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Background. The time distribution of biological phenomena (phenology) is a subject of

wide interest, but a general statistical distribution to describe and quantify its essential

properties is lacking. Existing distributions are limiting, if not entirely inappropriate,

because their parameters do not in general correlate with biologically relevant attributes

of the organism and the conditions under which they find themselves. Methods. A

distribution function that allows quantification of three essential properties of a biological

dynamic process occurring over a continuous timescale was derived from first principles.

The distribution turned out to have three parameters with clear meanings and units: (i) a

scaled rate of completion (dimensionless), (ii) a measure of temporal concentration of the

process (units: time-1), and (iii) an overall measure of temporal delay (units: time). Its

performance as an accurate description of the process was tested with completion data for

the London Marathon employing non-linear regression. Results. The parameters of the

distribution correlated with biological attributes of the runners (gender and age) and with

the maximum temperature on the day of the race. These relationships mirrored known

differences in morphology and physiology of participants and the deterioration of these

biological attributes with age (senescence), as well as the known effects of hypo- and

hyperthermia. Discussion. By relating the variation in parameter values to possible

biological and environmental variables, the marathon example demonstrates the ability of

the distribution to help identify possible triggers and drivers of the duration, shape and

temporal shift of its temporal distribution. This more detailed account of the effect of

biological and environmental variables would provide a deeper insight into the drivers of a

wide variety of phenological phenomena of high current interest, such as the shifting

patterns of leafing, flowering, growth, migration, etc. of many organisms worldwide.
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23 Abstract

24 Background. The time distribution of biological phenomena (phenology) is a subject of wide 

25 interest, but a general statistical distribution to describe and quantify its essential properties is 

26 lacking. Existing distributions are limiting, if not entirely inappropriate, because their parameters 

27 do not in general correlate with biologically relevant attributes of the organism and the 

28 conditions under which they find themselves.

29 Methods. A distribution function that allows quantification of three essential properties of a 

30 biological dynamic process occurring over a continuous timescale was derived from first 

31 principles. The distribution turned out to have three parameters with clear meanings and units: (i) 

32 a scaled rate of completion (dimensionless), (ii) a measure of temporal concentration of the 

33 process (units: time-1), and (iii) an overall measure of temporal delay (units: time). Its 

34 performance as an accurate description of the process was tested with completion data for the 

35 London Marathon employing non-linear regression.

36 Results. The parameters of the distribution correlated with biological attributes of the runners 

37 (gender and age) and with the maximum temperature on the day of the race. These relationships 

38 mirrored known differences in morphology and physiology of participants and the deterioration 

39 of these biological attributes with age (senescence), as well as the known effects of hypo- and 

40 hyperthermia. 

41 Discussion. By relating the variation in parameter values to possible biological and 

42 environmental variables, the marathon example demonstrates the ability of the distribution to 

43 help identify possible triggers and drivers of the duration, shape and temporal shift of its 
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44 temporal distribution. This more detailed account of the effect of biological and environmental 

45 variables would provide a deeper insight into the drivers of a wide variety of phenological 

46 phenomena of high current interest, such as the shifting patterns of leafing, flowering, growth, 

47 migration, etc. of many organisms worldwide.

48 Keywords: endurance sports, gender differences, phenology, senescence, time distribution

49

50 Introduction

51 The time course of biological phenomena, often measured as the time to completion of a 

52 particular event (such as hatching, leafing, flowering, germination or the completion of an 

53 athletics race) is of theoretical and practical interest (Berry et al. 1988; Edwards & Richardson 

54 2004; El Helou et al. 2012; Johnson-Groh & Lee 2002). How biological phenomena unfold with 

55 time is determined by the interaction of intrinsic biological features of the organism (genetics, 

56 morphology, physiology) and environmental influences acting upon it (nutriments, conditions). 

57 These interacting influences determine the triggering of the phenomenon, its rate of occurrence, 

58 its duration, and generally the shape of the resulting statistical distribution, which is rarely 

59 normal (e.g., Fig. 2 in El Helou et al. 2012). Both symmetrical (e.g., Gaussian) and asymmetrical 

60 distributions (e.g., Richards function) are often employed to quantify these time courses. 

61 However, although their statistical moments are useful in themselves, their parameter values 

62 cannot be interpreted in a meaningful way, a fact recognized by Richards himself (Richards 

63 1959). It would therefore be ideal to have a model whose parameters identify specific aspects of 

64 the distribution that account, for example, for biological differences between organisms and the 

65 environments under which they find themselves. If specific biological and/or environmental 
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66 variables affect individual parameter values in predictable ways, the parameters would provide 

67 useful insight into the possible biological mechanisms involved. In addition to a good statistical 

68 fit, the most important aspect of the distribution must surely be its ability to account for these 

69 effects, especially if aimed, beyond description and quantification, at a mechanistic 

70 understanding of the process under study.

71 With these ideas in mind, the aims of this investigation were: (i) to develop a model of the time 

72 course of biological phenomena from first principles, (ii) to obtain its essential statistical 

73 properties, and (iii) to illustrate the insight that it provides on essential components of a 

74 biological time course. Given the completeness of records for the London Marathon, I chose to 

75 illustrate the usefulness of the model employing data from several instances of this athletics race. 

76 It would seem, however, that the model is potentially applicable to a vast number of temporal 

77 distributions (phenologies), perhaps including molecular and cellular processes too.

78 The model

79 The simplest time distribution is one that occurs at a constant rate. If hatching, invasion or 

80 completion of a race occurred at a constant rate, the completion of events would naturally follow 

81 the exponential distribution, or , where y/ymax is the 𝑦 𝑦𝑚𝑎𝑥= 1 ‒ 𝑒𝑥ln (1 ‒ 𝑟) 𝑦 𝑦𝑚𝑎𝑥= 1 ‒ (1 ‒ 𝑟)𝑥
82 fraction of the final number of completed events (ymax) after x units of time, and r is their rate of 

83 occurrence. Alternatively, the time course of completions from y=0 to y=ymax would be described 

84 by:

85 (1)𝑦= 𝑦𝑚𝑎𝑥(1 ‒ (1 ‒ 𝑟)𝑥)
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86 If a biological time course does not follow this exponential distribution, the simplest conclusion 

87 is that r is not constant. The question then becomes whether r changes in a systematic, 

88 predictable fashion. The completion of events can be thought of as a probabilistic manifestation 

89 of a phenomenon determined by a variety of attributes of the organism and the conditions under 

90 which it finds itself. This probabilistic feature is appropriately described by the logit, the 

91 logarithm of the odds, i.e., the ratio of “non-event” to “event” in a binomial process. The inverse 

92 logit converts the logarithm of the odds into a probability (the probability of hatching, invading 

93 or completing the race) making the inverse logit (the logistic function) a natural choice to 

94 describe an expected monotonic change in the probability of the event occurring with time under 

95 a given set of conditions. The general form of the logistic function (including a “position” or 

96 time-delay parameter t, which would seem necessary for any biological process) is: , 
1

1 + 𝑒 ‒ 𝑐(𝑥 ‒ 𝑡)
97 where c and t are constants.

98 Applying this function to the rate of completion of events, r, results in

99  (2)𝑟= 𝑟𝑚𝑎𝑥
1 + 𝑒 ‒ 𝑐(𝑥 ‒ 𝑡)

100 where rmax is the maximum biologically achievable proportional rate of completion under 

101 particular conditions. Substitution of equation 2 into equation 1 yields

102  
(3)

𝑦= 𝑦𝑚𝑎𝑥(1 ‒ (1 ‒ 𝑟𝑚𝑎𝑥
1 + 𝑒 ‒ 𝑐(𝑥 ‒ 𝑡))𝑥)

103 This equation describes the essential features of the temporal dynamics of a biological process. 

104 Beyond the exponential distribution, it probably is the simplest interpretable form of the time 

105 distribution of a biological process. Normalization of equation 3 (by dividing both sides by ymax) 
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106 yields the underlying cumulative distribution function (cdf) of the time course. ymax simply scales 

107 the cdf to the total count, i.e., the final number of organisms hatching, invading or completing a 

108 race. Parameter rmax represents the maximum proportional rate of completion (or of whatever 

109 process the model is applied to: hatching, leafing, invasion, etc.). Parameter c is the rate of 

110 realisation of rmax (r tends towards rmax faster as c increases) and t measures the delay in the 

111 realisation of rmax. It should be clear, however, that while r=rmax is the constant explicitly 

112 quantified by the model, the instantaneous (cumulative) r increases with time towards rmax (eqn. 

113 2). 

114 The derivative of equation 3 yields the probability density function (pdf; Supplementary Material 

115 1). This equation is lengthy, which may explain the reason it has remained undiscovered as a 

116 general model of the temporal distribution of a biological process (formulas for the distribution’s 

117 statistical moments are also presented in SM1).

118 The cdf mimics the variety of monotonically increasing shapes of the completion of events, and 

119 the influence that each parameter has on the shape of both cdf and pdf is clear (Fig. 1). Parameter 

120 r determines the rate with which the cdf rises, producing “diverging” trajectories. Parameter c, on 

121 the other hand, shortens the timespan over which the majority of the process occurs: increasing 

122 values of c reduce the spread of the pdf (c is a measure of concentration of the time distribution). 

123 Note that cdfs differing only in their value of c intersect each other at x=t. Finally, parameter t 

124 delays the process of completion producing “parallel”, delayed cdfs and delayed pdfs. The model 

125 can produce normal-looking as well as truncated, left- or right-skewed, platykurtic or leptokurtic 

126 distributions. It must be emphasised, however, that its main strength is that it provides us with 

127 the ability to interpret effects in terms of the magnitude with which each parameter contributes to 
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128 the shape of the distribution. This is crucial to understand, for example, whether temperature 

129 increases the rate (r), concentration (c), temporal shift (t), or a combination of them in a 

130 phenological process. Since, as shown in Fig. 1, these are three aspects of the model which are 

131 distinct from its statistical moments, common statistical distributions defined by their mean and 

132 standard deviation are insufficient to account for these biologically interpretable effects. 

133 Materials and Methods

134 Full datasets for the London Marathon in years 2010, 2011 and 2016 were obtained from the 

135 London Marathon website (London Marathon 2016). In addition, data were downloaded for the 

136 period 2001-2009 from marathonguide.com (Marathon Guide 2016). Because results from 

137 marathonguide.com could only be downloaded in subsets of 100 completions, data were obtained 

138 for the first 100 completions in each set of 1000 consecutive runners, i.e. runners finishing in 

139 positions 1-100, 1001-1100, 2001-2100, etc., plus the last minimum consecutive 100 runners 

140 beginning at a “hundred and one” position. For example, in 2008, 23574 men completed the race 

141 and the data downloaded and used in the analyses consisted of the first 24 subsets of 100 runners 

142 between positions 1 and 23100, plus the last 174 runners occupying positions 23401 to 23574. 

143 This meant that sample size was larger at the end of the distribution, but this was preferred to the 

144 alternative of leaving a wider gap between the last two subsets of data. This allowed 

145 downloading of the data faster and had a minimal influence on the results.

146 Two sets of analyses were conducted. In the first one, the model was fitted to different subsets of 

147 participants in the London Marathon 2016: (i) for all runners combined, (ii) separately for men 

148 and women, and (iii) separately within each gender for each of 5 age categories: 18-39, 40-49, 

149 50-59, 60-69 and ≥70 years. Although runners in the three intermediate categories are classified 
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150 in five-year intervals (40-44, 45-49, etc.), given the larger range of ages in the two end categories 

151 (youngest and oldest), the original six five year-long intermediate categories were combined into 

152 three ten year-long categories. In the second set of analyses, the model was fitted separately to 

153 men and women for each marathon event in the period 2001-2011, for which it was possible to 

154 investigate the possible influence of prevalent weather conditions on the date each race was run.

155 As explained before, the model is independent of ymax, which only scales the distribution to the 

156 number of completions, and thus the proportion of completions (y/ymax) was used for model 

157 fitting. The cdf was fitted to each set/subset by non-linear least squares regression employing the 

158 Levenberg-Marquardt algorithm in IBM SPSS 23 (IBM 2016). The initial parameter values 

159 employed (r=0.4, c=1.6, t=4.8) produced convergence in ≤7 iterations in all cases but one, 

160 women in age category 70+. In this case, r was estimated to be >1, which is a biological 

161 impossibility. This parameter was then constrained to different values in the range (0.3 to 0.6) 

162 and the performance of the fit judged by the standard error of parameter estimates, which tended 

163 to be high compared to those in other age categories. Given the observed trend in the decrease of 

164 r with age obtained from the other four age categories, a value of r = 0.31, which kept all three 

165 parameter errors as small as it seemed possible, was chosen as acceptable (see Results). Once all 

166 parameters had been estimated, the pdf and statistical moments (SM1) were calculated (SM2) in 

167 Maple 2016 (Maple 1996-2016). 

168 For the first set of analyses, parameters values were correlated with age employing the mean age 

169 of the first four categories listed above (28.5, 44, 54, 64 years) and an approximate guess for the 

170 mean age in the last category (74 years; the maximum age was 75 and 74 years in (Lara et al. 

171 2014) and (Zavorsky et al. 2017), respectively). For the second set of analyses, the weather 
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172 conditions reported for Heathrow airport at each marathon date were obtained from the Met 

173 Office. In order to investigate if weather conditions influenced desertion, the organizers of the 

174 London marathon supplied the figures for the number of runners who started the race, but these 

175 figures were separated by gender only for the period 2005-2011. Because of this, the overall 

176 proportion of completions combining men and women was used. Proportions were logit 

177 transformed before analysis (Warton & Hui 2011). Only relationships between model parameters 

178 and maximum temperature are presented because minimum and maximum temperatures were 

179 correlated and yielded similar relationships with the model’s parameter. Besides, the race takes 

180 place in the daytime, when the maximum temperature is reached. Rainfall and sunshine hours did 

181 not correlate with each other, with temperature, or with distribution parameters, and are therefore 

182 not referred to in the Results.

183 Results

184 Influence of gender and age

185 The London Marathon 2016 was completed by 23940 men and 15048 women, providing ample 

186 sample sizes for model fit. While a single model fitted all 38988 data points (figure not shown), 

187 separating runners by gender provided equally good fits (Fig. 2; SM3 Table S1). Men and 

188 women differed in the values of all three parameters (95% confidence intervals for all three 

189 parameters ≤0.003 from their estimated values in all three fits). Men ran faster (higher r), had a 

190 higher rate of realisation of r (c value), and took a shorter time to run the race (smaller t) than 

191 women (SM3 Table S1). A one-way analysis of variance of completion times yielded a 

192 significant difference between the sexes (F1,38986 = 3899.6, P< 0.001; mean for men = 4.81 hours, 

193 mean for women = 4.20 hours) but Levene’s test of homogeneity of variances indicated 
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194 heteroscedasticity (F1,38986 = 48.94, P < 0.001), which is confirmed by their statistical moments 

195 (SM3 Table S1). Indeed, all distributions (including those discussed below, where runners were 

196 classified by age, and those in the next section, where the effect of temperature is investigated) 

197 had large positive skew and excess kurtosis (SM3 Tables S1 & S2). In the majority of cases, 

198 mode < median < mean (in a few cases median < mode < mean), and the arithmetic mean 

199 consistently overestimated the mean calculated from the model. The right-skewed and 

200 consistently leptokurtic nature of the distribution makes the model more realistic and accurate in 

201 the estimation of statistical moments than the normal distribution. For comparison, standard 

202 deviation, skewness and kurtosis calculated using the standard formulas for sample moments 

203 yielded values <1 in all cases, clearly underestimating them. 

204 Parameter r showed a declining relationship with age, the difference between the curves for the 

205 two genders becoming smaller with age (Fig. 3a; quadratic fit: men R2 = 0.975, P = 0.002; 

206 women R2 = 0.930, P = 0.008). Parameter c increased with age for the first four age categories in 

207 both sexes, with women’s values lower than men’s, but dropped and converged for both sexes in 

208 the last age category (Fig. 3b); it did not neatly fit a continuous function (e.g., quadratic). 

209 Parameter t showed a quadratic relationship with age for both men and women, (Fig. 3c; men R2 

210 = 0.983, P = 0.001; women R2 = 0.922, P = 0.01). Mode, median and mean showed significant 

211 quadratic relationships with age similar to that of t, with which they were highly correlated (R > 

212 0.965, P < 0.01 for all pair combinations of t, mode, median and mean within each sex). Only the 

213 relationship between median and age is shown (Fig. 3d; men R2 = 0.996, P < 0.001; women R2 = 

214 0.965, P = 0.003). The quadratic relationships for t and median had optima (minimal values) for 

215 men at ages 43.1 and 40.9, respectively; while for women these optima occurred at ages 44.3 and 

216 42.5 years, respectively (Figs. 3c and d). 
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217 The number of participants decreased with age (N in SM3 Table S1). This smaller sample size 

218 was accompanied by an increase in the error of parameter estimates, particularly for women in 

219 the oldest category, even after constraining parameter r (Figs. 3a-c).

220 Influence of temperature

221 Sampling just above 10% of runners for the years 2001-2009 produced similarly high R2 values 

222 and only slightly larger standard errors to those obtained with the full 2010 and 2011datasets 

223 (SM3 Table S2). Maximum temperature (Tmax) produced a significant linear relationships with c 

224 (Fig. 4b), t (Fig. 4c), mode, median, mean and entropy, but not with r (Fig. 4a) and standard 

225 deviation, for both sexes (SM3 Table S3). On the other hand, skewness and kurtosis in men, but 

226 not in women, showed significant linear relationships with Tmax (SM3 Table S3). While there 

227 was no evidence of a different relationship between c and Tmax for men and women (Fig 4b), t 

228 and measures of central tendency indicated parallel relationships, with women taking longer to 

229 complete the marathon (Fig. 4c). As with the data for 2016, women had lower values of 

230 parameter r  than men (Fig. 4a; men’s mean r = 0.421, SD = 0.011; women’s mean r = 0.390, SD 

231 = 0.021). Finally, desertion from the race increased away from an optimal Tmax for completion of 

232 17.1 °C (Fig. 4).

233 Discussion

234 Model suitability

235 As a description of a time course, the model is conceptually simple and has three characteristics 

236 that make it preferable over other distributions. First, it is derived from basic principles that take 

237 into account the essential elements of a biological time course. This circumvents conceptual and 
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238 practical problems derived from the use of ad-hoc sigmoid functions designed to describe 

239 radically different phenomena. Second, by differentiating between the different aspects or 

240 parameters the model allows their unique characterization and quantification. Third, the 

241 quantification of these properties allows investigation of the influence that biological (gender and 

242 age) and environmental factors (temperature) have on each of them. All three parameters were 

243 influenced by gender and age, which are under biological control (genetics/life history), but only 

244 c and t were affected by temperature, an environmental effect. These results indicate that 

245 permanent biological attributes (permanent in relation to the duration of the race) influenced the 

246 runners’ intrinsic speed (r), the degree of concentration of the race (c), and the delay in its 

247 completion (t) (Fig. 3). On the other hand, the maximum ambient temperature of the day, an 

248 environmental influence, spread the finishing times (lowering c) without apparent distinction of 

249 gender (Fig. 4b), and increased the race’s duration (t and other measures of central tendency) in a 

250 similar fashion in both sexes (parallel lines in Fig. 4c), but did not significantly affect the 

251 runner’s intrinsic speed (r) (Fig. 4a).

252 Gender and age differences

253 The completion of a marathon has been a popular method by which physical and physiological 

254 differences between sexes and age groups have been investigated (Connick et al. 2015; Conoboy 

255 & Dyson 2006; Jokl et al. 2004; Zavorsky et al. 2017). To begin with, a variety of 

256 morphological, physiological and behavioural differences exists between the sexes (Ellis et al. 

257 2008). Although the source of some of these differences in humans may be controversial, there is 

258 ample support for biological differences in athletics performance between the sexes (Connick et 

259 al. 2015; Lippi et al. 2008). It is generally accepted that the main factor contributing to 
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260 endurance running is aerobic capacity, as measured by maximum oxygen uptake and its 

261 interaction with muscle mass distribution, liver and muscle glycogen content and exercise 

262 intensity as a fraction of aerobic capacity (Mahler & Loke 1985; Rapoport 2010; Sjodin & 

263 Svedenhag 1985). Thus, the difference in marathon completion times between men and women 

264 is primarily attributed to the larger aerobic capacity and muscular strength of men (Cheuvront et 

265 al. 2005), and this difference is reflected in all three parameters of the model (Fig. 3). In 

266 particular, parameter r follows the known accelerating decline of aerobic capacity with age (e.g., 

267 Fig. 6b and Fig. 8 in Tanaka & Seals 2003, though their Fig. 8 was fitted to a straight line). The 

268 difference between the sexes in parameter values decreased with age (Fig. 3), indicating that 

269 men’s performance drops faster with age than it does in women. The quadratic models fitted to 

270 parameters r and t (Fig. 3) predict that the curves for men and women would cross at ages 95 

271 years and 82 years, respectively. Taken as measures of the rate of senescence, these patterns 

272 predict that, by senescing more slowly, women should reach older ages than men.

273 The idea that men age faster than women is supported by demographic and physiological studies 

274 (Austad 2006; Blagosklonny 2010; Celermajer et al. 1994; Gallagher et al. 2000; Graves et al. 

275 2006), and the oldest known living people are women (Wikipedia 2018). This idea is also 

276 consistent with the observation that larger organisms within the same species senesce faster than 

277 smaller ones (Austad 2010; Kraus et al. 2013), though the regularity of this pattern and, more 

278 importantly, the reasons for it are unclear. There are, however, reports on sport performance 

279 where a faster drop was found in women than in men. For example, a faster drop in women’s 

280 than in men’s performance with age was observed in a 10 km athletics race and in 1500 m 

281 swimming (Tanaka & Seals 2003), and a similar result was obtained for elite marathon runners 

282 in Germany (Leyk et al. 2007). It is recognised, however, that such result may be due to 
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283 “selection bias”: the lower participation of women in many sports, particularly at more advanced 

284 ages (Tanaka & Seals 2003); there is indeed evidence of small sample size affecting the 

285 statistical trends observed (fewer points at advanced ages that show convergence between the 

286 sexes) in their figures 1 and 2 . Even then, it must be emphasised that the assumption of 

287 normality in all these studies misrepresents the values of all statistical moments. Sample size was 

288 indeed a limitation in the analysis of the oldest age categories for the London Marathon data 

289 (witness error of parameter estimates in Figs. 3a-c). However, by fitting a model of the expected 

290 course of the marathon from which to derive its distribution parameters, the model presented 

291 here aims to quantify comparable parameter values and distribution moments for the whole 

292 participant population (and subpopulations) that may be more robust to variation in sample size. 

293 Other studies have focused on elite athletes or on a small sample of competitors, and all have 

294 assumed a normal distribution of finishing times (Cejka et al. 2015; Connick et al. 2015; Lara et 

295 al. 2014; Leyk et al. 2007; Zavorsky et al. 2017). Those results are therefore not fully 

296 comparable with the results presented here.

297 The consistent right skew and leptokurtic nature of the distributions is likely a consequence of 

298 the dwindling number of participants with age and the lower proportion of women. No matter 

299 how we define the subsamples, there is a tail of fewer older individuals, and of women who also 

300 participate in lower numbers (Fig. 2; witness also the higher values of standard deviation, 

301 skewness, kurtosis and entropy for women compared to men, and their increase and converge 

302 with age, some with a drop in the last age class, in SM3 Table S1). There must also be other 

303 uncontrolled differences. As an example, the frequency of self-imposed handicaps, such as the 

304 varied costumes that some runners sport, likely varies with gender and age. This effect is 

305 difficult to isolate because the records do not contain such information – except the fact that a 
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306 runner may be linked to a charity. The heterogeneity found in older categories with fewer 

307 competitors also makes it difficult to estimate the parameters accurately, so sex differences in 

308 aging may remain difficult to ascertain without more detailed in-situ morphological and 

309 physiological measures of runners, e.g. before, during and/or after the race.

310 A morphological attribute thought to have explanatory power on endurance running is calcaneus 

311 length (the endurance running hypothesis, Carrier et al. 1984). Clear differences exist in 

312 calcaneus length between the sexes (Riepert et al. 1996), and differences between Neanderthals 

313 and humans (corrected for body size) have been linked to the capacity for endurance running 

314 (Raichlen et al. 2011). The current evidence suggests that shorter calcaneus length, and 

315 consequently shorter moment arm of the Achilles tendon (Scholz et al. 2008) confer advantage in 

316 endurance running, and it would be interesting to investigate the role of these and possibly other 

317 morphological attributes on the running economy of marathon participants employing the model 

318 presented here.

319 Environmental influences

320 With regard to environmental effects, evidence suggests that colder temperatures favour faster 

321 marathons (Adams et al. 1975; Ely et al. 2007; Montain et al. 2007), but these can also impair 

322 some runners (Jones et al. 1985). The only detectable influence at the London Marathon, which 

323 is run in April each year, was maximum temperature. Within the range of temperatures observed, 

324 the intrinsic ability of the competitors (r) was not significantly affected (Fig. 4a). However, 

325 temperatures were sufficient to produce evidence of exhaustion (longer time to completion/larger 

326 t) and thus spreading of the race (lower c) as Tmax increased (Fig. 4b-c), but maximum race 
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327 completion was predicted to occur at 17.1 C (Fig. 4d). Around this temperature, runners are not 

328 discomforted by lower than preferred temperatures and are less prone to become overheated.

329 If the composition of the race changes every year, as it must surely do, parameter values may 

330 change even in the absence of environmental differences between events. On the other hand, 

331 temperature affects runners in relation to their running ability (Ely et al. 2008). Both effects 

332 would be expected to combine and produce the variability around the lines of best fit in figure 4. 

333 The large sample size, however, would be expected to override these compositional differences. 

334 Finally, there are psychological factors affecting the decision to abandon the race or encourage 

335 clumping, which must also influence the variation in the trends shown in figure 4d. Clumping 

336 has been analysed and discussed by other authors (Allen et al. 2016; Alvarez-Ramirez et al. 

337 2007), but for reasons of space it is not explored here. A detailed analysis of the residuals from 

338 the model fit would provide insight on this matter. Extreme marathons would also provide useful 

339 comparisons, but they often involve longer distances (ultra-marathons) and/or special 

340 footwear/clothing (e.g., the North Pole Marathon) that modify other aspects/conditions of the 

341 race. These marathons also tend to have few competitors, making the estimation of parameters 

342 unreliable – a record of 56 participants in the North Pole Marathon for 2016 (North Pole 

343 Marathon 2016). 

344 Conclusion

345 By defining and quantifying three essential aspects of a biological time course, the time 

346 distribution presented here provides a standard with which to evaluate specific hypothesis 

347 regarding the influence of biological and environmental variables. The richness of information 

348 that the model provides allowed exploration of several hypothesis posed in the literature 
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349 regarding the role that morphological (e.g., body size and calcaneous length), physiological (e.g., 

350 endurance as measured by aerobic capacity), life history evolution (senescence) and 

351 environmental (maximum air temperature) variables may exert on marathon completion times. 

352 More generally, the example illustrates the potential applicability of the distribution to many 

353 other biological phenomena under the broad heading of phenology. Previously, we used the 

354 distribution to confirm the hypothesis of a fast-slow continuum of plant life histories measured 

355 on reproductive value (Mbeau-Ache & Franco 2013), a parameter of interest in evolutionary 

356 theories of senescence (Fisher 1930; Partridge & Barton 1996) and my research group is 

357 currently working on several long-term datasets of phenology in both plants and animals.
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478 Figure legends

479 Fig. 1. The influence of parameters r (panels a and b), c (c and d) and t (e and f) on the shape of 

480 the cumulative distribution function (left panels) and the probability density function (right 

481 panels). In the order blue, red and green lines, parameter values are: a & b: r=0.4, 0.6, 0.9, c=1.5, 

482 t=4.5; c & d: r=0.4, c=1.5, 2.5, 4.5, t=4.5; e & f: r=0.4, c=1.5, t=4.5, 5.5, 6.5.

483

484 Fig. 2. The cumulative distribution functions and corresponding probability density functions for 

485 men and women completing the London Marathon 2016. 23940 male runners (blue circles and 

486 lines) and 15048 female runners (red circles and lines) completed the race. Note that the fitted 

487 cdfs (continuous lines in first panel) are only visible at both ends where the model departs from 

488 the observed completion times.

489

490 Fig. 3. The relationship between model parameters estimated for the London Marathon 2016 and 

491 the mean age of competitors in each category. Men: blue symbols and lines; women: red symbols 

492 and lines. Error bars represent standard error of parameter estimates (r, c and t). Medians 

493 estimated from the estimated parameter values are exact.

494

495 Fig. 4. The relationship between model parameters for the London Marathon 2001-2011 and 

496 maximum temperature on the day of each race. Standard errors of parameter estimates were 

497 smaller than the diameter of the points (see Table S3) and are therefore not visible (panels a-c). 

498 The proportion of completions is a scalar for each race and it is not possible to calculate an error. 

499 Men: blue symbols and lines; women: red symbols and lines.

500

501
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