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Abstract 18 

Climate change is asymmetrically altering environmental conditions in space, from local to global 19 

scales, creating novel heterogeneity. Here, we argue that this novel heterogeneity will drive mobile 20 

generalist consumer species to rapidly respond through their behavior in ways that broadly and 21 

predictably reorganize—or rewire—food webs. We use existing theory and data from diverse 22 

ecosystems to show that the rapid behavioral responses of generalists to climate change rewire food 23 

webs in two distinct and critical ways. Firstly, mobile generalist species are redistributing into systems 24 

where they were previously absent and foraging on new prey, resulting in topological rewiring—a 25 

change in the patterning of food webs due to the addition or loss of connections. Secondly, mobile 26 

generalist species, which navigate between habitats and ecosystems to forage, will shift their relative 27 

use of differentially altered habitats and ecosystems, causing interaction strength rewiring—changes 28 

that reroute energy and carbon flows through existing food web connections and alter the food web’s 29 

interaction strengths. We then show that many species with shared traits can exhibit unified aggregate 30 

behavioral responses to climate change, which may allow us to understand the rewiring of whole food 31 

webs. We end by arguing that generalists’ responses present a powerful and underutilized approach 32 

to understand and predict the consequences of climate change and may serve as much-needed early 33 

warning signals for monitoring the looming impacts of global climate change on entire ecosystems.  34 

 35 
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Introduction 40 

Following the poleward shift in species distributions observed with climate warming, Blanchard1 41 

quipped that the resultant massive compositional changes to the Arctic marine food web2 are akin to 42 

nature “rewiring” itself. This northern range expansion is dominated by species that are relatively 43 

large, highly mobile, and foraging generalists, and so increases the Arctic marine food web’s 44 

complexity2. This influx of generalists thus fundamentally alters the structure of this Arctic marine 45 

food web, making it both more connected and less modular, and also perhaps making interaction 46 

strengths weaker on average. This one example highlights a potentially global phenomenon: ongoing 47 

climate change will continue to fundamentally restructure—that is, “rewire”—ecosystems. And yet, 48 

the ways that food webs will rewire remain nebulous2,3. 49 

The rewiring of Earth’s food webs with climate change should be first detectable as rapid 50 

behavioral responses that are most prominently exhibited by mobile generalist species (see Box 1 for 51 

key definitions)4–6. For example, Korstch et al.2 found that as waters warm, the fish species advancing 52 

north in the marine Barents Sea ecosystem tend to be high-trophic-level consumers that are mobile 53 

and forage on a large range of resources. Similarly, many of the terrestrial species dispersing poleward 54 

in response to warming are capable of rapid, long-range movement7,8. Species that possess this set of 55 

key correlated traits (high mobility in terms of movement or dispersal and flexibility in both foraging 56 

and habitat use) comprise what are commonly referred to as generalists2 (Box 1). Generalist species 57 

are often capable of responding to resource and environmental variation through their behaviour, 58 

linking various habitats and ecosystems transcending the boundaries between them traditionally 59 

deemed by ecologists. By linking otherwise distinct habitats and ecosystems, these species structure 60 

food webs in space2,9,10. The movement of generalist species clearly has potentially significant 61 

implications for material and energy flow within and across ecosystems5,6,11,12, but behavioural 62 
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responses have been largely overlooked by ecologists studying how food webs are rewiring with 63 

climate change.  64 

In what follows, we argue that the responses of mobile generalist species rewire food webs in 65 

a changing world. We first show that climate change has asymmetrical impacts in space from global 66 

to local scales, producing novel heterogeneity in environmental conditions worldwide to which 67 

species are poised to respond (Figure 1). We then discuss emerging studies that show this novel 68 

heterogeneity drives generalist species to rapidly and predictably respond to novel conditions through 69 

their behaviour11. These generalists’ responses alter food web in two related but qualitatively distinct 70 

ways: by changing food web topology (i.e., topological rewiring sensu Blanchard1), and changing the 71 

strengths of existing interactions (i.e., interaction strength rewiring). We illustrate rewiring driven by 72 

climate warming using two detailed example food webs, one aquatic (Box 2) and one terrestrial (Box 73 

3), each made up of ectothermic organisms that are highly sensitive to changes in temperature13. We 74 

then illustrate how whole groups of species with shared traits can exhibit unified, aggregate 75 

community behavioral responses to climate change that could rewire entire food webs. We end by 76 

arguing that these results enticingly suggest that rapid behavioral responses of generalists to climate 77 

change represent a powerful tool in monitoring nature’s responses to environmental change and can 78 

act as a potent addition to the early warning signals toolbox. 79 

 80 

Climate Change Creates Novel Heterogeneity Across Scales 81 

While many aspects of global change are thought to homogenize ecosystems and landscapes14–16, 82 

climate change impacts are also expected to vary spatially, transforming environmental heterogeneity 83 

in subtle but significant ways across scales (Figure 1)17. The impacts of climate change are well known 84 

to be asymmetrical at large spatial scales (i.e., one region or hemisphere is impacted more than 85 

another). At the global scale, rates of warming are asymmetric between hemispheres, with warming 86 
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of land and oceans in the northern hemisphere outpacing the southern hemisphere18,19 (Figure 1A). 87 

Other global-scale properties are being asymmetrically altered too, including precipitation20, El Nino 88 

and La Nina frequencies21, and ice extent22. Climate models also predict asymmetry in responses 89 

within hemispheres, with polar and temperate ecosystems being more strongly impacted than tropical 90 

and equatorial systems18,23. Regional effects of climate change include greater temperature increases 91 

on the Earth’s land masses than in the oceans24 (Figure 1B). Taken together, these asymmetrical 92 

impacts are leaving a complex large-scale footprint of climate change. 93 

Asymmetrical climate change impacts are also expected at smaller scales, both within and 94 

across ecosystems, although they are not as well studied as global-scale responses18,21,23,25. These 95 

smaller scale asymmetrical impacts will likely arise because ecosystems and the various habitats that 96 

comprise them have different physical and abiotic properties that differentially filter the impacts of 97 

climate change11, comparable to the factors that create climate refugia26. The result is asymmetrical 98 

impacts of climate change in different habitats and ecosystems (e.g., one habitat or ecosystem, say, 99 

warms more or more rapidly than another), creating a small-scale heterogenous mosaic in space. For 100 

example, while the surface waters of most lakes worldwide are warming, warming rates vary between 101 

lakes depending on local properties such as surface area, shape, and depth27. Within lakes, thermal 102 

stratification produces asymmetric warming between shallow nearshore and deep offshore 103 

macrohabitats because surface waters that warm under direct contact with the air do not mix with 104 

deeper waters, which remain cold even in the summer (Figure 1C)22-24. Similarly, in terrestrial 105 

systems, climate change is predicted to asymmetrically impact mountainous regions via feedbacks 106 

between latitude and elevation that depend on local topography, elevation, slope, and treelines28–30. 107 

At even smaller scales, global changes like warming or increased precipitation interact with nutrient 108 

conditions to increase the local heterogeneity in limiting factors in terrestrial ecosystems28-31. These 109 
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asymmetric climate change impacts from micro to macro scales will produce a novel, transformed 110 

heterogenous palette of fine- and coarse-grained habitats and ecosystems.  111 

 112 

Rewiring Through Behavioral Responses  113 

Novel heterogeneity stemming from climate change ought to elicit rapid behavioural responses by 114 

mobile generalist species. These responses could be due to either the direct physiological 115 

consequences of these new environmental conditions or from resultant changes in resource availability 116 

or distribution in space. Importantly, mobile high-trophic-level generalist species can navigate across 117 

the landscape, moving between habitats, ecosystems and even hemispheres, structuring food webs in 118 

space10,31–33.  The responses of these species should therefore rewire food webs in two key ways (Box 119 

1). Firstly, generalist species will expand into systems where they were previously rare or absent, 120 

resulting in topological rewiring—the addition or loss of food web connections or whole food web 121 

pathways. Topological rewiring is analogous to adding and removing “wires” in an electrical network. 122 

Secondly, generalist species will shift how they move and forage across multiple habitats and 123 

ecosystems, causing interaction strength rewiring—changes in the consumption rates of existing food 124 

web connections, thus rerouting energy flows through existing pathways. Interaction strength rewiring 125 

is akin to altering the “load” on the wires in an electrical network. Because the mobile generalist 126 

species that transcend the spatial boundaries between habitats and ecosystems link their energy and 127 

nutrient dynamics, their behavioural responses promise to fundamentally shift the interplay between 128 

sub-webs or food web compartments in different habitats and ecosystems. And when groups of 129 

generalist species with shared traits respond in concert to the altered spatial mosaic created by climate 130 

change, they have the potential to fundamentally reorganize the structures of whole ecosystems and 131 

biomes. 132 

 133 
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Topological Rewiring 134 

At the global scale, numerous studies have demonstrated the poleward movement of many species in 135 

various ecosystems worldwide, altering community structure and potentially restructuring local food 136 

webs 2,3,7,8,34–36. Similar patterns exist across altitudinal gradients, as exemplified by upslope shifts in 137 

the distribution of bees, butterflies, and birds37–39. Importantly, these shifts tend to be dominated by 138 

generalist species, which are often more mobile and adapted to deal with spatial variation in resources 139 

and conditions2,7,8,35,36. These latitudinal and altitudinal advances of generalists strongly imply that 140 

local food webs should be experiencing species introductions and so undergoing topological rewiring 141 

as they gain new connections1,2,40. Local food webs may also lose connections because of the loss of 142 

species36,40,41. Notably, though, species ranges are expanding poleward and upslope faster than they 143 

are contracting, and the rate of species invasions appears to be outpacing the rates of local declines7,42. 144 

Taken together these changes suggest that, on average, we expect the reshuffling of species to skew 145 

local diversity towards a more generalized set of species3,43–45. This skew towards generalists can 146 

fundamentally alter the topology of local food webs, increasing connectance and reducing modularity 147 

of the rewired food webs. These topological changes have potentially dramatic implications for 148 

stability and the maintenance of biodiversity46–48, and topological rewiring from range expansion of 149 

tropical species has indeed been associated with dramatic phase shifts in temperate marine food 150 

webs49. 151 

One clear example of topological rewiring comes from Kortsch et al.2, who examined how 152 

climate change will impact the food web of the Barents Sea, which borders on the Arctic Ocean. They 153 

found that the boreal fishes moving poleward into the Barents Sea tended to be omnivorous generalist 154 

fish species. The addition of these generalists into the food web increased connectance and 155 

simultaneously reduced modularity by linking previously disparate modules corresponding to pelagic 156 
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and benthic macrohabitats. Kortsch et al.2 anticipate that the outcome of this topological rewiring in 157 

the Barents Sea food web will be altered patterns in carbon flow within this food web.  158 

 159 

Interaction Strength Rewiring 160 

Importantly, the asymmetrical impacts of climate change across scales are driving mobile generalist 161 

species to respond in ways other than redistributing across the globe and driving topological 162 

rewiring. Mobile generalist species may simultaneously alter the strengths of trophic interactions 163 

within food webs50–52. The distribution of interaction strengths, which is determined by the foraging 164 

actions of consumers, is a key part of food web structure that is well known to underlie the 165 

maintenance of diversity in and the stability of complex communities46,48,52–55. Research on food 166 

web rewiring has focused on topological changes in food web structure, with less emphasis on how 167 

interaction strengths will be altered by climate change. Some research has shown expected changes 168 

in average interaction strength with warming56. However, altered heterogeneity in space from 169 

climate change ought to change other aspects of interaction strength, such as strengthening some 170 

interactions and weakening others or rearranging the distribution of interaction strengths.  171 

Many generalists forage across the landscape, coupling spatially distinct habitats and 172 

ecosystems57. Interaction strength rewiring can occur when these spatially distinct habitats and 173 

ecosystems are asymmetrically altered by climate change, driving generalist to change their relative 174 

use of resources in space. For example, asymmetrical warming between habitats may have 175 

physiological consequences for a generalist. The warming may increase metabolic demand, driving 176 

the generalist to increase its food consumption and thereby increasing the flow of energy through the 177 

existing food web pathways. However, if the metabolic consequences are too costly in the warmer 178 

habitat, a generalist may change its behaviour by decreasing use of food sources in the warmer habitat 179 

and increasing use of cooler habitats. This response would simultaneously reduce consumption on the 180 
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existing food web pathway derived from the warmer habitat and increase consumption on the food 181 

web pathway from the cooler habitat. In this way, the amount of energy flow along existing warmed-182 

up pathways (wires) is diminished, and the energy flow along other, less impacted pathways may be 183 

unchanged or increased. This change in mobile generalist consumers’ behavior also results in the 184 

decoupling of adjacent habitats or ecosystems. Given that some migratory species, such as some 185 

whales and seabirds, couple the northern and southern hemispheres and adjust their behaviour with 186 

changes in climatic conditions58, interaction strength rewiring also has the potential to play out at vast 187 

spatial scales. 188 

Interaction strength rewiring has been documented in diverse ecosystems across the globe. 189 

Among the best-studied examples of interaction strength rewiring comes from boreal lake ecosystems 190 

in Canada that have lake trout (Salvelinus namaycush) as a top predator. The  cold-water-adapted lake 191 

trout respond to the differential warming of the nearshore macrohabitat by retreating to the cooler 192 

offshore habitat and reducing its reliance on nearshore food resources (for details, see Box 2). 193 

Similarly, Barton, Schmitz, and co-authors4,59–61 have shown interaction strength rewiring in grassland 194 

invertebrate food webs. When experimental warming shifts the vertical temperature gradient in 195 

grasslands, the sit-and-wait predatory spider Pisaurina mira moves down towards the relatively cool 196 

soil microhabitat, introducing novel intraguild predation causing extirpation of the active predatory 197 

spider Phidippus rimator, reducing the feeding time of the grasshopper Melanoplus femurrubrum, and 198 

indirectly altering the biomass of grasses and herbs (for details, see Box 3). Additionally, Yurkowski 199 

et al.62 show how the northward advance of a species due to climate change can cause interaction 200 

strength rewiring in Arctic marine ecosystems. As capelin (Mallotus villosus) move northward into 201 

Cumberland Sound, Nunavut, Canada, both beluga whales (Delphinapterus leucas) and Greenland 202 

halibut (Reinhardtius hippoglossoides) increase their foraging on forage fish, changing the 203 

summertime relationship between belugas and halibut from a primarily predator-prey interaction to a 204 
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primarily competitive interaction (Figure 2A)62. A larger-scale example of across ecosystem 205 

interaction strength rewiring takes place at the sea-land interface. During periods of reduced sea ice, 206 

polar bears (Ursus maritimus) spend more time on land, spatially isolated from their preferred prey of 207 

ringed seals (Pusa hispida, see Figure 2B)63,64. At this time, the bears predate more on nesting seabirds 208 

and their eggs, altering the strengths of their interactions with these resources63,65. This foraging switch 209 

is believed to be insufficient for polar bears to maintain their condition, which is expected to 210 

negatively impact their populations66. Interaction strength rewiring may even occur on the largest 211 

spatial scales since migratory seabirds and whales, which couple hemispheres, now have to migrate 212 

farther poleward with climate change67. 213 

Spatially asymmetrical climate change may also drive interaction strength rewiring in more 214 

complex ways, such as by producing phenological shifts. One intriguing example is that of Kodiak 215 

brown bears (Ursus arctos middendorffi), which feed on both terrestrial red elderberry (Sambucus 216 

racemosa) and on aquatic sockeye salmon (Oncorhynchus nerka)68 (Figure 2C). While the 217 

productivity of these two resources were previously staggered in time, climate impacts pushed the 218 

elderberry to bloom earlier and now peak in synchrony with the relatively unaffected salmon spawns. 219 

This temporal synchronization effectively decoupled a connection between terrestrial and aquatic 220 

habitats that was mediated by bears68. Because climate change research has tended to initially cling to 221 

temperature changes (as noted by VanDerWal et al.69), many of our examples of rewiring focus on 222 

the impacts of asymmetrical warming. However, climate change is multifaceted, with many 223 

dimensions of climate change (e.g., precipitation) expected to be asymmetric in ways that similarly 224 

elicit rapid behavioral responses in mobile generalists and thus broadly rewiring food webs70,71. 225 

 226 

Aggregate Rewiring 227 
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The bulk of research on how climate change impacts food webs has focused on one or a small number 228 

of species, with less focus on how climate change may reorganize whole food webs72. Yet, the 229 

rewiring of food webs is likely not limited to a single generalist species response; entire suites of 230 

species within a food web may respond en masse, especially if they share key traits that drive their 231 

responses. To test this idea, we expand on the previous research showing how lake trout responses to 232 

climate change rewire lake food webs (described in Box 2). Lake trout responses result from reduced 233 

accessibility of the differentially-warmed nearshore macrohabitat in lakes. Lake trout are one of many 234 

cold-water adapted fishes that inhabit these lakes, and fish are generally relatively mobile73. Thus, 235 

reduced thermal accessibility of the nearshore macrohabitat may drive many of these species to exhibit 236 

similar behavioral responses to that of lake trout, generating a unified response of the entire cold-237 

water thermal guild (Figure 3A). As expected, extensive spatial catch-per-unit-effort data from 721 238 

lakes in Ontario, Canada74 across a natural temperature gradient show that the cold-water guild is on 239 

average caught in deeper water in warmer lakes (Figure 3B), indicating an aggregate behavioural 240 

response towards increased offshore habitat use. In addition, most of the 13 cold-water species, which 241 

span several trophic levels, individually were on average caught in deeper water in warmer lakes 242 

(Figure 3C). Because such shifts towards offshore habitat use are associated with decreased nearshore 243 

foraging31,32, these unified behavioural results strongly imply significant rewiring throughout lake 244 

food webs, with major consequences for carbon flow in these ecosystems. Curiously, Dulvy et al75 245 

document similar aggregate behavioural responses in the North Sea. As the bottom temperature of 246 

shallow shelf seas warmed from 1980 to 2004, the whole bottom-dwelling fish assemblage comprised 247 

of 28 species moved into deeper waters75. The deepening of fish assemblages in these ecosystems 248 

exemplify two powerful case studies for how rapid behavioral responses to climate change are 249 

rewiring interaction strengths at the whole food web scale. If groups of species with shared traits are 250 

widespread, these unified, aggregate responses may be common with climate change. Aggregate 251 
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behavioural responses would allow us to scale from understanding how single species rewire food 252 

webs to understanding how whole food webs rewire with climate change. In combination with the 253 

aggregate range shifts documented for some groups of species75,76 aggregate responses may be vital 254 

to understanding food web rewiring with climate change.   255 

 256 

Stability and Structural Early Warning Signals 257 

Here, we have argued that the asymmetrical impacts of climate change ought to broadly and 258 

predictably rewire food webs in terms of both topology and interaction strength.  The impacts of 259 

climate change are often strongly linked with simultaneous changes in other forms of human 260 

perturbations (e.g., species invasions) that may also drive rewiring77,78. These broadly imposed human 261 

impacts are allowing generalist species to redistribute around the globe, functionally homogenizing 262 

biodiversity, overwhelming more specialized species79, and rewiring food webs40,42,80. Because food 263 

web structure and stability are inextricably linked81, both topological rewiring and interaction strength 264 

rewiring have the potential to drastically alter stability. Despite the notion that  heterogeneity largely 265 

plays a stabilizing role in ecosystems82–86, the novel heterogeneity and behavioral responses we 266 

discuss here may not always act as a stabilizing force in newly rewired ecosystems87. The topological 267 

changes in Arctic marine food webs documented by Kortcsh et al2—increased connectance and 268 

reduced modularity—tend to be destabilizing because they synchronize whole food web responses to 269 

perturbations46,53,54,88,89. Yet, an influx of generalists may promote stability by weakening average 270 

interaction strengths90 and allowing adaptive responses that mute variation9. Thus, in the interim, the 271 

exact ramifications of rewiring on stability may appear nebulous; however, the ultimate consequences 272 

of rewiring for stability are less ambiguous. With continuing asymmetrical climate change, some 273 

habitats and ecosystems will likely become completely inaccessible for the mobile generalists that 274 

couple them, leading to extensive decoupling that is well known to be destabilizing91. In addition, 275 
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altered climatic conditions are likely to make ecosystems and habitats inhospitable for some species 276 

and impact key ecological and metabolic rates that are strongly linked to stability, making extinctions 277 

prevalent and inevitable and racking up extinction debt in many ecosystems92. Biodiversity loss on 278 

this scale is strongly linked to a loss in stability. 279 

Given that generalist species responses critically influence stability, ecologists may be able to 280 

use the responses of generalist species as “structural” early warning signals to climate change impacts 281 

on ecosystems. Early warning signals (EWSs) have been successfully applied to forecast changes in 282 

diverse systems, from stock markets to ecosystems. Current ecological EWSs, which are largely based 283 

on time series of population abundance, have some significant challenges because empirical time 284 

series are often too short to decipher key signatures of a looming loss in stability, such as critical 285 

slowing down93–95. This aspect of EWSs is especially concerning for long-lived, higher-trophic-level 286 

organisms with population dynamic signatures like cycles and generation times that span multiple 287 

decades96. As a result, researchers have recently called for additional methods to be added to the EWS 288 

toolbox, including concomitant changes in spatial patterning within an ecosystem97. Our arguments 289 

here suggest that monitoring the behavior and foraging of high trophic level generalists can help detect 290 

key structural changes in food webs that indicate the imminent collapse of one or more species. 291 

Importantly, such behavioural assays using generalist species—the same species whose times series 292 

ought to be difficult to track—would expose pending collapse on much shorter timescales and with 293 

much less intensive sampling efforts than time-series based approaches. For example, Guzzo et al.31 294 

use data collected over a period of 11 years to show that lake trout, which can live for decades, exhibit 295 

rapid shifts in foraging and behavior to warming. Given the rapid rate and large scale of environmental 296 

change worldwide, new structural indicators of looming change will be imperative to maintain the 297 

diversity and functioning of the biological systems on which we rely for critical ecosystem 298 
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services4,98,99. With further research, we can harness generalists’ responses to predict functional 299 

outcomes of climate change on the world’s ecosystems. 300 

Ecologists are already documenting rapid behavioral responses to changing environmental 301 

conditions using a variety of tools that could serve as structural indicators of major changes to 302 

ecosystems. Increasingly common tools for diet analysis include biotracers like stable isotopes, fatty 303 

acids, and DNA barcoding, which can readily track changes in foraging behavior100. Yurkowski et 304 

al.62 (Figure 2A) provide an excellent example of using stable isotopes to monitor ecosystem changes 305 

before and after the northward advance of a species with climate change. Theory suggests that the 306 

shift from a primarily predator-prey interaction to a primarily competitive interaction like Yurkowski 307 

et al.62 document generally corresponds to a significant reduction in stability, perhaps foreshadowing 308 

major changes to this ecosystem. Another example of dietary monitoring comes from seabirds, which 309 

are known to couple across enormous spatial scales58. Seabirds that feed on multiple prey items (e.g., 310 

sardines and anchovies) have shown foraging shifts away from sardines that precede fishery surveys, 311 

which eventually indicated significant sardine population decline58. Diet-based tools could be 312 

particularly powerful when paired with traditional methods of detecting changes in animal movement 313 

with climate change, such as telemetry31,101. Perhaps these tools will reveal that generalists show 314 

increased behavioral variation prior to the looming major loss in system stability (e.g., loss of a key 315 

resource), analogous to the increased population abundance variance predicted by classical EWS 316 

theory. Because behavioral changes like movement are often accompanied by physiological changes, 317 

we might also expect a suite of organismal responses (e.g., growth, age at maturity, activity levels) in 318 

concert with climate change. Generalists’ dietary, behavioral, and physiological responses together 319 

are likely to help address the unequivocal need for tools to detect looming collapses in ecosystems102 320 

and provide an across-scale-integrated approach to biomonitoring impacts of climate change100.  321 

  322 
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Boxes 323 

Box 1. Key terms and concepts relating to the rewiring of the world’s food webs with climate 324 

change. 325 

rewiring Fundamental changes in the structure of a food web that alter the 

pathways of nutrients and/or energy in an ecosystem. Rewiring can 

occur from changes in either food web topology (topological rewiring) 

or changes in interaction strength (interaction strength rewiring).  

topological rewiring Changes in the topology of a local food web (i.e., who eats whom), 

which often result from novel species introductions and/or the loss of 

species. 

interaction strength 

rewiring 

Changes in the strengths of interactions in a local food web (i.e., the 

magnitude of the effect on the energy flow from one species to another), 

which often result from changes in the consumptive demand of a 

consumer associated with changes in the consumer’s behaviour. 

novel heterogeneity Unprecedented, increased distinctiveness in the relative environmental 

conditions of habitats that arises from the asymmetrical impacts of 

climate change. These asymmetrical impacts of climate change occur at 

various scales, from within ecosystems to between entire hemispheres.  

behavioral response Changes in behaviour by a species or suite of species, such as dispersal, 

movement, habitat use, and foraging actions, that occur in reaction to 

changes in environmental conditions. 
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mobile generalist 

species 

Species that tend to possess high mobility (in terms of movement or 

dispersal) and flexibility in both foraging and habitat use. As a result, 

these species tend to have a large dietary breadth and link macrohabitats 

through their foraging actions, allowing them to behaviourally respond 

to environmental variation in space and time.  

structural early 

warning signals 

Properties in food web structure (topology and interaction strengths) that 

suggest imminent and drastic changes in ecosystems, such as major 

shifts in stability or regime shifts.  

  326 
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Box 2. The rewiring of lake food webs with climate change.  327 

One well-documented example of rewiring comes from the north-temperate lake ecosystems that have 328 

cold-water lake trout (Salvelinus namaycush) as a top predator. Lake trout are highly mobile foragers 329 

that prefer cold water and can actively move and feed between shallow nearshore (littoral) and deep 330 

offshore (pelagic) macrohabitats31 (panel A). The extent of littoral foraging by lake trout is governed 331 

by the thermal accessibility of the nearshore macrohabitat because lake trout experience a cost when 332 

making forays from their deep pelagic refuge into warmer littoral areas31,32,100,103–106. However, these 333 

two macrohabitats that lake trout couple will be differentially impacted by climate change, which is 334 

expected to warm the nearshore and surface macrohabitat faster than the deep offshore 335 

macrohabitat107,108. This differential warming of the nearshore zone forces lake trout to respond by 336 

decoupling from the nearshore, with lake trout moving into deeper colder waters and relying less 337 

heavily on nearshore resources (panels A and B). The shift in habitat use by lake trout is revealed by 338 

long-term telemetry, which show increases the depth of detection as the nearshore macrohabitat warms 339 

(panel C data adapted from Guzzo et al.31). This is paralleled with a shift in lake trout diet that is apparent 340 

in stable carbon isotope signatures and stomach content analysis, which both show reduced reliance 341 

on nearshore food resources with increasing summer air temperature (panel B, adapted from Tunney 342 

et al.32)32,104. Lake trout’s behavioural response to the differentially-warmed littoral habitat thus 343 

represents rewiring of carbon flow through the whole lake ecosystem. 344 

This rewiring of lake ecosystems has important consequences for both lake trout and whole 345 

lake ecosystems. Difficulty in garnering prey from the nearshore reduces both growth and condition 346 

factor in lake trout31, suggesting a potential loss of stability (in that lake trout persistence is threatened) 347 

from reduced access to the littoral carbon pathway. Reduced nearshore foraging changes lake trout’s 348 

life history traits and reduces density in a way that may erode their top-down effects100,109.  Temperate 349 

lake ecosystems are also highly seasonal environments, and lake trout show important seasonal shifts 350 
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in behaviour and habitat use31,106. Climate change is altering various abiotic factors in lakes and affects 351 

some seasons more than others, suggesting that climate change will alter the seasonal flexes in lake 352 

food web structure. Such climate change impacts that are asymmetrical in time may also drive food 353 

web rewiring. Importantly, other species in boreal lake ecosystems, including the planktivorous cisco 354 

(Coregonus artedi) and the piscivorous walleye (Sander vitreus), both similarly display paired 355 

behavioral and dietary shifts away from the nearshore in increasingly warm lakes, showing that 356 

rewiring occurs at multiple places in lake food webs109. Such behavioural and dietary shifts may be a 357 

common response of thermally sensitive species in these lakes, producing unified aggregate 358 

behavioural responses to climate change (see Aggregate Rewiring and Figure 3).  359 

  360 
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Box 3. The rewiring of grassland food webs with climate change.  361 

Temperate grassland food webs are expected to rewire in the face of climate change4,59–61. Grasslands 362 

have naturally occurring vertical temperature profiles corresponding to distance from the ground, 363 

creating distinct microhabitats near the soil surface and at the top of the grass canopy (Figure 1d). 364 

Under ambient temperatures, the two spider predators are spatially separated, with the sit-and-wait 365 

predator Phidippus mira near the tops of the grasses and the active predator Phidippus rimator lower 366 

down near the soil (panel A, adapted from Barton & Schmitz110). Experimental warming shifts the 367 

entire temperature gradient4,59–61, driving the sit-and-wait predator P. mira to respond by moving 368 

down closer to the shaded thermal refugium near the soil surface as greater heights become too 369 

warm4,33,110–112 (panel B). When P. mira responds by changing its microhabitat use and moving down, 370 

it spatially overlaps with the sit-and-wait predatory spider, P. rimator, driving intraguild predation 371 

that knocked out the P. rimator in Barton & Schmitz’s110 experimental microcosms. The behavioural 372 

response of P. mira impacted the foraging behaviour of herbivorous grasshoppers, Melanoplus 373 

femurrubrum. As P. mira moved down and farther away from M. femurrubrum with increasing 374 

temperature, M. femurrubrum showed increasing feeding time (panel C, adapted from Barton61). As 375 

a result, changes in top-down effects from predatory spiders drove indirect effects on herbaceous plant 376 

biomass, with the biomass of grasses and herbs in experimentally warmed mesocosms significantly 377 

altered when compared to control mesocosms (panel D, adapted from Barton & Schmitz110). This 378 

indirect effect is critical given that the direct effects of warming on plant biomass is less than the 379 

indirect effects of top-down control by spiders60. These studies also hint at the consequences of this 380 

grassland food web rewiring, with the loss of P. rimator suggesting possible impacts on stability and 381 

the change in plant biomass suggesting possible changes to ecosystem function. Barton and co-authors 382 

have also looked at how factors like wind and precipitation can also rewire terrestrial food webs113,114, 383 

implying food web rewiring with other aspects of climate change. Intriguingly, Barton and Schmitz115 384 
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show that daytime and nighttime warming have opposite effects on spider activity, producing opposite 385 

trophic cascades. These results suggest that climate change asymmetries in time may also drive food 386 

web rewiring. Taken together, these studies make a unique case study how asymmetrical impacts of 387 

climate change rewire grassland food webs.  388 

 389 

390 
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Figure Captions 636 

Figure 1. The asymmetrical impacts of climate change create novel heterogeneity, from local 637 

to global spatial scales. (A) Global temperature data from 1880-2017 indicate temperatures in the 638 

Northern hemisphere are increasing more rapidly than in the Southern hemisphere (adapted from 639 

116,117).  (B) The ratio of land/sea warming rates from many climate change models shows that land 640 

is warming faster than seas (adapted from Sutton et al.24). (C) Because of thermal stratification in 641 

lakes, indicated by this vertical temperature profile, the nearshore (littoral) areas and surface waters 642 

of lakes are warming faster than deep and offshore (pelagic) areas. (D) Temperature increases 643 

vertically farther from the soil surface to the top of grasses in grassland ecosystems (adapted from 644 

Barton and Schmitz110). 645 
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Figure 2. Three examples of food web rewiring with climate change from diverse ecosystems. 647 

(A) Rewiring of the arctic marine food web in Cumberland Sound, Nunavut, Canada. As capelin 648 

(Mallotus villosus) move northward into Arctic marine ecosystems, both beluga whales 649 

(Delphinapterus leucas) and Greenland halibut (Reinhardtius hippoglossoides) increase their 650 

foraging on forage fish. These responses change the summertime relationship between belugas and 651 

halibut from a primarily predator-prey interaction to a primarily competitive interaction (adapted 652 

from Yurkowski et al.62). (B) Rewiring of the food web across the Arctic land-sea interface. During 653 

periods of reduced sea ice, polar bears (Ursus maritimus) spend more time on land, spatially isolated 654 

from their preferred prey of ringed seals (Pusa hispida). While on land, the bears predate more on 655 

nesting seabirds and their eggs and less on ringed seals, altering the strengths of their interactions 656 

with these resources (adapted from Prop et al.63, Hamilton et al.64, and Smith et al.65).  (C) Rewiring 657 

of the food webs of coastal Pacific North America.  Kodiak brown bears (Ursus arctos 658 

middendorffi) feed on both terrestrial red elderberry (Sambucus racemosa) and on sockeye salmon 659 

(Oncorhynchus nerka). While these two resources were previously staggered in time, climate 660 

impacts pushed the elderberry to bloom earlier and now in synchrony with salmon, effectively 661 

forcing the decoupling of terrestrial and aquatic habitat that was mediated by bears (adapted from 662 

Deacy et al.68).  663 
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Figure 3. The aggregate rewiring of food webs through the unified behavioural responses of 665 

entire suites of species. (A) The aggregate behavioural response of coldwater fishes to move into 666 

deeper, offshore waters with climate warming, which suggests the rewiring of boreal shield lake 667 

food webs. (B) The residual average log10 depth of capture for 13 coldwater fish species increases 668 

across a gradient of increasing average recent air temperature based on spatial catch-per-unit-effort 669 

data from 721 lakes in Ontario, Canada, indicating that cold-water species were on average caught 670 

in deeper water in warmer lakes (adapted from Bartley109, see Supplementary Information). (C) The 671 

slope coefficient (with standard error) for regression models of the residual average log10 depth of 672 

capture across a spatial gradient of average recent air temperature for each of 13 cold-water species, 673 

showing many species contribute to the unified behavioural response of these species to increased 674 

temperature (adapted from Bartley109, see Supplementary Information).  675 
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