pose computation of a query image is quite accurate when some conditions are
respected; the accuracy of the reference image pose is crucial. It influences the DEM relative position and
3D coordinates of tie points. The query image pose accuracy cannot be better than the reference one.

Tie points distribution on images is also of great importance as shown by this study. A homogeneous
distribution would undoubtedly improve the precision of the computed position.

This would also be the case if we can detect and use GCPs that are already in database to register a
query image.

Furthermore, as the Brute-Force matching process is a O(n2) complex problem, it takes too much time
to tackle any new large images dataset with no known a priori positions and where clusters cannot be built.
This would need strong computational power. There are still some ways to explore prior to the matching
stage, such as the reduction of features space or the avoidance of too much redundancy. In such way,
machine learning or bag-of-features techniques may offer other valuable alternative to find overlapping
images.

Finally, to integrate this process on the web platform, we will need a two-steps approach: 1) proposing
overlapping images to the user and 2) once a picture has been successfully georeferenced by the user,
giving him the possibility to see which other images were automatically registered and giving him the
opportunity to refine the automatic results. Field of user engagement could for example help building a
nice interface to improve and keep the users motivation in this great task.
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