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Over the last decade, eye tracking systems have been developed and used in many fields, mostly to identify
targets on a screen, i.e. a plane. For novel applications such as the control of robotic devices by the user
vision, there is a great interest in developing methods base on eye tracking to identify target points in free
three dimensional environments. The objective of this paper is to characterise the accuracy the eye tracking
and computer vision combination that was designed recently to overcome many limitations of eye tracking
in 3D space. We propose a characterization protocol to assess the behavior of the accuracy of the system
over the workspace of a robotic manipulator assistant. Applying this protocol to 33 subjects, we estimated
the behavior of the error of the system relatively to the target position on a cylindrical workspace and to
the acquisition time. Over our workspace, targets are located on average at 0.84 m and our method shows
an accuracy 12.65 times better than the calculation of the 3D point of gaze. With the current accuracy,
many potential applications become possible, such as visually controlled robotic assistants in the field of
rehabilitation and adaptation engineering.

Additional Key Words and Phrases: Eyetracking, Computer vision, 3D environment, Control paradigm, Re-
habilitation

1. INTRODUCTION
Over the last decade, eye tracking systems have been developed and used in many
fields such as in driving simulators [Alberti et al. 2012], in human computer interac-
tion [Majaranta and Bulling 2014] in medical applications to improve teaching [Chet-
wood et al. 2012] and teamwork [Bogdanova et al. 2015], in marketing [Rosbergen et al.
1997], standard oculography [van der Geest and Frens 2002; Weber et al. 2009] and
many more [Popelka et al. 2012; Staudte and Crocker 2008; Duchowski 2002]. These
applications attest the large variety of information that can be interpreted from eye
tracking data. However, most of those applications require a physical support, such
as a screen, at a known position to work properly [Alberti et al. 2012; Popelka et al.
2012; Duchowski 2002]. This is because, given the gaze direction and the gaze plane
location, it becomes trivial to compute the gaze point.

Other fields would benefit from the intuitive and powerful source of data provided
by eye tracking, notably in the fields of robotic control [Jan and Bukhari 2009; Atienza
and Zelinsky 2003; Lupu and Ungureanu 2013]and assistive technologies [Frisoli et al.
2012; Atienza and Zelinsky 2005]. However, these cannot generally be implemented
using a fixed gazing target plane given that their target is often in an uncontrolled
environment. For this reason, recent research focused on the development of methods
and strategies to use eye tracking in free three dimensional (3D) environments [Fu-
jiyoshi et al. 2012; Essig et al. 2006; Duchowski et al. 2002]. To implement applications
in 3D, research works rely generally on one of the two following strategies.

(1) The 3D point of gaze approach (3DPOG) relies on the calculation of the point where
the gaze vector of both eyes cross each other [Jan and Bukhari 2009; Lupu and
Ungureanu 2013; Fujiyoshi et al. 2012; Essig et al. 2006; Duchowski et al. 2002].
Almost every research group using this method proposes some degree of refine-
ment to the technique to improve accuracy. However, it is worth noting that very
few papers [Abbott and Faisal 2012; Hennessey and Lawrence 2009]. describe the
workspace considered during the accuracy assessment of their method, thus leav-
ing little possibility for comparison between methods. Unfortunately, as the dis-
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tance between the user and the target increases, left and right gaze directions
tend to become parallel, leading to important errors in the point of gaze estima-
tion, which limits the usable workspace to a small one that has to be very close to
the user.

(2) In the mapping approach, a complementary device, such as the Kinect (Microsoft,
USA) or another stereovision system with a SLAM algorithm [Paletta et al. 2013]
is used to map the environment. The eye tracking data is only used to select the
target inside the field of view of the said device [Frisoli et al. 2012; Atienza and
Zelinsky 2003; 2005; Shimizu and Fujiyoshi 2011]. Thanks to the accuracy of stere-
ovision systems [Peng 2011; Andersen et al. 2012; Microsoft 2016], this method is
more suitable for large workspaces. In this method however, eye tracking data is
underused since it is not involved in the computation of the target location which
is calculated by advanced and bulky stereovision algorithms. Stereovision systems
can be costly in computing power and this somewhat limits the portability or speed
of the system as a whole. They are also complex and cumbersome to implement in
any application without relatively advanced knowledge of image acquisition sys-
tems and algorithms. Moreover, the accuracy of stereovision systems is also very
sensible to calibration.

Other similar work exists when discussing eye tracking and interaction with the
field of view of the subject, such as remote eye contact detection [Ye et al. 2012] or gaze
following cameras [Schneider et al. 2005]. The authors of [Pfeiffer et al. 2008] follow
the gaze of a subject in a 3D virtual environment using machine learning. However,
this paper focuses on estimating the location of targets in a real 3D environment, so
such work cannot provide comparison benchmark in the matter.

Therefore today, most methods enabling to estimate targeted 3D locations using eye
tracking have some degree of inconvenience relative to the volume or location of the
functional workspace or the portability and complexity of the whole system. However,
in [Leroux et al. 2015], eye tracking data was combined with a single camera to cir-
cumvent most of those limitations, but only rudimentary accuracy assessment was
done. A more in depth study of the behaviour of the error and the size of the effective
workspace would be essential for practical applications.

Consequently, the objective of this paper is to characterise the behaviour of the error
of the method described in [Leroux et al. 2015] in order to thoroughly assert its accu-
racy, determine its useful workspace and identify the causes of the errors in order to
improve the method in future research.

In the following sections, we first briefly recall how the eye tracking and computer
vision combination (ETCV) method works and then explain how we characterized the
behaviour of the error over a large workspace. Note that our workspace was chosen
arbitrarily to correspond roughly to the reach of a basic 6 degree-of-freedom (DOF) se-
rial robotic manipulator, the JACO robotic arm (Kinova, Canada) as a first application
example.

2. METHOD
2.1. The combination of eye tracking and computer vision (ETCV) method
Prior any target location measurements can be made, some characteristics of the target
and the system must be known. The color of the target will be used for color recogni-
tion, while the target dimensions (d) and the characteristic number of pixels per degree
(PPD) of the camera will be used to compute the distance to the target assuming a pin-
hole camera model (see Fig. 1). These informations are stored in the memory of the
system for the calculations that ensue.
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While the user stares at the target, eye tracking data is acquired using the eye
tracker and the associated software. We used faceLAB 5 (Seeing Machines, Aus-
tralia),a remote eye tracker with a rotational tracking accuracy of ±1◦, but other com-
mercially available devices would also be compatible with the method. Meanwhile, a
snapshot is taken with a webcam fixed over the subject’s head (here on a hat), sharing
his field of view.

First, the eye tracking data is filtered by removing every sample where both eyes of
the subject are not completely visible or undergoing a saccade - a quick involuntary
eye movement. With our setup, the blinking and saccade detection indicators as well
as a general quality indicator are all automatically generated by faceLAB 5 during the
acquisition. Then the gaze direction, pitch and yaw angles as given by the eye track-
ing software, for each eye is averaged over all samples to reduce the error associated
with the impossibility for any subject to stare exactly at a single small point in space
knowing that the eyes are proprioceptive sensors that detect many points around the
vision target. The gaze direction of both eyes is then approximated as parallel, based
on the hypothesis that the target is normally far enough from the user, hence a sin-
gle direction assumed to originate from a point situated exactly between both eyes is
computed, thus giving the angular coordinates of the target in a spherical coordinate
system originating at this point.

Secondly, previously acquired knowledge of the target color is used to locate the tar-
get on the snapshot taken by the webcam with a color recognition algorithm, a method
chosen for its very simple implementation. The dimensions in pixels (dpx[ pixels ] ), of
the target on the picture are then measured. As can be seen in Fig. 1, the distance (R
[m]) between the camera and the target can be calculated using the pinhole camera
model and Equation 1.

R =
d

2 tan
dpx

2PPD

(1)

where R is the depth of the target, d is the target size, d′px is the target image size
and PPD is the Pixels Per Degree characteristic of the camera.

Fig. 1. Geometric representation of the pinhole camera model
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We approximate R to be the same as the distance between the target and the pre-
viously mentioned origin of the spherical coordinate system between the eyes, thus
completing the location of the target relatively to the subjects head. The location of the
target in the eye trackers coordinate system can then be computed by taking the mean
of the location of each eye, which is also given by the eyetracking data.

2.2. Validation protocol
The eye tracker was fixed on a table, on the edge of the workspace under test clos-
est to the subject. The subjects were positioned to have their head in the eye tracker
stereovision system convergence point (see Fig. 2). For most of the subjects, this meant
that the eye tracker was located right above their knees. Adjusting the subjects’ po-
sition rather than the eye tracker makes easier the calibration before each trial. The
eye tracking system was recalibrated using the manufacturer’s procedure. Computer
vision data was acquired with a C016 HD 5 Mpx webcam (TeckNet, UK) fixed on a hat
on the subject’s head, so that it would be positioned right next to the subect’s eyes and
oriented so that it would share the field of view of the subject without obstructing it.

Four different variables were tested in terms of their impact on the global error,
namely angular, radial and vertical position of the target, as well as the acquisition
time. Each variable was tested with specific series of target positions over a cylindrical
coordinate workspace. The origin of the cylindrical workspace coincides with the origin
of the eye tracker coordinate system, 5.0 cm above the table. To avoid considering
eventual fatigue effects, the subjects had a 2-min rest period between each serie. One
variable was changed at a time, resulting in four series of 5 to 13 acquisitions(see Fig.
3):

Angular coordinate series of locations.
Thirteen target locations, from 0◦to 180◦, with 0◦defined to right of the subject,
with 15◦increment, at a radial position of 40 cm and a vertical position of 0.5cm
above the table.
Radial coordinate series.
Seven locations, from 10 cm to 70 cm, with 10 cm increment, at an angular position
of 90◦and a vertical position of 0.5 cm.
Vertical coordinate series.
Six locations, from 10 to 60 cm, with 10 cm increment, at an angular position of
90◦and a radial position of 30 cm.
Acquisition time series.
Five trials, from 2 s to 10 s, with a 2 s increment, all taken at an angular position
of 90◦, radial position of 30 cm and vertical position of 0.5 cm.

A 2.2 cm x 2.2 cm target was placed on an interest point , facing the subject who was
asked to stare at its center. A snapshot is then taken using the webcam. Finally, eye
tracking data was acquired at 60 Hz for 5 seconds, except when acquisition time was
under test. This amount of time was deemed sufficient based on preliminary tests.

As cited above, the workspace under test for the experience was chosen to correspond
roughly to the reach of a JACO robotic arm (Kinova, Canada) used in our research
laboratory for future applications, which is larger than the workspace under study in
other 3D eye tracking related research that will be used as performance benchmarks.

The characterization setup is illustrated in Fig. 2.
The target registration error (TRE), defined as the Euclidian distance between the

estimated target location and its actual location on the grid, was calculated for each
trial. For comparison purposes (3DPOG vs. ETCV), for every trial, using the same eye
tracking samples, we also reported the TRE of the 3DPOG estimated by faceLAB 5.
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Fig. 2. Characterization setup: (1) Tecknet Webcam. (2)faceLAB 5 Eye tracker. (3) Target. (4) Vertical
holder. (5) Cylindrical grid. workspace indicator

Fig. 3. Top view of the cylindrical grid of targets seen by the user. Red: angular series. Blue: radial series.
Green: height and time series

A total of 33 healthy adults volunteered for the experiment. The mean (µ), median
and standard deviation (σ) of the TRE for all 33 subjects for each point for both ETCV
and the faceLAB 5 estimation of the 3DPOG.

3. RESULTS
Using the procedure described in the previous section, the position of a target in a 3D
workspace and then the TRE were computed. For comparison purposes (3DPOG vs.
ETCV), the TRE obtained with the estimation of the crossing point of both eye gaze
direction, i.e. the 3DPOG, was also calculated.

During the measurements of the TRE against the angular position, for the targets
located on each extreme side, at 0◦, 15◦and 180◦, the subjects had to turn their head
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to look directly at the target. For some subjects, their nose, another physiological trait
or even the webcam would come between their eye and the eye tracker. This leads to
a high proportion of the eye tracking sample to be rejected by the data filtering and
thus leads to much higher TRE and variability on those critical points. The same holds
for the highest points of the workspace, where either the cheeks or the eyelids of some
subjects will hide the pupil from the eye tracker. These critical points are rendered in
color later in Fig. 12.

Following are illustrated the TRE averaged from the 33 subjects (µ) and the standard
deviation (σ). The median of the distribution is also drawn to illustrate the behavior
of the error on the critical points for the subjects for whom no problem occurs. Finally,
the best fitting curve of the median is also displayed. The TRE values for each angular,
radial and vertical point are illustrated in Fig. 4, 5 and 6 respectively. The acquisition
time dependency of the TRE is illustrated in Fig. 7.
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Fig. 4. TRE vs angular position of the target

To compare this data (3DPOG vs ETCV), Figs. 8-11 illustrates the TRE obtained
using the point of gaze estimation of faceLAB 5 over the same points. It is worth noting
that the TRE in Figs. 8-11 is one order of magnitude larger than the TRE in Figs. 4-7.

Fig. 12 shows a 3D rendering of the TRE over the workspace under study. Each
sphere has a radius corresponding to the mean TRE at the corresponding location. For
a clearer rendering, previously mentioned critical points were only rendered consider-
ing subjects with less than 80 % of the eye tracking sample filtered out. The color code
indicates the number of subjects ignored for the corresponding point.

Table I summarizes the average comparisons over the whole workspace between the
3DPOG and ETCV methods relatively to their mean distance (x̄) from the subject,
using the data presented on Figs. 4-11.
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Fig. 5. TRE vs depth of the target
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Fig. 6. TRE vs height of the target

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2718v1 | CC BY 4.0 Open Access | rec: 13 Jan 2017, publ: 13 Jan 2017



3 RESULTS

2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

T
R
E
(m

)

 

 

µ

µ+ σ

median

Fig. 7. TRE vs Acquisition time
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Fig. 9. TRE vs depth of the target
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Fig. 10. TRE vs height of the target
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Fig. 11. TRE vs Acquisition time

Fig. 12. Mean TRE and unacceptable data over a semi-cylindrical workspace of radius 70cm and height 60
cm

4. DISCUSSION
4.1. Results analysis
The objective of this paper was to characterize the accuracy and workspace of the
method presented in [Leroux et al. 2015]. We consider as benchmarks the methods
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4 DISCUSSION 4.1 Results analysis

Table I. Overall comparison between the ETCV
results and the 3DPOG data acquired by face-
LAB 5

Position set x̄
µTRE(3DPOG)

µTRE(ETCV )

Angular 0.89 10.82
Radial 0.74 15.6

Vertical 0.80 8.97
Acquisition time 0.94 17.72

GLOBAL 0.84 12.65

presented in [Abbott and Faisal 2012] which has a workspace of 60 cm x 50 cm x 40
cm located 50 cm away from the subject and in [Hennessey and Lawrence 2009] which
uses a workspace of 30 cm x 23 cm x 25 cm about 25 cm away from the subject. As
mentioned earlier, to the best of our knowledge, no other study describe the workspace
considered while assessing the accuracy of a 3DPOG method, thus leaving no more
possibilities for comparison.

As it should be expected, the TRE in Fig. 4 is minimal when the angular position of
the target is right in front of the subject and the general behavior of the data is sym-
metrical around this point. The best fitting polynomial does not have a minimum at
90◦but this is likely a numerical aberration brought by the abnormal increase in the
error at the critical points discussed previously. Those points failed to be computed ac-
curately because of the inability of the eye tracker to follow both eyes at such extreme
positions for more than 50 % of our subjects. Although the increase in error is impor-
tant, for many applications, this situation either does not appear or can be avoided
easily by moving the eye tracker with the user, for example by using a head mounted
eye tracking device such as in [Noris et al. 2011]. Outside of the critical points, the
standard deviation of the error is very stable at 3.0 cm.

The linear increase of the TRE with depth in Fig. 5 can be easily explained by the
increased absolute error generated by the constant angular error intrinsic to the sys-
tem. The increase of the error not following this behavior at 0.1 m is caused by the
image analysis part of the data processing, because the target is so close to the origin
that the eye tracker itself obstructs part of the line of sight of the webcam. Again, the
standard deviation is stable over the workspace under study, this time around 2.5 cm.

Given that the distance between the subject and the target is shortened when the
height of the target increases, we expected a negative linear dependency of the TRE
with the height in Fig. 6. Although, because of the critical points at 0.5 and 0.6 m high
where the eye tracking data does not follow the same behavior, as discussed earlier
both in this section and in the Results section, only 4 data points were used for the
computation of the best fitting curve, therefore our result might not be significant in
this particular case. More than 50 % of our subjects had more than 80 % of their eye
tracking sample filtered out, thus leading to the very large TREs. Contrary to the
previous data, the standard deviation of the TRE seems very variable, ranging from
5.2 cm to 26.4 cm.

The idea behind characterizing the TRE relatively to the acquisition time in Fig. 7
was to see the importance of the human capacity to stare at a single point in space. We
expected to see the TRE decrease with increasing acquisition time because the larger
eye tracking sample would better average out the random eye movement around the
desired point. Our results show that the TRE is either constant or slightly increases
linearly with acquisition time, our number of data points is too low for the difference
to be significant. This result can be explained by two phenomena. Either the range
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of acquisition time studied was not large enough to allow significant error averaging
during the experiment, or as one would expect the focus of the subject is better for short
acquisition time, compensating for the averaging with better accuracy. However, the
exact behavior of the error over a larger range of acquisition time is of little importance
since the potential applications of this method are most likely to be in real time. Our
results indicate that an acquisition time of 2 seconds or maybe even less is sufficient
to have proper eye tracking accuracy.

The faceLAB 5 software relies on the 3DPOG, which is, as mentioned earlier, widely
used in the literature, to estimate the location of the target. However, our workspace is
larger than the studies presented in [Abbott and Faisal 2012; Hennessey and Lawrence
2009] and no refinement of the method is implemented, so larger errors are to be ex-
pected. The calculation of the 3DPOG made by faceLAB 5 to estimate the target lo-
cation did not show a robust behavior over the workspace, as seen in Figs. 8-11. The
mean TRE using this method over the whole workspace is 73.6 cm. In [Leroux et al.
2015], an analytical derivation predicted an error of 72 cm when using the 3DPOG
method at similar ranges. This error is way too large for any potential application, this
is why eye tracking is often used with a screen or a mapping device when the viewed
object needs to be located.

Using the combination of eye tracking and computer vision, our median error over
the workspace ranges between 3.6 and 15.2 cm. If we exclude the critical points colored
in Fig. 12, the maximum median error becomes 7.4 cm. Thus, in the main part of the
workspace, our method is more than 12.65 times more accurate than the calculation
of the point of gaze (see Table I). This kind of accuracy is sufficient for many potential
applications, especially considering the fact that, in practical applications, the target
will allow a certain region of tolerance, which may be of several millimetres, while we
calculated our error relatively to the exact center of our target.

The ECTV method for calculating the location of the target has similar error as those
described in [Abbott and Faisal 2012] and [Hennessey and Lawrence 2009], which had
mean TRE of 5.8 and 3.93 cm and standard deviations of 4.7 and 2.8 cm respectively.
Both used a refined version of the calculation of the 3D point of gaze. However, the
workspace under test in both those papers are much smaller and the targets are closer
to the subject (50cm and 25cm), thus leading intrinsically to smaller TREs. Moreover,
neither of them studied the behavior of the error throughout their workspace. They
also make use of custom made eye tracker systems and software, while this method is
compatible with any commercially available eye tracker and can be implemented with
only rudimentary knowledge of eye tracking.

A few more advantages come from using the ETCV method. Data relative to the
electric and computing powers of our system was not acquired during our character-
ization experiment. However, it seems self-evident that image acquisition hardware
consisting of a single webcam will take less resources than a stereovision system. Also,
in stereovision systems, image processing has to be done twice, and further processing
is still necessary to combine the data from each image, while ETCV requires to process
only a single image. Therefore the ECTV method can be considered more appropriate
for real-time and portable applications.

4.2. Limitations
4.2.1. Limitations of the ETCV method. The faceLAB 5 eye tracker has an intrinsic track-

ing rotation error of ±1◦ [Seeing Machines 2009]. This generates a TRE that will in-
crease with the distance to the target. This error cannot be avoided and could only be
improved by the use of a better eye tracker. However, faceLAB 5 has an accuracy sim-
ilar to most other image-based eye trackers on the market [INC 2011; Morimoto and
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Mimica 2005], so unless new devices are designed with significantly higher precision,
this error source cannot be reduced.

More error is added by the computation of the radial coordinate from the picture
taken by the webcam. The overall contribution to the TRE related to this matter is
however impossible to quantify analytically. The discretization of the picture into pix-
els adds an upper bound to the accuracy attainable for the radial coordinate of the
target. A camera with a higher resolution would generate better results, but also in-
crease the computing time required, so this solution cannot be implemented in any
application. Moreover, image processing, such as filtering and image erosion also dis-
tort the image. Finally, the target detection routine uses a color recognition algorithm,
chosen because of the simplicity of its implementation, but more efficient and power-
ful algorithms could be used [Andreopoulos and Tsotsos 2013], for example from the
OpenCV library [Itseez 2015].

The working principle of the ETCV method requires prior knowledge of the targets
in order to compute their location. This means that our system would fail if set to work
in a completely new environment. However, it will work correctly in a semi-controlled
environment where all potential targets are either pre-characterized for their size and
color or marked with a standardized marker.

4.2.2. Limitations of the characterization protocol. We chose to use the Tecknet camera for
its very low price, relatively high resolution and its light weight and size. Although our
results reached the targeted accuracy, this choice led to minor drawbacks that slightly
increase TRE, which would be avoidable in future implementations with another cam-
era. First, even if it was small, the camera was still too large to fit between the eyes of
the subject without obstructing his/her field of view. The camera had to be placed on
the side of the head, creating a parallax error. Also, this particular camera appeared to
be sensible to the IR laser of the eye tracker. The picture would then be saturated lest
it was taken at a separate time from the eye tracking data. This time separation may
cause mismatches between the head position at the time of the eye tracking sampling
and the acquisition of the field of view.

The curve fitting characterizing the behavior of the TRE over the space was each
time done with only a handful of points, 13, 7 and 4 points for the angular, radial and
vertical positions respectively. The distribution of the points over the space allows for
a good general visualisation of the behavior of the accuracy, but more points would be
required to have confidence in the exact quantitative results. Still, since the behav-
ior of the TRE (i.e. the curve fitting results) is mostly useful to identify the origin of
the imprecision, statistically robust results are arguably not necessary for practical
applications.

5. CONCLUSION
In this paper, our objective was to assert the accuracy of the ETCV method over a large
workspace. We showed that the calculation of the 3D point of gaze did not give suffi-
cient precision for most practical applications where the user is not very close to his or
her target. By using the eye tracker only for angular directions, as it is designed for,
and adding a computer vision system with a webcam, the ETCV method was able to lo-
cate a target in 3D space with a TRE more than 90% inferior to the TRE of the 3D point
of gaze calculation method (see Table I). Thirty three subjects used the system to locate
targets in a cylindrical workspace. This data was used to characterize the behavior of
the accuracy of the system over the workspace. This highlighted critical points on the
edge of the workspace where the eye trackers sight is limited. Elsewhere, we obtained
a median TRE ranging between 3.6 and 7.4 cm (see Fig. 4-7). The accuracy could still
be improved with some changes in the equipment used for the data acquisition process
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and with better performing algorithms for the image analysis. With the current accu-
racy, many potential applications become possible, such as visually controlled robotic
assistants in the field of rehabilitation and adaptation engineering.
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