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Motivation: The identification of functional sequence variations in regulatory DNA regions is one of the

major challenges of modern genetics. Here, we report results of a combined multifactor analysis of

properties characterizing functional sequence variants located in promoter regions of genes.

Results: We demonstrate that GC-content of the local sequence fragments and local DNA shape features

play significant role in prioritization of functional variants and outscore features related to histone

modifications, transcription factors binding sites, or evolutionary conservation descriptors. Those

observations allowed us to build specialized machine learning classifier identifying functional SNPs within

promoter regions 3 ShapeGTB. We compared our method with more general tools predicting

pathogenicity of all non-coding variants. ShapeGTB outperformed them by a wide margin (AUC ROC 0.97

vs. 0.57-0.59). On the external validation set based on ClinVar database it displayed only slightly worse

performance (AUC ROC 0.92 vs. 0.74-0.81). Such results suggest unique characteristics of mutations

located within promoter regions and are a promising signal for the development of more accurate variant

prioritization tools in the future.

Availability and implementation: The datasets and source code are publicly available at:

https://github.com/zubekj/ShapeGTB.
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ABSTRACT	15	

Motivation: The identification of functional sequence variations in regulatory DNA regions is one 16	

of the major challenges of modern genetics. Here, we report results of a combined multifactor 17	

analysis of properties characterizing functional sequence variants located in promoter regions of 18	

genes. 	19	

Results: We demonstrate that GC-content of the local sequence fragments and local DNA shape 20	

features play significant role in prioritization of functional variants and outscore features related to 21	

histone modifications, transcription factors binding sites, or evolutionary conservation descriptors. 22	

Those observations allowed us to build specialized machine learning classifier identifying 23	

functional SNPs within promoter regions 3 ShapeGTB. We compared our method with more 24	

general tools predicting pathogenicity of all non-coding variants. ShapeGTB outperformed them by 25	

a wide margin (average precision 0.93 vs. 0.47-0.55). On the external validation set based on 26	

ClinVar database we observed that all methods decreased their performance (average precision 27	

0.47 vs. 0.23-0.42). Such results suggest unique characteristics of mutations located within 28	

promoter regions and are a promising signal for the development of more accurate variant 29	

prioritization tools in the future.	30	

Availability and implementation: The datasets and source code are publicly available at: 31	

https://github.com/zubekj/ShapeGTB.	32	

Contacts: lwyrwicz@coi.pl or d.plewczynski@cent.uw.edu.pl	33	

Supplementary information: Supplementary data are available at PeerJ online.	34	

INTRODUCTION	35	

The concept of personalized medicine has made the functional annotation of genomic variations 36	

one of the major goals of human genetics. The research inquiries are done both at individual level 37	

of low-throughput methods and large-scale population studies. The results of genome-wide 38	

association studies (GWAS) of complex human traits have exposed enrichment for variations in the 39	

regulatory elements, such as promoters, enhancers, insulators or intergenic regions. Although about 40	

90% of single nucleotide polymorphisms (SNPs) are located in non-coding regions of human 41	

genome, the knowledge about their role in pathology of diseases is limited. In this article, we 42	

propose a method for functional prioritization of variants in human promoters, which represent 43	

around 1% of all SNPs identified by the 1000 Genomes Project (Ignatieva et al. 2014).	44	

In recent years, several computational methods have been developed to address the challenging 45	
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task of noncoding variants annotation. These methods differ in the adopted algorithms and utilized 46	

data. The main three approaches used by currently available tools are: functional annotations, 47	

sequence homology analysis and machine learning models integrating information from both 48	

sources. Especially the third integrating machine learning approach is worth investigating. The last 49	

decade has brought dramatic progress in application of machine learning algorithms in 50	

computational biology. Their versatile predictions have been utilized to link noncoding variations 51	

properties to their functional nature by i.e. genome-wide annotation of variants (GWAVA) 52	

(Ritchie, et al., 2014), combined annotation-dependent depletion (CADD) (Kircher, et al., 2014), 53	

deleterious annotation of genetic variants using neural networks (DANN) (Quang, et al., 2015), 54	

FATHMM-MKL (Shihab, et al., 2015), deltaSVM (Lee, et al., 2015), DeepSEA (Zhou and 55	

Troyanskaya, 2015). 	56	

Promoters are one of the key regulatory elements of transcription initiation. Several resources 57	

indicate that promoter regions show distinct structural constrains when compared with non-58	

promoters (Kanhere and Bansal, 2005; Goni, et al., 2007; Morey, et al., 2011; Gan, et al., 2012). 59	

The analysis by Freeman et al. shows that the sequence-dependent shape of DNA encodes histone 60	

affinity and dominates molecular recognition in the problem of nucleosome positioning (Freeman, 61	

et al., 2014). Since various DNA sequences can encode similar shapes (Gardiner, et al., 2004; 62	

Greenbaum, et al., 2007), correlation between DNA shape descriptors and biological functions 63	

becomes an interesting problem to investigate. 	64	

The development of DNAshape web server by Zhou et al. (Zhou, et al., 2013) allowed analyzing 65	

DNA structural features on a genomic scale. The method computes four DNA shape features: 66	

minor groove width (MGW), roll (Roll), propeller twist (ProT) and helix twist (HelT). Recent 67	

studies have showed that combining DNA sequence with DNA local shape improves the prediction 68	

accuracy of transcription binding sites in vitro (Rohs, et al., 2009; Dror, et al., 2014). Here, we 69	

address the question of the usefulness of such data in predicting functional effects of sequence 70	

variations in promoter regions of genes. We are convinced that the DNA shape features may 71	

largely contribute to solving a demanding problem of regulatory variants interpretation and 72	

assessment of their effects on disease pathology. 	73	

To test this hypothesis and demonstrate its applicability, we trained a machine learning classifier, 74	

which uses local shape to predict functional prioritization of promoter sites. In this paper, we 75	

compare structural predictor9s performance with sequence-based methods, and analyze in detail the 76	

statistical relevance of different types of features characterizing DNA molecule.	77	

In the light of the unique promoter characteristics, inclusive GC distribution (Lenhard, et al., 2012; 78	

Andersson, et al., 2014), transcription factor binding site composition (Rada-Iglesias, et al., 2011; 79	

Shen, et al., 2012; Thurman, et al., 2012) and unique chromatin signatures (Heintzman, et al., 2007; 80	

Hon, et al., 2009), we focused our analysis on the regions located upstream of the transcription start 81	

site. To our best knowledge previously developed methods have not aimed the variant prioritization 82	

in promoter regions by local DNA shape features but rather focused on non-coding sequence 83	

variations without acknowledging genomic region. 	84	

 85	

MATERIALS AND METHODS	86	

Datasets	87	

To obtain the positive dataset we used single-nucleotide variants (SNVs) annotated as regulatory 88	

mutations in The Human Gene Mutation Database (HGMD®) professional version (release 89	

2016.2) within 5 kilobases (kb) upstream from the annotated transcription start sites (TSS) and 90	

provided sequences (Stenson, et al., 2014). The total number of experimentally validated disease-91	
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related variants in our dataset is equal to 1772. The control dataset contains SNVs from the 1000 92	

Genomes Project (The 1000 Genomes Project Consortium, 2015) with a global minor allele 93	

frequency g1%. The overlapping elements of both sets were removed. Only variants lying within 5 94	

kb upstream of TSS were selected for further analysis (Rosenbloom, et al., 2015). The sequences of 95	

neutral motifs (not associated with disease phenotype) were retrieved from Ensembl with BioMart 96	

(Kinsella, et al., 2011). The total number of negative examples in our dataset is equal to 3806. We 97	

ensured that positive and negative motif sets are matched in their basic properties (Kolmogorov398	

Smirnov two sample test results for GC-content distributions are as follows D-statistic=0.02, p-99	

value=0.48, null hypothesis of identical distributions retained). Distributions of TSS distances in 100	

the two sets differed, but we made sure that it does not affect obtained results (see Supplementary 101	

Material 5).	102	

Machine learning pipeline	103	

We split the available data into training and test sets randomly keeping the ratio 8:2. Full training 104	

set contained 1417 positives and 3045 negatives, full test set contained 355 positives and 761 105	

negatives. Training set was used to build feature ranking, train classifiers and optimize their 106	

parameters, while test set was left for final validation and for comparison with other prediction 107	

methods. To validate our methods internally on the training set we used a cross-validation strategy 108	

in which in each fold SNPs from a single chromosome formed test set and SNPs from other 109	

chromosomes formed training set. This eliminated possibility of overfitting during parameter 110	

tuning and feature selection procedures, and additionally demonstrated whether our method 111	

generalizes across different chromosomes.	112	

We applied Monte Carlo feature selection (MCFS) algorithm (Draminski, et al., 2008) to perform 113	

feature importance ranking. It is a universal feature selection strategy combining random subspace 114	

methods with decision trees. A random subset of the original features is drawn in each iteration of 115	

the algorithm and an equivalent of random forest is induced using the selected variables. Feature 116	

importance ranking is constructed based on all induced trees. Additionally, meaningful 117	

interdependencies between features are discovered by calculating how often two features are used 118	

together to predict the class value. MCFS aims at finding all features relevant for the classification 119	

task, and it guarantees that with sufficient number of iterations all features can be tested. Following 120	

general guidelines by the authors of the algorithm, we set the number of iterations to 1000 and the 121	

subset of original features considered in each iteration to 0.25.	122	

In the classification task gradient tree boosting was used (GTB) 3 a popular tree-based ensemble 123	

algorithm (Friedman and Meulman, 2003). It is known to perform very well in many domains, 124	

often outperforming methods such as random forest, support vector machines or neural networks 125	

(Sheridan, et al., 2016; Ladds, et al., 2016; Babajide Mustapha and Saeed, 2016). The key idea 126	

behind GTB is to build trees sequentially, training a tree at each step to explain the prediction error 127	

made by the combination of existing trees. Usually the trees are regularized to prevent overfitting. 128	

We used the state-of-art implementation provided by XGBoost library (Chen and Guestrin, 2016). 129	

Through cross-validation performed on the training set we selected optimal parameter values 130	

(number of trees 3 300, maximal tree depth 3 8, learning rate 3 0.1).	131	

Comparison with existing approaches	132	

Presently, the field of prediction and prioritization of human noncoding regulatory variants still 133	

lacks a large, independent and publicly available gold-standard dataset for training, testing and 134	

validating existing in silico approaches. The comparison of our method to the current state-of-the-135	

art methods is hampered even further by different aims and objectives. To our best knowledge all 136	

available tools were designed for genome-wide, regulatory variants prioritization and there are no 137	
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computational methods focused on promoter regions. Nonetheless, we compared performance of 138	

our algorithm with other tools on our own hold-out test set and on independent high-quality data 139	

from ClinVar database (Jan 5, 2017 release) after excluding variants present in our training data 140	

(Landrum, et al., 2016). Our hold-out test set contained 355 positives from HGMD and 761 141	

negative examples from 1000 Genomes Project. External validation set contained 32 positive 142	

examples labeled as pathogenic in ClinVar database and 761 negative examples from 1000 143	

Genomes Project (not present in our train set). 144	

 145	

	146	

Features groups	147	

We used the following feature groups to annotate each SNV in our pathogenic and control datasets 148	

(more detailed description can be found in Supplementary material 1 and 4):	149	

1. DNA sequence (52 variables): 9-nt sequence motifs centered on the mutated nucleotide. The 150	

sequence was encoded using 4-bits binary coding. Additional 12 binary (4-nt by 3 mutations) 151	

variables indicated what type of mutation occurred (e.g. A ³ C, G ³ T, etc.).	152	

2. Local DNA shape features (88 variables): helix twist, minor groove width, propeller twist, roll 153	

values in span of 9 nt. Differences (_diff) between reference and mutated scores were added as 154	

additional features.	155	

3. GC-content (8 variables): GC-content in span of 7- and 9-nt for reference and mutated sequences 156	

separately. Differences between the reference and mutated scores were added as additional 157	

features.	158	

4. Histone modifications (38 variables): ChIP-seq data for histone 3 lysine 9 acetylation (H3K9ac) 159	

and histone 3 lysine 4 trimethylation (H3K4me3) across 16 cell lines from ENCODE (Ram, et al., 160	

2011). For H3K9ac, H3K4me3 or either modification mean values over all cell lines and binary 161	

variables indicating modifications in any cell line were added.	162	

5. Transcription Factor Binding Sites (12 variables): TFBS ChIP-seq clusters (V3) from ENCODE 163	

data retrieving binding sites of top 10 TFs with the highest binding site coverage. Mean value over 164	

all TFs and 0-1 indicator of any TF occurrence were added in addition (ENCODE Project 165	

Consortium, 2012) 166	

6. Transcription factor binding disruption (1 variable): 167	

P-value of disrupting putative strongest transcription factor binding site due to mutation was 168	

calculated with Annotation of Regulatory Variants using Integrated Networks (ARVIN) algorithm 169	

(Gao, et al., 2018) using Cis-BP database (Weirauch et al., 2014). 170	

7. Maximum transcription factor binding log-odds ratio score (1 variable): 171	

Maximum TF binding log-odds ratio score for reference and mutated sequences among scores 172	

calculated with ARVIN algorithm (Gao, et al., 2018, Weirauch et al., 2014).  173	

8. DNase I hypersensitivity (1 variable):  ENCODE DNase clusters (V3) from 125 cell line types 174	

(John, et al., 2011; Thurman, et al., 2012; Rosenbloom, et al., 2013).	175	

9. Evolutionary conservation (10 variables): 	176	

a) GERP ++: Genomic Evolutionary Rate Profiling scores (Davydov, et al., 2010).	177	

b) PhastCons: PhastCons conservation score by vtools (San Lucas, et al., 2012).	178	

c) Z-score: recalculated Z-score values defined in our previous work (Wyrwicz, et al., 2007) on 179	

whole genome human3mouse alignments (genome builds hg19 and mm9 (Chiaromonte, et al., 180	

2002; Kent, et al., 2003; Schwartz, et al., 2003) from UCSC Genome Browser (Kent, et al., 2002) 181	

for the reference and mutated sequence and for window length 7 and 9. Differences of Z-scores for 182	

the reference and mutated sequence were added.	183	

10. Dinucleotide content (16 variables):	184	
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Observed vs. expected frequencies of 16 possible pairs of nucleotides appearing in the short 185	

sequence motif.	186	

	187	

RESULTS	188	

Feature importance	189	

From MCFS we obtained the ranking of all 227 features according to their relative importance in 190	

the classification problem. Each feature group contained multiple individual features with different 191	

ranks in the overall ranking. In the context of machine learning task, usefulness of a particular 192	

group should be determined by the best performing features from this group.  193	

Figure 1 presents detailed feature ranking including all features from each group. Generally, 194	

features that contribute to the correct classification mostly belong to GC content group, shape 195	

group and sequence group. Other feature groups were of lesser importance (the full ranking is 196	

included as Supplementary material 2, feature names glossary as Supplementary material 4). The 197	

most important feature was the difference in GC-content between the reference and the mutated 198	

sequence fragment (rank 1). Features describing raw nucleotide sequence and dinucleotide content 199	

appeared in the middle of the ranking. Among the shape features those describing the closest 200	

neighborhood of the mutated nucleotide were the most important. This is not surprising because 201	

differences in shape are expected to have local effects on DNA properties. Among the shape 202	

features attributes concerning propeller twist were ranked as the most important, attributes 203	

concerning helix twist and roll followed, and attributes concerning minor groove width occurred 204	

lower in the ranking. What is notable, most of the features appearing among the top 20 concerned 205	

differences in shape properties between SNP and wild type. Features derived from transcription 206	

factors were less important than sequence-based features. Histone modifications, conservation 207	

scores and DNase I hypersensitivity score were not identified as particularly informative features.	208	

To investigate the role of individual features we calculated Welch9s t-score capturing the 209	

relationship between particular feature and class value. Decrease of GC-content between the 210	

reference and the mutated sequence correlated negatively with functionality (t-score -8.2088 for 211	

decrease for motif length 7, t-score -11.3710 for decrease for motif length 9), while increase of 212	

propeller twist value correlated positively (t-score 9.7417 for increase immediately before the 213	

modified nucleotide, t-score 5.5047 for increase immediately after the modified nucleotide). 	214	

The role of each feature in a classification task lies not only in its correlation with class value, but 215	

also in how well it complements with other features. For example, Figure 2 presents joint 216	

distributions of the two most important features in the two classes (difference of GC-content 217	

between the reference and the mutated sequence, difference of propeller twist at 3
rd

 position 218	

between mutated variant and wild type). For non-functional SNPs the features are uncorrelated, but 219	

there is a visible negative correlation for functional SNPs. MCFS allows studying that kind of 220	

dependencies through its interdependency discovery function. Full list of feature interdependencies 221	

and their relative strength is included as Supplementary material 3.	Figure 3 presents graph of the 222	

strongest interdependencies among the top selected features (GCSCORE 3 GC composition, SEQ 3 223	

sequence feature, ROLL 3 roll, HELT 3 helix twist, PROT 3 propeller twist). Difference in GC-224	

content acts as a central hub and interacts strongly with all groups of shape features except minor 225	

groove width. The simplified intuition is that functional SNPs should increase GC content of the 226	

motif, and at the same time increase rotation of the DNA strand accordingly.	227	

	228	

Classifier performance	229	

Obtained feature ranking suggests that a large portion of information is contained in features 230	

derived from the DNA sequence, and features describing evolutionary conservation and functional 231	
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properties play less significant role. To verify this hypothesis, we performed a cross-validation 232	

experiment (with folds determined by chromosomes) on the train set by training gradient tree 233	

boosting (GTB) classifier on different combinations of feature groups. Calculated values of 234	

multiple performance measures are presented in Table 1.	235	

Classifier based on all available features performed better than the classifier using only 25 best 236	

ranked features. Among individual feature groups GC content produced classifier with the largest 237	

AUC ROC (0.78). Combining GC content with shape features and sequence features allowed 238	

achieving AUC ROC 0.98. No other combinations of features performed better. These results show 239	

that shape features are more meaningful when combined with another feature.	 In further 240	

experiments classifier trained on sequence, shape and GC content was used. We named this 241	

classifier ShapeGTB.	242	

We compared final ShapeGTB classifier with more general SNP prioritization methods, which did 243	

not focus specifically on promoter regions: CADD, FATHMM-MKL and DeepSEA. Figure 4 244	

present precision-recall curves calculated on the hold-out test set constructed from our data 245	

(HGMD and 1000 Genomes Project) and for smaller experimental dataset (ClinVar and 1000 246	

Genomes Project). Area under precision-recall curve can be interpreted as average precision (AP), 247	

and is an aggregated measure of classifier performance. It is preferred over AUC ROC when 248	

problem is characterized by large class imbalance. On the hold-out test set ShapeGTB 249	

outperformed general-purpose methods by a large margin (AP 0.93 vs. 0.47-0.55). On the external 250	

validation set ShapeGTB aggregated performance was comparable with FATHMM-MKL (AP 0.47 251	

vs. AP 0.42). However, shapes of precision-recall curves for those methods were very different: 252	

FATHMM-MKL displayed high precision only for small subset of examples, while ShapeGTB 253	

precision was relatively stable even for large values of recall. Differences between results obtained 254	

for the two datasets suggest that ClinVar-derived positives have different characteristics and pose a 255	

greater challenge. We speculated that the gap between ShapeGTB and reference tools on the hold-256	

out test is due to inclusion of shape features and their interactions with GC content. To verify this, 257	

we randomly permuted these features in our test set and evaluated performance of ShapeGTB again 258	

on permuted data sets. AP of ShapeGTB with GC-derived features permuted was 0.80, with shape-259	

derived features permuted 0.44, and with both kinds of features permuted 0.35 (Figure 5). This 260	

once more corroborates the hypothesis that shape features together with GC content provide 261	

important information for distinguishing functional SNPs in our data set.	262	

 263	

DISCUSSION AND CONCLUSIONS	264	

Here, we report the influence of the combined multifactor analysis of DNA shape and other 265	

descriptors in prediction of functional effect of promoter variants. Previously, Parker et al. has 266	

demonstrated that the nucleotide alternations can significantly affect the DNA structure causing 267	

changes in protein binding affinity and phenotype (Parker, et al., 2009). From our analysis, it is 268	

clear that changes in the geometry of DNA molecule are important features for the task of 269	

prioritization of functional regulatory variants within promoter regions. General conclusions that 270	

can be drawn from our study are as follows: a) shape features work very locally, what is important 271	

is what happens in the closest neighborhood of the mutated nucleotide, b) DNA chain rotations are 272	

more important than minor groove width, c) differences of properties of the mutated variant and the 273	

reference motif are the most meaningful. This picture is inherently complicated with the presence 274	

of feature interdependencies 3 mostly between GC content and shape features. It is impossible to 275	

make predictions based on DNA shape alone, it is meaningful only with respect to the sequence 276	

content.	277	
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Interestingly, in our method the most informative indicator of variant functional impact is whether 278	

the introduced nucleotide changes the GC-content. The GC composition has been previously linked 279	

to DNA thermostability, bendability and potential for conformational transition between B- and Z-280	

forms, that relate to chromatin accessibility (Vinogradov, 2003). The instances of GC-rich 281	

sequence motifs have been shown to play an important role in transcription regulation through their 282	

connection with nucleosome occupancy and TF binding (Peckham, et al., 2007; Wang, et al., 283	

2012). In our opinion, high rank of GC-ratio derivatives is a result of promoter properties, which 284	

distinguish it from other regulatory elements (Lenhard, et al., 2012; Andersson, et al., 2014). GC-285	

ratio may not be highly ranked if similar analysis would be performed on other regulatory 286	

elements, which are not associated with promoter regions (e.g. splicing elements or insulators). 287	

There is a vast amount of literature on complex networks of relations between nucleotide types and 288	

various shape attributes (Yoon, et al., 1988; Florquin, et al., 2005; Rohs, et al., 2005; Samanta, et 289	

al., 2009). For instance, the distribution of water around the minor groove shows specificity to the 290	

DNA sequence as the availability of the hydrogen bond forming atoms changes. Variation in DNA 291	

sequence may affect DNA flexibility by influencing the magnitude of propeller twist. Specific base 292	

pairs combinations have different electrostatic potentials and prefer specific stacking geometry 293	

(Samanta, et al., 2009). The results of Tillo and Hughes have highlighted that GC-ratio influences 294	

nearly all aspects of DNA structure (Tillo and Hughes, 2009). The most pronounced dependency 295	

has been observed between GC-ratio and propeller twist (Ponomarenko, et al., 1999). Deb et al. 296	

previously reported the effect of an A/T base pair replacement by a G/C base pair on narrowing of 297	

minor grows through negative propeller twisting (Deb, et al., 1987). This pair has also been rated 298	

high in our feature interdependencies ranking. To sum up, it appears that only a specific 299	

configuration of local structural feature values can meet the requirements of a functional genomic 300	

element and that causative mutation substantially disrupt it consensus.	301	

The data derived from ChIP-seq experiments and DNaseI hypersensitivity assays have relatively 302	

low resolution generally ranging from 200 to 8 kbp (Park, 2009; Pique-Regi, et al., 2011; 303	

ENCODE Project Consortium, 2012). Our analysis shows that histone modification and TFBS 304	

ChIP-seq peaks along with TF disruption p-value and DNaseI hypersensitivity data, being used in 305	

genome-wide setting, have no discriminative power for promoter region sequence variations. This 306	

is especially true for TSS-balanced version of our data sets (Supplementary material 5). It is 307	

important to stress that features based on histone modifications and TFBS have different meaning 308	

than those derived directly from DNA sequence and shape. The former may represent statistical 309	

relationships connected with high-level functioning of the organism, while the latter may 310	

correspond to low-level binding mechanisms and biophysical properties of the DNA. Our method 311	

is able to make successful predictions using only low-level features, which may inform the study of 312	

low-level mechanisms behind functional SNP mutations.	313	

There is a strong need in the field for entirely independent, high-quality collection of regulatory 314	

elements variants categorized by type of non-coding sequence and functional status. Such 315	

collection would allow constructing reliable tests sets to validate and compare available methods. 316	

According to Li and Wang (2017) analysis, human genetic variants databases such as HGMD and 317	

ClinVar contain contradictory entries and incorrectly categorized variants due to the lack of 318	

primary review of evidence.  	319	

In our experiments, our method outperformed significantly the reference tools on our own dataset, 320	

and exhibited better recall on external dataset. However, caution is required in drawing final 321	

conclusions from the comparison. Our model targeted promoter regions specifically, while the 322	

other tools were trained on larger subsets of non-coding regions. It is also possible that our 323	
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validation set, at least partially, overlapped with training sets used by other algorithms. We believe 324	

that the main reason behind good performance of ShapeGTB is the inclusion of shape features. 325	

Without them the expected performance is on par with the other methods (AP 0.44 on hold-out test 326	

set). 327	

In summary, we demonstrated that the local shape features of DNA surrounding single nucleotide 328	

coupled with the GC-content and sequence composition are sufficient for single nucleotide variant 329	

prioritization within promoter regions of human genes. Our results additionally confirmed the 330	

interdependencies between alternations in the GC-content and local DNA shape features. Given 331	

that the shape vectors implicitly reflect electrostatics, base stacking, hydration profiles (Przytycka 332	

and Levens, 2015), including DNA shape into model results in functional reduction of the number 333	

of features and therefore a great simplification of the method. We believe that local DNA shape 334	

features carry a vast amount of information and their applicability should be investigated further. In 335	

the future, we plan to extend our analysis on all types of regulatory elements in non-coding regions 336	

of human genome.	337	
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Table 1(on next page)

Cross-validation classification results for different feature groups on TSS-balanced data

set.
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1

2

AUC AUC_std Accuracy Accuracy_std F1 F1_std Precision Precision_std Recall Recall_std size

All 0.9764 0.0133 0.9258 0.0247 0.8803 0.0456 0.8840 0.0643 0.8792 0.0480 227.0

Best 25 0.9243 0.0345 0.8449 0.0418 0.7551 0.0785 0.7456 0.1079 0.7713 0.0710 25.0

Sequence 0.5555 0.0473 0.6162 0.0584 0.3170 0.0416 0.3766 0.0878 0.2834 0.0453 52.0

GC content 0.7765 0.0525 0.7051 0.0626 0.4934 0.0634 0.5560 0.1054 0.4546 0.0713 8.0

Shape 0.5571 0.0566 0.6251 0.0690 0.2546 0.0597 0.3574 0.0994 0.2039 0.0551 88.0

Conservation 0.5440 0.0416 0.6569 0.0522 0.2693 0.0764 0.4313 0.1547 0.2003 0.0545 10.0

TFBS ChIP-seq 0.5255 0.0482 0.6674 0.0755 0.2416 0.0707 0.4722 0.1589 0.1683 0.0550 12.0

Histone modifications 0.5664 0.0641 0.6270 0.0690 0.3342 0.0702 0.3987 0.1069 0.2994 0.0844 38.0

DNase I 0.5846 0.0622 0.6662 0.0817 0.1474 0.0674 0.4088 0.1921 0.0914 0.0431 1.0

Dinucleotide content 0.5205 0.0615 0.6211 0.0614 0.2354 0.0798 0.3407 0.1323 0.1858 0.0647 16.0

Max TFBS log-odds ratio score + TF 

disruption pval
0.5141 0.0613 0.6773 0.0824 0.0364 0.0381 0.3812 0.3618 0.0193 0.0205 2.0

Sequence + GC content 0.7689 0.0404 0.6997 0.0465 0.5029 0.0578 0.5426 0.1159 0.4816 0.0477 60.0

Shape + GC content 0.9175 0.0313 0.8395 0.0333 0.7399 0.0627 0.7557 0.1052 0.7332 0.0583 96.0

Sequence + GC content + Shape 0.9787 0.0140 0.9446 0.0208 0.9124 0.0381 0.8894 0.0616 0.9400 0.0437 148.0

Sequence + GC content + Shape + TF 

disruption pval
0.9787 0.0132 0.9471 0.0231 0.9161 0.0400 0.8899 0.0624 0.9468 0.0401 149.0

Sequence + GC content + Shape + TF 

disruption pval + Max TFBS log-odds 

ratio score

0.9782 0.0139 0.9442 0.0189 0.9118 0.0318 0.8933 0.0595 0.9346 0.0374 150.0

Sequence + GC content + TFBS ChIP-

seq
0.7902 0.0332 0.7206 0.0410 0.5252 0.0614 0.5698 0.0934 0.4933 0.0616 72.0

Sequence + GC content + Histone 

modifications
0.7981 0.0426 0.7249 0.0464 0.5359 0.0656 0.5882 0.1170 0.5054 0.0664 98.0

3
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Figure 1(on next page)

Mean importance of 5 best scoring features in each feature group.
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Figure 2(on next page)

Joint distributions of the two most important features in the two classes. WT-SNP

difference corresponds to difference of scores between reference (wild type) and

mutated (SNP) variants.
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Figure 3(on next page)

The strongest feature interdependencies.
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Figure 4(on next page)

Precision-recall curves for different classifiers.
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Figure 5(on next page)

Precision-recall curves for variants of ShapeGTB in which feature vectors from specific

feature groups were permuted (effectively reducing their usefulness).

-GC corresponds to classifier with GC-derived features permuted, -Shape corresponds to

classifier.
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