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Background: Medical decision-making is difficult when information is limited due to rareness. For

example, there are two treatment options for patients affected by a rare disease with high lethality. The

information about both treatment effects is unavailable or very limited. Patients are inclined to accept

one of the interventions rather than waiting for death, but they are reluctant to be assigned the inferior

one. While a single patient selects one treatment that seems better based on the limited information, he

or she loses the chance to select the other treatment, which may be the better option. This is the so-

called dilemma between exploitation (enjoying the benefits of using current knowledge) and exploration

(taking the risk to obtain new knowledge). In clinical settings, the statistical advice for individual patients

seems to be the maximum expected success rate or something equivalent and patients9 selections tend

to be homogeneous, which does not solve the dilemma. In this study, our aim is to investigate the effects

of the heterogeneity of decision-makers in the decision process.

Methods: Here, we proposed a decision strategy that introduced the heterogeneity of decision-makers by

considering patients9 self-decisions where the patients9 heterogeneous attitudes towards the treatment

are integrated into the probabilistic utility function based on the Beta Bayesian posterior. Based on the

context of two-armed bandit treatment options with limited information, we compared the overall

success rate of treatment between our heterogeneous decision strategy and a homogeneous decision

strategy that is defined to select the treatment with the largest posterior mean.

Results: The heterogeneity of decision-makers in a population improved the overall benefit of treatment

under some conditions.

Discussion: In clinical settings, there exists heterogeneity of decision-making among patients. Our study

investigated a targeting strategy by respecting the self-decision of all individuals and found that the

heterogeneity of decision-making can improve the overall benefit under some conditions. In addition, this

outperformance may suggest that heterogeneity of decision-making is of importance to human beings.

Besides the ethical merit, our findings provide meaningful ideas for better strategies towards decision-

making dilemmas in clinical settings for rare diseases or cases where only limited information is

available. It would be further suggested to investigate the effects of heterogeneity of decision-making in

other fashions, such as genetic heterogeneity and phenotypic heterogeneity.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27170v1 | CC BY 4.0 Open Access | rec: 4 Sep 2018, publ: 4 Sep 2018



1 In silico study of medical 

2 decision-making for rare diseases: heterogeneity of decision-makers in a 

3 population improves overall benefit

4

5 Juan Wang, Ryo Yamada*

6

7 Unit of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine Kyoto 

8 University, Kyoto, Japan

9

10 * Corresponding author

11 E-mail: ryamada@genome.med.kyoto-u.ac.jp (RY)

12

13

14

15

16

17

18

19

20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27170v1 | CC BY 4.0 Open Access | rec: 4 Sep 2018, publ: 4 Sep 2018



21 Abstract

22 Background: Medical decision-making is difficult when information is limited due to rareness. 

23 For example, there are two treatment options for patients affected by a rare disease with high 

24 lethality. The information about both treatment effects is unavailable or very limited. Patients are 

25 inclined to accept one of the interventions rather than waiting for death, but they are reluctant to 

26 be assigned the inferior one. While a single patient selects one treatment that seems better based 

27 on the limited information, he or she loses the chance to select the other treatment, which may be 

28 the better option. This is the so-called dilemma between exploitation (enjoying the benefits of 

29 using current knowledge) and exploration (taking the risk to obtain new knowledge). In clinical 

30 settings, the statistical advice for individual patients seems to be the maximum expected success 

31 rate or something equivalent and patients9 selections tend to be homogeneous, which does not 

32 solve the dilemma. In this study, our aim is to investigate the effects of the heterogeneity of 

33 decision-makers in the decision process. 

34 Methods: Here, we proposed a decision strategy that introduced the heterogeneity of decision-

35 makers by considering patients9 self-decisions where the patients9 heterogeneous attitudes towards 

36 the treatment are integrated into the probabilistic utility function based on the Beta Bayesian 

37 posterior. Based on the context of two-armed bandit treatment options with limited information, 

38 we compared the overall success rate of treatment between our heterogeneous decision strategy 

39 and a homogeneous decision strategy that is defined to select the treatment with the largest 

40 posterior mean.

41 Results: The heterogeneity of decision-makers in a population improved the overall benefit of 

42 treatment under some conditions. 
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43 Discussion: In clinical settings, there exists heterogeneity of decision-making among patients. Our 

44 study investigated a targeting strategy by respecting the self-decision of all individuals and found 

45 that the heterogeneity of decision-making can improve the overall benefit under some conditions. 

46 In addition, this outperformance may suggest that heterogeneity of decision-making is of 

47 importance to human beings. Besides the ethical merit, our findings provide meaningful ideas for 

48 better strategies towards decision-making dilemmas in clinical settings for rare diseases or cases 

49 where only limited information is available. It would be further suggested to investigate the effects 

50 of heterogeneity of decision-making in other fashions, such as genetic heterogeneity and 

51 phenotypic heterogeneity. 
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53 Introduction 

54 The Randomized Controlled Trial (RCT) is considered to be the gold standard for the 

55 evaluation of treatment effects in medical settings. Since the design that combines randomization 

56 and blinding in the RCT minimizes selection bias and distributes confounders between the placebo 

57 group and the intervention group, the assessment of outcomes is more objective and accurate [1,2]. 

58 While the classic RCT design is suitable for common diseases, it is less feasible in rare diseases 

59 because it is too time consuming to obtain a sufficient sample size [3-5]. Moreover, the outbreak 

60 of acute lethal diseases requires patients to select one option among few with limited information. 

61 A typical example of this was the Ebola infection outbreak of 2013-2016, when empirical 

62 treatments were offered to patients without RCT. Parents may be reluctant to enrol their child in a 

63 placebo-controlled trial where he or she may receive a placebo rather than undergo the intervention 

64 of a treatment [6]. In fact, there are precedents for approval of orphan drugs treating rare 

65 neurological diseases based only on pilot studies using smaller trial sizes and without the RCT 

66 principles [7]. 

67          Here, we assume a medical condition in practice. Two new treatments are developed for a 

68 rare disease with a high lethality rate; however, there is no or very limited evidence for both 

69 treatments9 effect in the current status. Under these conditions, patients themselves are disposed 

70 to try one of the two treatments rather than waiting for death. As we do not know the true effects 

71 (the true success rate) of either treatment, the very first patient will select either treatment with 

72 probability ,  that means she or he is assigned to the treatment with a lower success rate with 0.5

73 probability 0.5. With the increase of sample size, strong evidence would eventually be obtained to 

74 clarify which treatment is superior to the other. However, in the process, many of the benefits to 

75 the patient are sacrificed, in particular individuals who are enrolled in the earlier stages of the trial. 
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76 Although we investigated the effects of heterogeneity of decision makings, it is important to state 

77 that we do not mean the heterogeneity-oriented approach should replace the well-established 

78 approaches for clinical trials where random assignment is critical to assure the results of the 

79 studies. Our objective is to study the heterogeneity of decision makings and its effects in more 

80 general settings.

81 One of the classic Bayesian decision rules is to take the treatment with the largest posterior 

82 maximum expected success rate encoded in the posterior distribution. Then, patients are assigned 

83 to the treatment with the largest posterior maximum expected success rate [8,9]. However, this 

84 causes a problem. While a single patient is assigned to one out of two treatments with a higher 

85 posterior mean, it prevents exploration of the other treatment, which may be the true superior. 

86 Thus, the problem is the dilemma between exploitation (enjoying the benefit of using the current 

87 knowledge) and exploration (taking the risk of obtaining new knowledge) [10]. Many studies in 

88 statistical decision theory have revealed that the validity of the loss function-based approach can 

89 quantitatively demonstrate the optimal decision strategy and its limitation when information is 

90 limited [11,12]. In addition to the statistical decision theory, there is another important aspect in 

91 clinical decision-making by patients. As we clinicians see patients, we find them heterogeneous 

92 regarding selection among options. Some aspects of the heterogeneity seem to be explained by 

93 inadequate understanding of statistical information on the options. Some aspects of the 

94 heterogeneity seem to be explained by the heterogeneity of personalized conditions or weighting 

95 parameters of loss functions. In addition, however, there seems to be heterogeneity in risk-taking. 

96 One such example is the attitude towards clinical trials. Some patients are very positive towards 

97 them, and some decline the idea, while others waver somewhere between. We considered that the 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27170v1 | CC BY 4.0 Open Access | rec: 4 Sep 2018, publ: 4 Sep 2018



98 risk-takers tend to see the optimistic aspects of the unknowns and the risk-hesitaters tend to see 

99 the pessimistic aspects. 

100        Because we were interested in whether patient optimism/pessimism heterogeneity could 

101 mitigate the problem of the exploration-exploitation dilemma, we designed this study to evaluate 

102 the effects of heterogeneity of decision making on the overall success rate of treatments in a 

103 population. In the study, we generated a simple decision-making model with the heterogeneity. 

104 The heterogeneity of decision-making was parameterized for optimism/pessimism, called as the 

105 targeting decision strategy (T-strategy). With the Bayesian decision-theoretic approach [12], 

106 patients9 belief in the current state of knowledge regarding the success rate of each treatment is 

107 estimated from the Beta posterior distribution. Then, patients taking the T-strategy will select the 

108 treatment with the higher posterior probability that success rate is more than a targeting value. This 

109 value is calculated from a function of the larger posterior mean of success rate, but depending on 

110 the patient9s attitude. To evaluate the effects of T-strategy, we compared it with one classic 

111 decision rule which is defined as selecting the treatment with the larger posterior mean only, called 

112 as E-strategy. Using simulated datasets with two new treatments options, we compared the overall 

113 success rate of two treatments based on some conditions between the patients who are taking T-

114 strategy and E-strategy separately, and quantitated the effects of the heterogeneity of decision-

115 making.

116 Materials & Methods

117 Context

118 In this paper, we study the two-armed-bandits problem in clinical settings in which there 

119 are two new treatments for a disease without knowledge of success, denoted  and . Each ý  ý
120 patient9s Bernoulli outcome, favourable (success) or unfavourable (failure), is recorded. The true 
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121 rates of favourable outcomes for  and  are unknown, and they are denoted  and , withý  ý ÿ  ÿ
122 . A series of patients select  or , one by one, and the next  patient is  0 <  ÿ, ÿ <  1 ý ý (ÿ + 1)

ý/
123 informed with the preceding outcomes that  patients have been treated in total and  and   ÿ  ÿý   ÿý
124 have selected  and , respectively, with and successful outcomes and  and  ý ý ÿýý ÿýý ÿýÿ ýýÿ
125 failures, respectively. As shown in Table 1, , , ,  ÿ = ÿý + ÿý ÿý = ÿýý + ÿýÿ ÿý = ÿýý + ÿýÿ
126 , and .ÿý = ÿýý + ÿýý ÿÿ = ÿýÿ + ÿýÿ
127 Beta conjugate distribution to binomial outcomes

128 The outcome of each treatment is a Bernoulli outcome, and the parameter of unknown 

129 success rate follows a binomial distribution. In Bayes9 theorem, whereby the posterior is 

130 proportional to the prior multiplied by likelihood, there is one advantage in that the beta 

131 distribution is the conjugate distribution to Binomial outcomes (shown as supplementary note 1). 

132 When no patient has been treated, we set a uniform Beta(1,1) as the initial prior, and then the two 

133 parameters of the prior are to be updated by the outcomes, successes  and failures . ÿ 7 ý + 1  ÿ 7 ÿ + 1

134 , (1)ý 7 (ÿ|ÿ 7 ý, ÿ 7 ÿ) = ÿ (ÿ 7 ý + 1, ÿ 7 ÿ + 1) =
1�(ÿ 7 ý + 1, ÿ 7 ÿ + 1) ÿÿ 7 ý

(1 2 ÿ)
ÿ 7 ÿ

135 where indicates  or , and  indicate the beta distribution and function, respectively, and 7  ý  ý ÿ �  0

136 . f  ÿ f  1

137 Optimistic/pessimistic individuals in a population with heterogeneity 

138 of decision-making 

139 We assumed that every individual selects one out of two treatments (  or ) with a higher ý ý
140 value that is estimated from the beta posterior distribution with given current outcomes (successes 

141 and failures) of each treatment,  (Equation 1). In this study, we modelled two types ý 7 (ÿ|ÿ 7 ý,ÿ 7 ÿ)
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142 of individuals; one type of individual selects a treatment based on the posterior mean   ÿ 7 ý
143 (Equation 2). They select the treatment with the larger posterior mean/larger maximum expected 

144 success rate (Equation 5). We call this type of individuals9 selection as the E-strategy, where E 

145 stands for <Expected=. The other type of individual is somehow optimistic or pessimistic and 

146 selects the treatment with a higher value that is different from the expected value and depends on 

147 each individual9s optimistic/pessimistic preference. We set an attitude index, to parameterize ý, 
148 the two preferences of individuals, where the  of pessimistic individuals ranges from  to  ý 2 1 0

149 and the optimistic  ranges from 0 to . In fact, in terms of treatment assignment in clinical ý 1

150 settings, we assumed that optimistic individuals care whether the treatments are adequately 

151 successful or not and that they set a target value (t) higher than the maximum posterior mean (

152 ) (Equation 4), and calculate the probability that success rate is higher than the . This ÿ 7 ý ý
153 probability is denoted by  (Equation 3). By contrast, we assumed that pessimistic ÿ 7 ÿ(ý)

154 individuals set lower than the maximum posterior mean( ), and calculate the probability that ý ÿ 7 ý
155 success rate is higher than . The modelled  is calculated from a function of maximum posterior  ý ý
156 mean (  but depending on this individual9s attitude index  (Equation 4). Those individuals ÿmaxý) ý
157 who are optimistic or pessimistic select the treatment with higher  (Equation 5). We refer to ÿ 7 ÿ
158 this type of individual9s decision as a T-strategy, where T stands for <Target=. 

159             The posterior mean of the success rate is

160 (2)ÿ 7 ý = +1
0ÿ × ý 7 (ÿ|ÿ 7 ý,ÿ 7 ÿ)ýÿ =

  ÿ 7 ý + 1     ÿ 7 ý + ÿ 7 ÿ + 2,

161 where indicates  or7  ý  ý
162 The probability of a success rate more than a target value is

163 , (3)ÿ 7 ÿ(ý) = +1ý p 7 (ÿ|ÿ 7 ý,ÿ 7 ÿ) ýÿ
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164 where indicates  or , and the target value  is calculated by = , ) and 7  ý  ý ý ÿÿÿýý ÿÿý(ÿýý ÿýý
165 depends on the attitude index .ý
166 (4)ý = {  w + (1 2 w)ÿÿÿýý,        0 f w f 1

   (1 + w)ÿÿÿýý,             2 1 f w < 0�
167 where positive and negative  stands for optimism and pessimism, respectively. Correspondingly, ý
168 the  specifies optimism, and  specifies the pessimism. ÿÿÿýý f t f w 0 f t f ÿÿÿýý
169 Subsequently, the probability of selecting , ), is given as ý ÿÿýÿ(ý
170 , (5)ÿÿýÿ(ý) = {

     1:             ÿý 7 > ÿý 7
  0.5:             ÿý 7 = ÿý 7
     0:              ÿý 7 < ÿý 7 �

171 where indicates E or  Actually the selection of every individual is deterministic based on the 7   ÿ.
172 values that are calculated from the 2 by 2 table values in principle. The selection is stochastic only 

173 when the values are equal. When we assumed a population was homogeneous, their selection was 

174 deterministic except for the stochastic selection due to the identical values for two arms. When we 

175 assumed a population was heterogeneous, the individuals9 optimistic/pessimistic attitude vary 

176 among them and the sequence of individuals were stochastically generated in the experiment.

177 We assumed that the population is a mixture of individuals with various levels of 

178 optimism/pessimism. To specify the heterogeneous population in this model, we assumed that 

179 need w is symmetric around zero and is in a monomodal distribution ranging from -1 to 1. With 

180 this assumption, the majority of people are almost neutral and relatively few people are strongly 

181 optimistic or pessimistic. As a simple model for this distribution, we assumed 

182 (6)ý ~ 2 (³(ÿ,ÿ)3 0.5 ),

183 where u parameterizes the shape of distribution of w. 
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184            An example for the selection was given in the Figure 1, where the Beta posterior 

185 distributions of two treatments were drawn with the information:  the eighteen 

186  patients have been treated with the treatment , resulting in (18 =  (14 2 1) +  (6 2 1)) ý
187 outcomes of 13 successes and  failures, and three  patients have been 5 (3 =  (3 2 2) +  (2 2 1))

188 treated with , resulting in outcomes of  successes and  failure. Two sets of decision values ý 2 1

189 based on E-strategy (  ) and T-strategy (  ) were calculated separately, and in the Figure 1 ÿ 7 ý  ÿ 7 ÿ
190  are indicated as vertical lines (  and ),  and  are indicated as the  ÿ 7 ý  ÿýý =  0.7  ÿýý =  0.6  ÿ 7 ÿ
191 area under the curve truncated by a vertical line (  and . Sinceÿýÿ(ý) = 0.16 ÿýÿ(ý) = 0.18)  

192 ,  individuals with E-strategy should select A.  Since ,  individuals with T-0.7 > 0.6 0.16 < 0.18

193 strategy (  corresponds to an optimistic individual with ) should  ý =  0.8 ý approximately 0.3

194 select .  ý
195 Experimental conditions

196 The true but unknown success rate of the two arms,  and , and the number of total patientsÿ  ÿ
197 , are parameterized. The total 5050 pairs of combination of  and  was generated with, ý ÿ ÿ
198 For the T-strategy population,  as an attitude index is parameterized within the  0 <  ÿ f ÿ <  1. ý
199 range of  and . In addition, we evaluated relatively small  values, from 1 to , because 2 1 1 ý 100

200 our objective is to study the effects of optimism/pessimism of decision-makers for treatment 

201 assignment with a rarer disease in a clinical setting where the patient population size is small. 

202 Under the same condition of , , and , we first  compared the overall success rate between the ÿ ÿ ý
203 homogeneous population who take the E-strategy and the homogeneous population who take the 

204 T-strategy, where all T-strategy individuals have the same w values.

205 After the comparison between the homogeneous E-strategy population and the 

206 homogeneous T-strategy population, we investigated the effects of heterogeneity. We generated a 
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207 population with the T-strategy whose w values were not same but distributed as shown in Equation 

208 6, where u was 5, 30, 70 and 500.

209 Measure of the overall benefit

210 Calculation of the exact probability of every Bernoulli outcome of the two arms

211 In this study, we enumerated all possible combinations of successes and failures for each 

212 treatment as a  table (shown as supplementary note 2); then, the exact probability of every 2 ×  2

213 table consisting of , , , and  was calculated as the below equation.   ýýý   ýýÿ ýýý   ýýÿ
214

ÿÿ(ýýý,  ýýÿ, ýýý, ýýÿ)
= ÿÿýÿ(ý'(ýýý 2 1,  ýýÿ, ýýý, ýýÿ)) × ÿ × ÿÿ(ýýý 2 1,  ýýÿ, ýýý, ýýÿ)
+ ÿÿýÿ(ý|(ýýý,  ýýÿ 2 1, ýýý, ýýÿ)) × (1 2 ÿ) × ÿÿ(ýýý,  ýýÿ 2 1, ýýý, ýýÿ) + (12 ÿÿýÿ(ý|(ýýý,  ýýÿ, ýýý 2 1, ýýÿ))) × ÿ × ÿÿ(ýýý,  ýýÿ, ýýý 2 1, ýýÿ)

215 ,  (7)+ (1 2 ÿÿýÿ(ý|(ýýý,  ýýÿ, ýýý, ýýÿ 2 1))) × (1 2 ÿ) × ÿÿ(ýýý,  ýýÿ, ýýý, ýýÿ 2 1)

216 When patient number N=0, then  ÿÿ(0,0,0,0) =  1.

217 For heterogeneous decision-makers, we assigned w to a series of patients from the distribution in 

218 the equation (6) with the indicated u value. Because the stochastic processes vary with the sequence 

219 of w values, we iterated 3000 random Monte Carlo patient sequences [13] up to N = 50, and we 

220 calculated the average of .ÿÿ(ýýý,  ýýÿ, ýýý, ýýÿ)

221 Measure of the Overall Success Rate

222 We emphasized the evaluation of the overall benefit of treatments in a population rather 

223 than an individual9s best benefit; thus, we measured the average fraction of favourable outcomes 

224 (successes) for the series of  patients as a whole when  and  were given regardless of the ý ÿ ÿ
225 selected arm, named the Overall Success Rate (OSR).

226 ÿÿý(ý) =  3{(ýýý,  ýýÿ, ýýý, ýýÿ)|ýýý + ýýÿ +  ýýý +  ýýÿ = ý}
ýýý + ýýýý ÿÿ(ýýý,  ýýÿ, ýýý, ýýÿ),     (8)
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227 All calculation was performed with the R, and the code is available at the following URL: 

228 https://github.com/statgenetJimu/SelfDecABP/blob/master/SelfDecABP(1).%20r-package.

229

230 Results

231 First, we showed a typical case of homogeneous E-strategy ( ) and homogeneous T-ý.ýý
232 strategy ( ). Second, we demonstrated the detailed effects of conditions of  and  on the ÿ.ýý ÿ, ÿ ý
233 difference between homogeneous  and homogeneous . Third, we showed the benefit of the ý.ýý  ÿ.ýý
234 heterogeneous . ÿ.ýý
235 Typical case of homogeneous E-strategy and homogeneous T- (ý.ýý) 
236 strategy .  ( ÿ.ýý)
237 Individuals in the homogeneous  population select treatments based on the posterior ý.ýý
238 mean, . Individuals in the homogeneous  population select treatments based on ,  ÿ 7 ý, ÿ.ýý  ÿ 7 ÿ
239 which represents the optimism/pessimism attitude and is shared by all the individuals in the 

240 population. Figure 2 is the results of the experiment, where the success rate of the two treatments 

241 were  and and the optimistic attitude of the  population was . The total ÿ =  0.8  ÿ = 0.6, ý ÿ.ýý 0.5

242 number of patients was . The panels A and B of Figure 2 are the 2-dimensional ý = 100

243 histograms, where one axis is the fraction of individuals who selected  and the other axis is the ý
244 overall success rate when all the processes reached  for  and , respectively. The ý =  100 ý.ýý ÿ.ýý
245 processes of selection by a series of individuals are stochastic; the fraction of selecting  and the ý
246 overall success rate take distribution. The exact distribution of the fraction and the rate were 

247 calculated and displayed. In the case of , as shown in panel A of Figure 2, the distribution was  ý.ýý
248 bimodal, with the higher peak corresponding to the occasions in which a majority of  patients ý
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249 had selected the better treatment arm, , and the lower peak indicating that the minority had ý
250 selected the inferior treatment arm, , with a subsequently lower OSR. In the case of , as ý   ÿ.ýý
251 shown in panel B of Figure 2, the distribution was monomodal with the peak towards the -arm ý
252 selection. The bimodality was the result of the exploitation-exploration dilemma. In some cases, 

253 the patients who selected the inferior one turn out to be successful with the expected success rate 

254 higher than the true success rate because this is a stochastic process. In this case, the following 

255 patients tend to select the inferior treatment arm with the belief that this treatment arm has a high 

256 success rate, and they lose the chance to select the other treatment arm that was truly better. Panels 

257 A and B indicate that the decision strategy of the population affected the exploitation-exploration 

258 pattern.

259 Panels C and D in Figure 2 show the average fraction of individuals who selected the -ý
260 arm and the OSRs among a number of patients from to  of the two strategies, respectively. 1 100

261 Panel C shows that the A-arm fraction of  and  at  was  and , ý.ýý ÿ.ýý ý =  100 0.714 0.855

262 respectively, and the fraction was higher for  throughout for the number of patients. Panel D ÿ.ýý
263 shows that OSR of  and  at  was  and , respectively, and the rate was ý.ýý ÿ.ýý ý =  100 0.743 0.771

264 higher for  throughout. This finding was also related to the lack of exploration that occurred ÿ.ýý
265 in  in this particular scenario.ý.ýý
266 Comparison of overall benefit of homogeneous decision-makers 

267 between E-strategy  and T-strategy  with the same (ý.ýý)  (ÿ.ýý)
268 attitude index  valueý
269 The typical case above showed that the homogeneous decision-makers of  with w = 0.5 ÿ.ýý
270 outperformed  when  and  for . However, such superiority ý.ýý ÿ =  0.8 ÿ =  0.6  ý =  1, 2, &, 100
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271 is not always true for all conditions of , and . In fact, under some conditions, homogeneous ÿ  ÿ, ý,  ý
272  decision-makers outperformed the homogeneous , but under other conditions, the  ÿ.ýý  ý.ýý  ý.ýý
273 decision-makers outperformed the .  ÿ.ýý
274 We evaluated the difference of Overall Success Rates (OSRs) between homogeneous   ÿ.ýý
275 and homogeneous  decision-makers with the same attitudes of  values for various  ý.ýý  ý
276 conditions;  and {-ý = 1, 2, &,100 (ÿ,ÿ) =  {(ÿ,ÿ)'ÿ,ÿ * {0.01, 0.02, &, 0.99}, ÿ g ÿ}, ý =

277 0.0005, -0.001, &, 0.999, 0.9995} The number of (a,b) pairs was .. 5050

278 Panel A of Figure 3 visualizes the difference of OSR of  pairs at  5050 (ÿ,ÿ) ý =  10,30,

279 and  for . The  pairs form a triangular space. The horizontal 100 ý =2 0.8, 2 0.4, 0.4, ÿnd 0.8 (ÿ,ÿ)
280 axis is a, and the vertical axis is b. Red indicates  pairs where  outperforms , and blue (ÿ,ÿ) ÿ.ýý ý.ýý
281 indicates  pairs where  outperforms . Colour intensity stands for the value of the (ÿ,ÿ) ý.ýý ÿ.ýý
282 difference of OSRs as indicated in the colour bar on the right. The black curves stand for the  (ÿ,ÿ)
283 pairs without difference between  and . ý.ýý ÿ.ýý
284 The colour patterns of 12 conditions of the panel A of Figure 3 show that the superiority 

285 of two strategies is the function of  conditional to N and w. The homogeneous optimistic (ÿ,ÿ)
286 decision-makers (  with w > 0) outperformed  when both  and  were relatively large, ÿ.ýý  ý.ýý ÿ ÿ  

287 but their performance was worse than  when both  and  were relatively small, as shown in ý.ýý ÿ ÿ
288 the first and second rows of  and  of panel A of Figure 3. When N increases, the colour ý =  0.4  0.8

289 intensity tends to become stronger. In contrast, the performance of the homogeneously pessimistic 

290 attitude decision-makers (  with ) was worse than for the majority of  pairs, ÿ.ýý ý <  0 ý.ýý (ÿ,ÿ)
291 and  outperformed only when both a and b were small. When  increases, the colour intensity ÿ.ýý ý
292 tends to become stronger.
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293 Next, we investigated the relation between  pairs and the superiority of  and , (ÿ,ÿ) ý.ýý ÿ.ýý
294 regardless of the intensity of optimism or regardless of w values as far as   >0. We calculated ý
295 OSRs for {0, &, 0.999, 0.9995}. Panel B of Figure 3 coloured the  pairs with red, grey ý = (ÿ,ÿ)
296 and blue, where red indicates that the average OSR of  is higher than the OSR of  for all ÿ.ýý ý.ýý
297 optimistic w values, and blue indicates that the average OSR of  is lower than the OSR of  ÿ.ýý ý.ýý
298 for all optimistic  values, and grey indicates otherwise. In general,  tends to outperform when ý ÿ.ýý
299 both treatments have a relatively high success rate and  outperforms when both treatments ý.ýý
300 have a relatively low success rate. In this comparison, we evaluated homogeneous  populations ÿ.ýý
301 from which all individuals in a population were the same w values , and we set different such same 

302  (ranging from  to ) values for each of  homogenous populations. In the next experiment, ý 2 1 1

303 we modelled populations that are heterogeneous for decision attitudes that consisted of individuals 

304 whose optimism/pessimism attitude index  varied and compared their performance with . ý ý.ýý
305 The effect of heterogeneity of decision-makers in a population

306           In reality, populations seem to consist of individuals with various attitudes. We modelled 

307 heterogeneity of optimism/pessimism attitude index w with equation , where w distributes 6

308 symmetric around . Figure 4 is the colour plot to display the superiority of and heterogeneous0 ý.ýý 
309 . Four panels show the result of four different distributions of optimism/pessimism index w, ÿ.ýý
310 specified with  and . The distribution of  is displayed in a window of each ÿ =  5, 30, 70 500 ý
311 panel. 

312 The panels of Figure 4 show some tendencies. The heterogeneous  tended to ÿ.ýý
313 outperform  (red) when both a and b were relatively high. With smaller  or larger variance ý.ýý  ÿ
314 of , the difference of OSR was bigger. Actually, the right most panel indicates essentially no ý
315 difference between  and heterogeneous  when the variance of w is very small. When  is ý.ýý ÿ.ýý ÿ
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316 small  the triangular area was divided into two coloured subareas almost evenly, and when (ÿ = 5),

317 u is larger (  and ), the area where the heterogeneous  was superior was bigger than ÿ = 30 70 ÿ.ýý
318 the area where was better. ý.ýý  
319

320 Discussion

321 We assumed that decision-makers might vary in a population due to the heterogeneity of 

322 individuals9 decision attitudes in medical decision-making. In reality, it is ethical to respect 

323 individuals9 self-decision particularly when there is no sufficient information to make decisions 

324 for certain. In clinical settings, these conditions correspond to rare diseases or patients with a 

325 common disease that is complicated by various conditions, where some information is available 

326 but is not conclusive. If all individuals of a population are E-strategy decision-makers, the outcome 

327 for the whole population may not be optimal, which is the result of the trade-off between 

328 exploitation and exploration where an individual selects one arm to optimize the outcome for 

329 herself/himself but the population loses the chance to take another arm that might be better; this is 

330 the exploration-exploitation dilemma and the multi-armed bandit problem [10,14-16]. This 

331 phenomenon was shown in Figure 2. Although statistical studies on the multi-armed bandit 

332 problem developed decisions to optimize the outcome of the whole population strategies, such as 

333 Gittin9s index [17-19], they did not respect individuals9 self-decisions. Thus, we studied the effects 

334 of heterogeneity of decision-making on the overall benefit of the whole population in a simple 

335 clinical setting. Although we stated in the introduction section, it should be stated again that we 

336 have investigated the possible benefit in heterogeneity of decision makings in population but that 

337 we do not mean that patients should select a treatment from multiple options and the importance 

338 of clinical trials and the evidence-based medicine is the gold standard in clinics.
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339 The question here is whether we, as humans, are truly heterogeneous in our selections. It 

340 is true the individuals9 background heterogeneity, such as comorbidity, cost, life-style and age and 

341 so on, in case of clinical conditions, can cause their decisions heterogeneous and these hidden 

342 factors might explain all the components of heterogeneity of decision making among people. 

343 However it is also true that we, clinicians, face the heterogeneous attitudes among patients that do 

344 not seem to be well explained by the factors. The particular example of this heterogeneity is the 

345 attitude heterogeneity towards clinical trials. We recruit patients for a clinical study who are 

346 homogeneous enough to meet inclusion/exclusion criteria, and some patients participate in it and 

347 others decline the idea. We believe the enrollment or no-enrollment should not be heavily biased 

348 with hidden factors and we are not sure why some participate and some not. We investigated this 

349 unclear heterogeneity in our study. Another example of the heterogeneity of decision makings 

350 among people can be seen in attitude towards gambles. It is obvious that nobody should anticipate 

351 gain as a whole, but still some people keep gambling and some won9t.  Therefore the assumption 

352 of heterogeneity of decision making seemed reasonable to be investigated. In this study we 

353 modelled the heterogeneity in decision makings very simply. When two treatments have never 

354 been applied and someone is the first patient to be treated with either of one of the two, he or she 

355 will select either treatment with a probability of . When one treatment has been used  times  0.5  18

356 with  favourable and  unfavourable outcomes and the other treatment has been subjected to 13  five

357 3 attempts with two favourable and one unfavourable outcome, which treatment would be 

358 selected? If you ask this question to many people without further information, their answers would 

359 vary. If you add the information with the knowledge of the posterior mean and the two treatments 

360 are  and , (13 + 1)/ (13 + 1 + 5 + 1) =  14/20 =  0.7  (2 + 1)/ (2 + 1 + 1 + 1) =  3/5 =  0.6

361 then all or the vast majority would likely select the first treatment (shown in the red and green 
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362 vertical lines, respectively in Figure1). In other words, some people who may initially prefer the

363 treatment with the information of (  out of ) have to change their preference to select the  second 2  3

364 first treatment with the information (13 out of 18) if depending only on the posterior mean. Is this 

365 change in preference due to the lack of <statistical literacy=? The answer could be yes or no. Given 

366 the information of  out of  of the first treatment, the distribution of the favourable outcome 13  18

367 probability is a beta distribution with shape parameters and  whose posterior mean is . 14 6 0.7

368 Using the same distribution, the probability that the first treatment could have a success rate of 

369 more than  is  (shown in the grey areas under the red and green curve separately in the 0.8 0.16

370 Figure 1). Based on the outcome information of two treatments, we have two sets of values. One 

371 set is the expected success probability of two treatments, (the first treatment , the second 0.7

372 treatment ). The other set is the probability that success probability should be more than  0.6 0.8

373 (the first treatment , the second treatment ). If we select the treatment with higher 0.16 0.18

374 expected probability, we should use the value set, (the first treatment , the second treatment 0.7 0.6

375 ), and because , we should take the first treatment. If we select the treatment with higher 0.7 >  0.6

376 probability that the first treatment could have a success rate of more than , we should use the  0.8

377 value set, (the first treatment , the second treatment ), and because 0.18 > 0.16, we should 0.16 0.18

378 take the second treatment. Based on this hypothetical evaluation, it can be said that the individuals 

379 who selected the treatment with  vs.  might bet on it because of its potential to be a truly good  2  1

380 treatment. We call this attitude <optimistic=. In fact, when we design a clinical trial to test a newer 

381 treatment against a standard treatment, we should be optimistic enough to believe that there is 

382 some chance that the newer treatment might be better than the standard treatment. Based on this 

383 idea, we modelled a decision attitude, the T-strategy, which compared the likelihood that the 
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384 success rates are higher than the targeted value that reflects optimism/pessimism and their 

385 intensity. 

386 Through the comparison of the overall benefit in a population between the homogenous 

387 decision-makers of E-strategies and homogeneous decision-makers of T-strategies with fixed 

388 optimism/pessimism parameters, our study revealed the following: First, the optimistic 

389 homogeneous decision-makers of the T-strategy outperformed the E-strategy when the true 

390 success rates of both arms were relatively high, and the pessimistic homogeneous decision-makers 

391 of T-strategy performed best when the true success rates of both were relatively low. Second, the 

392 effects of optimism and pessimism were asymmetric. The area of the optimistic homogeneous 

393 decision-makers of  with better performance than that of  tended to be wider when ÿ.ýý  ý.ýý
394 compared with the pessimistic homogeneous decision-maker of  with better performance than  ÿ.ýý
395 that of . Additionally, homogeneous optimism worked better regardless of the intensity of the  ý.ýý
396 optimism for some conditions, but homogeneous pessimism did not have any such conditions 

397 (Figure 3). Furthermore, through the comparison of the overall benefit in a population between the 

398 homogenous decision-makers of E-strategies and the heterogeneous decision-makers with a 

399 symmetric mixture of optimists and pessimists of various intensities, our study revealed that the 

400 heterogeneous decision-makers in a population outperformed the homogeneous E-strategy when 

401 the true success rates of the two arms were relatively high. When the variation in 

402 optimism/pessimism was small, the degree of benefit was small, but the conditions and  in ÿ ÿ
403 which heterogeneity outperformed the homogeneity of the E-strategy decision-maker were wide 

404 and vice versa (Figure 4). These findings suggested that when the success rates of two treatment 

405 arms for patients with rare diseases are believed to be relatively high, the decision-makers with an 

406 optimistic decision attitude in a population would be the best. In addition, due to the wider 
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407 conditions of beneficial effects of the homogeneous optimistic than pessimistic attitudes, optimism 

408 should be encouraged over pessimism if the decision-makers are homogeneous. When the 

409 decision-makers in a population are heterogeneous, a large variation performs better under 

410 narrower conditions with stronger intension. Those findings are practical not only in medical 

411 decision-making but also in other fields of decision-making. For example, in a complex system in 

412 network science, recent studies in the field have reported that the heterogeneity of factors increased 

413 the structural vulnerability of the system [20]. In the context of our study, the sequence of 

414 individuals can be considered to be a directed line graph in which information flows and the 

415 heterogeneity of the factors of the network is attributed to the heterogeneity of each individual. 

416 In our study, we evaluated only a small population size by enumerating all combinations 

417 of outcomes of each treatment at each status by calculating the exact probabilities, each of which 

418 is formed as a  table pattern consisting of four integer numbers. For the larger population 2 ×  2

419 sizes, we evaluated the cases with  using the Monte-Carlo simulation methods [13] rather ý =  500

420 than the exact probability calculation, which showed a qualitatively similar phenomena to the ones 

421 we observed for the smaller size. Because our investigation was limited to a very specific scenario 

422 and an artificial attitude model, further studies should be performed; the following seemed to be 

423 hypothesized. The benefit of a single individual will be maximized by selecting the option with 

424 the higher expected success rate. However, when all the individuals of a population take the same 

425 decision strategy, the overall benefit of the whole population may not be optimized in some cases. 

426 This is the phenomenon of the exploitation-exploration dilemma. When the individuals of the 

427 population are heterogeneous regarding decision-making, the dilemma seemed to be mitigated at 

428 least partially. In addition, this idea is compatible with the clinical scenario where patients9 self-

429 decisions should be respected. Although we do not know whether human beings are heterogeneous 
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430 in decision-making, it is possible because human beings are heterogeneous in many ways, such as 

431 genetically and phenotypically, and because the heterogeneity in various aspects is believed to be 

432 important for the sustainability of the species. One more interesting finding was that the optimistic 

433 attitude and the heterogeneity of optimism/pessimism performed better when both options had a 

434 higher success rate. Because all species including human beings participate in the survival game 

435 of evolutional history, they keep trying to find ways with higher success rates. Thus, it may be the 

436 case that the majority of selection tasks are selections among options with relatively higher success 

437 rates. If all of these assumptions are true, heterogeneity with some inclination towards the 

438 optimistic side could be one of the best strategies for populations. Again, these hypotheses were 

439 based on our limited investigations, and further studies are necessary.

440 Although the overall benefit of treating is improved if the heterogeneity of decision-making 

441 in a population is considered by respecting every individual9s decision attitude, in fact, other 

442 realistic factors might be combined in our proposed heterogeneity of decision-making, e.g., cost, 

443 life-style and age. Considering that there are far more complicated cases in real clinical works, it 

444 would require effective cooperation between statisticians and clinicians for further investigation 

445 when more factors are introduced into the heterogeneity model. 

446

447 Conclusions

448 We modelled the heterogeneity of decision-making in populations in terms of optimism and 

449 pessimism and compared them with the decision rule based on the expected success rate. We 

450 identified that the optimistic or pessimistic strategy outperforms the expected value-based strategy 

451 when success rates of options are in particular conditions. In addition, when a population consists 

452 of individuals with heterogeneous optimistic/pessimistic attitudes, it was able to outperform when 
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453 it pursues options with a high success rate. This outperformance is achieved by respecting the self-

454 decision of all individuals, which is ethically important. Our findings may provide meaningful 

455 ways to find better strategies for the decision-making dilemma in clinical settings for rare diseases 

456 or cases where only limited information is available. It would be further suggested to investigate 

457 the effects of heterogeneity of decision-making in other aspects, such as genetic heterogeneity and 

458 phenotypic heterogeneity. 

459

460
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Figure 1

The visual explanation of decision values of E-strategy and T-strategy ( v
*E
 and v

*T
 ).

The red curve shows the probability density function (PDF) of the beta posterior distribution

of the success rate of treatment A with 13 successes and 5 failures; and the green curve

shows one of the treatment B with 2 successes and 1 failure. The red and green vertical lines

indicate the posterior means of two distributions, v
AE

 and v
BE

, respectively. Actually v
AE

 = 0.7

and v
BE

 = 0.6. The vertical line that demarcates the gray areas under the curves indicates the

target value, t = 0.8. The gray areas under the curves indicate the probability that their

success rates are higher than the target value t = 0.8 for the two strategies, v
AT

 and v
BT

.

Actually v
AT

 = 0.16 and v
BT

= 0.18. Because v
AE

 > v
BE

, people with E-strategy will select the

treatment A and because v
AT

 < v
BT

, people with T-strategy will select the treatment B.
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Figure 2

Comparison of a homogeneous population with E-strategy (E.st) and a homogeneous

population with T-strategy (T.st) when the true success rates of A and B were 0.8 and

0.6 and the optimistic attitude index of T.st was 0.5.

The panels A and B show the results when 100 patients9 outcomes have been recorded for

E.st and T.st, respectively. Each panel is the two-dimensional histogram where the cyan area

indicates the support plane and one axis <Success rate= indicates the overall success rate for

100 patients and the other axis <A-arm Fraction= indicates the fraction of patients who

selected treatment A. The vertical axis indicates the exact probability of occurrence in the

stochastic process. The panel A for E.st shows two peaks; one peak9s overall success rate

was around 0.8 and its A-arm fraction was close to 1 and the other peak9s overall success

rate was around 0.6 and its A-arm fraction was close to 0. The first peak was higher than the

other peak. These findings indicated that the majority of individuals with E.st selected

treatment A in many occasions but that in some occasions, they selected treatment B rather

than treatment A. The panel B for T.st shows one peak and its overall success rate was

around 0.8 and its A-arm fraction was close to 1. The mountain in Panel B was lower than the

mountain located nearby in Panel A. These findings indicated that the majority of individuals

with T.st selected treatment A in almost all the occasions, although the A-arm fraction tended

to be lower than E.st.  (C) and (D) show how the two measures change based on the

homogeneous E.st versus T.st while the patient number changed, N=1,2,&,100, and

horizontal axis shows the patient's number, and vertical axis shows the measure " A-arm

fraction" in the Panel C and the measure "overall success rate (OSR)" in the panel D, where

homogeneous E.st is labeled in black and T.st is in red.
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Figure 3

The relation between true success rates of two treatments and overall success rates of

two strategie.

The difference of the OSRs (T.st 3 E.st) between homogeneous E.st decision-makers and homogeneous T.st

decision-makers with the fixed attitude w values, on the conditions where 5,050 of true success rates pairs (

(a,b) = { (a,b) | a, b \in {0.01, 0.02, &, 0.99}, 1 > a >= b >0} ) were calculated for multiple w values of T.st

population (w = 0.8, 0.4, -0.4, and -0.8). The twelve plots in the panel A indicate N = 10, 30 and 100 for

every w values. Each plot has a triangle area that corresponds to the (a,b) pairs where a >= b. The negative

and positive values of difference of OSRs are coded in blue and red, respectively. The black curves in the

triangle areas indicate the (a, b) pairs without difference in OSRs between two strategies. In the panel B, the

red indicates the (a,b) pairs where the optimistic homogeneous T.st decision-makers performed better than

E.st with regardless of the optimistic w values where the number of the fixed w is 2000, with w *

{0,&,0.999,0.9995}, the blue indicates the area of (a,b) pairs where E.st performed better, and the gray

indicates the (a,b) pairs where the T.st  or E.st performed better with depending on the w value.
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Figure 4

Comparison of the Homogeneous E.st population and Heterogeneous T.st population.

The figure 4 indicates the difference of the OSRs between the decision-makers in a

population with heterogeneity of decision attitudes (w values of individuals are various) and

the homogeneous E.st decision-makers. The four panels separately indicate the difference of

OSRs based on the four distributions of attitudes with given various beta parameter u values

of 5,30,70, and 500 separately, where the distribution of w is located on the top-left of each

image (w values were generated from the distribution shown as the equation 6 in the method

section). The triangle area in each image corresponds to 5050 success rate pairs (a,b)=

{(a,b)'a,b * {0.01,0.02,&,0.99},agb}, and the difference of OSRs in the each triangle was

coded with blue and red with representing negatives and positives, respectively. The sample

size N=50. Such OSRs for the heterogeneity population were the average of 3000 Monte

Carlo iterations.
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Table 1(on next page)

Bernoulli Outcomes for Two Treatments After N Decision Processes.

N
As

 and N
Af
 are favorable (successes) and unfavorable (failures) outcomes of patients who

selected treatment A. Correspondingly, N
Bs

 and N
Bf
 are favorable and unfavorable outcomes

of patients who selected treatment B.
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1 Table 1. Bernoulli Outcomes for Two Treatments After  Decision Processes.N

Favorable Outcome Unfavorable Outcome

A
ýýý ýýÿ ýý

B
ýýý ýýÿ ýýýý ýÿ ý

2  and  are favorable (successes) and unfavorable (failures) outcomes of patients who selected ýýý ýýÿ
3 treatment . Correspondingly,  and  are favorable and unfavorable outcomes of patients  ý  ýýý ýýÿ
4 who selected treatment B.

5
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