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The field of paleomicrobiology4the study of ancient microorganisms4is rapidly growing

due to recent methodological and technological advancements. It is now possible to obtain

vast quantities of DNA data from ancient specimens in a high-throughput manner and use

this information to investigate the dynamics and evolution of past microbial communities.

However, we still know very little about how the characteristics of ancient DNA influence

our ability to accurately assign microbial taxonomies (i.e. identify species) within ancient

metagenomic samples. Here, we use both simulated and published metagenomic data sets

to investigate how ancient DNA characteristics affect alignment-based taxonomic

classification. We find that nucleotide-to-nucleotide, rather than nucleotide-to-protein,

alignments are preferable when assigning taxonomies to DNA fragment lengths routinely

identified within ancient specimens (<60 bp). We determine that deamination (a form of

ancient DNA damage) and random sequence substitutions corresponding to ~100,000

years of genomic divergence minimally impact alignment-based classification. We also test

four different reference databases and find that database choice can significantly bias the

results of alignment-based taxonomic classification in ancient metagenomic studies.

Finally, we perform a reanalysis of previously published ancient dental calculus data,

increasing the number of microbial DNA sequences assigned taxonomically by an average

of 64.2-fold and identifying microbial species previously unidentified in the original study.

Overall, this study enhances our understanding of how ancient DNA characteristics

influence alignment-based taxonomic classification of ancient microorganisms and

provides recommendations for future paleomicrobiological studies.
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14 Abstract

15 The field of paleomicrobiology4the study of ancient microorganisms4is rapidly growing due 

16 to recent methodological and technological advancements. It is now possible to obtain vast 

17 quantities of DNA data from ancient specimens in a high-throughput manner and use this 

18 information to investigate the dynamics and evolution of past microbial communities. However, 

19 we still know very little about how the characteristics of ancient DNA influence our ability to 

20 accurately assign microbial taxonomies (i.e. identify species) within ancient metagenomic 

21 samples. Here, we use both simulated and published metagenomic data sets to investigate how 

22 ancient DNA characteristics affect alignment-based taxonomic classification. We find that 

23 nucleotide-to-nucleotide, rather than nucleotide-to-protein, alignments are preferable when 

24 assigning taxonomies to DNA fragment lengths routinely identified within ancient specimens 

25 (<60 bp). We determine that deamination (a form of ancient DNA damage) and random 

26 sequence substitutions corresponding to ~100,000 years of genomic divergence minimally 

27 impact alignment-based classification. We also test four different reference databases and find 

28 that database choice can significantly bias the results of alignment-based taxonomic 

29 classification in ancient metagenomic studies. Finally, we perform a reanalysis of previously 

30 published ancient dental calculus data, increasing the number of microbial DNA sequences 

31 assigned taxonomically by an average of 64.2-fold and identifying microbial species previously 

32 unidentified in the original study. Overall, this study enhances our understanding of how ancient 

33 DNA characteristics influence alignment-based taxonomic classification of ancient 

34 microorganisms and provides recommendations for future paleomicrobiological studies. 
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35 Introduction

36 Paleomicrobiology4the study of ancient microorganisms4is a rapidly growing field of 

37 research. As with modern microbiology (Caporaso et al., 2012; Consortium, 2012), 

38 paleomicrobiology has witnessed a renaissance with the development of high-throughput 

39 sequencing technology (Warinner, Speller & Collins, 2014; Weyrich, Dobney & Cooper, 2015). 

40 The study of ancient microorganisms has the potential to shed light on a range of topics, such as 

41 the evolution of the human microbiota (Adler et al., 2013; Weyrich et al., 2017), adaptation and 

42 spread of ancient pathogens (Bos et al., 2011, 2014; Warinner et al., 2014), the reconstruction of 

43 human migrations and interactions (Dominguez-Bello & Blaser, 2011; Maixner et al., 2016; 

44 Eisenhofer et al., 2017), and climate change (Frisia et al., 2017). 

45

46 Paleomicrobiology is especially challenging because ancient DNA is typically fragmented, 

47 contains damage-induced substitutions, and is mixed with the DNA of ancient and modern 

48 contaminant microorganisms. DNA fragmentation occurs due to the post-mortem cessation of 

49 DNA repair, resulting in short fragments of lengths typically shorter than 100 bp (Allentoft et al., 

50 2012; Dabney, Meyer & Pääbo, 2013). These short fragments are also subjected to chemical 

51 modifications (e.g. deamination), which yields an increased rate of observed cytosine to thymine, 

52 and guanine to adenine substitutions at the 59 and 39 ends of the sequenced DNA molecules, 

53 respectively (Dabney, Meyer & Pääbo, 2013). Finally, contamination of ancient DNA with 

54 modern microbial DNA is a serious issue that must be mitigated with expensive ultra-clean 

55 laboratories, rigorous decontamination, and the extensive use of extraction blank and no-

56 template negative controls (Eisenhofer, Cooper & Weyrich, 2017; Llamas et al., 2017; 

57 Eisenhofer & Weyrich, 2018). Collectively, these factors influence the choice of molecular 

58 techniques (Ziesemer et al., 2015) and bioinformatic tools used for taxonomic classification of 

59 ancient microbial DNA (Weyrich et al., 2017).

60

61 Identifying the microbial species present within an ancient sample, i.e. taxonomic classification, 

62 is a standard first step in paleomicrobiology studies (Weyrich et al., 2017). Initially, targeted 

63 amplification of the 16S ribosomal RNA encoding gene was used to discover which microbes 

64 were present in ancient samples (Adler et al., 2013), as is routinely done in modern microbiota 

65 studies seeking to characterize microbial communities (Caporaso et al., 2012; Gilbert, Jansson & 
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66 Knight, 2014). However, these targeted regions are often longer than the typical fragment length 

67 of ancient DNA and can contain polymorphisms that bias the taxonomic reconstruction of 

68 ancient metagenomes (Ziesemer et al., 2015). Considering these findings, the paleomicrobiology 

69 field has converged on shotgun sequencing as the best-practice approach to reproducibly identify 

70 microbial species within ancient samples. While currently more expensive than the targeted PCR 

71 approach, shotgun sequencing also provides genomic and functional information that can be used 

72 to reconstruct ancient microbial genomes, observe functional changes through time, and identify 

73 non-prokaryotic information within samples (Warinner et al., 2014; Weyrich et al., 2017). 

74  

75 Methods for analyzing shotgun sequencing data broadly fall into two categories: assembly-based 

76 and alignment-based. Assembly-based techniques involve merging overlapping DNA fragments 

77 into longer sequences, with the goal of assembling whole genomes. Such techniques have been 

78 successful in generating new genomes from modern metagenomic samples (Imelfort et al., 2014; 

79 Parks et al., 2017). However, the short, damaged nature of ancient DNA renders assembly-based 

80 techniques currently intractable for paleomicrobiology. Alignment-based techniques involve the 

81 alignment of DNA fragments to previously characterized reference sequences using alignment 

82 algorithms (e.g. Bowtie2 or the Burrows-Wheeler Aligner (BWA) (Li & Durbin, 2009; 

83 Langmead & Salzberg, 2012)), and include MetaPhlAn (Truong et al., 2015), MG-RAST (Meyer 

84 et al., 2008), DIAMOND (Buchfink, Xie & Huson, 2015), and MALT (MEGAN alignment tool) 

85 (Herbig et al., 2016). A recent study benchmarked these alignment based tools and found that 

86 MALT performed better for short, fragmented DNA (Weyrich et al., 2017). MALT is an 

87 alignment-based tool that allows researchers to query DNA sequences against reference 

88 databases using a method similar to BLAST (Basic Local Alignment Search Tool) (Altschul et 

89 al., 1990), albeit >100 times faster (Herbig et al., 2016). MALT can either align nucleotide 

90 sequences to nucleotide databases (MALTn) or nucleotide to amino acid databases by translating 

91 the DNA prior to alignments (MALTx). A potential advantage to using amino acid alignments 

92 for paleomicrobiology is the greater sequence conservation of peptides due to codon redundancy. 

93 This property may help smooth over small changes occurring in DNA sequence over time, 

94 allowing ancient sequences to be more easily aligned to modern references. However, the 

95 already short nature of ancient DNA yields even shorter amino acid sequences (e.g. 60 bp DNA 

96 translated = 20 amino acid sequence), which may not provide a sufficiently high alignment score 
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97 for taxonomic classification (Huson et al., 2007; Pearson, 2013). Additionally, DNA damage can 

98 result in alignment errors, further lowering alignment scores. To date, there has been no formal 

99 testing of nucleotide versus amino acid alignments for taxonomically classifying short sequences 

100 typical of ancient DNA. 

101 Here, we test how characteristics of ancient DNA influence alignment-based taxonomic 

102 classification using both simulated and published ancient DNA data sets. We demonstrate that 

103 the MALTn (nucleotide-to-nucleotide alignment) approach can improve taxonomic 

104 identifications and show that deamination minimally impacts alignment-based taxonomic 

105 classification. We also show that reference database choice is an important consideration when 

106 attempting to reconstruct ancient microbial communities and perform an extensive reanalysis of 

107 previously published shotgun DNA sequences from ancient dental calculus. 

108

109 Methods

110 Simulated and published metagenomes 

111 We downloaded 6,897 complete bacterial genomes from the NCBI Assembly (17th May 2017). 

112 Twenty-nine oral and environmental genomes were used as input for Gargammel (Renaud et al., 

113 2017) to generate simulated ancient metagenomes of 1.5 million fragmented sequences each. 

114 Briefly, selected bacterial genomic sequences were assigned abundances representative of a 

115 typical dental plaque community (Table S1) and then fragmented into metagenomes containing 

116 either strict 30, 50, 70, 90 bp (base pair) fragments, or an empirical ancient DNA fragment length 

117 distribution that mimicked commonly observed ancient DNA fragmentation (--loc 4, --scale 0.3 

118 in Gargammel) (Figure S1) (Figure 1) (Renaud et al., 2017). To benchmark the influence of 

119 deamination on taxonomic classification, the simulated metagenomes of different fragment 

120 lengths were then deaminated using Gargammel with the following parameters: nick 

121 frequency=0.03, length of overhanging ends (geometric parameter)=0.25, probability of 

122 deamination in double-stranded parts=0.01, along with three different probabilities of 

123 deamination in single-stranded parts: 0 for 0% ·s; 0.1 for light deamination (10% ·s); and 0.5 for 

124 heavy deamination (50% ·s) (Briggs et al., 2007). Additionally, a real mapDamage profile from 

125 the LaBrana sample (Renaud et al., 2017) was simulated using Gargammel for the <empirical= 

126 deamination (~20% ·s). Overall, this resulted in a total of 20 different simulated metagenomes: 
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127 (five different fragment lengths, 30, 50, 70, 90, and empirical) multiplied by four different 

128 deamination magnitudes (0% ·s, 10% ·s, 20% ·s, and 50% ·s) = 20 (Metagenome 1-20; Table 

129 S2). Simulated metagenomes and the genomes used to build the metagenomes are available via 

130 figshare: https://doi.org/10.25909/5b84c9c196f54, https://doi.org/10.4225/55/5b0caf73b7247, 

131 https://doi.org/10.4225/55/5b0ca9b2cd6dc. The collapsed (merged) DNA sequences for 22 

132 published ancient dental calculus samples were downloaded from OAGR (Online Ancient 

133 Genome Repository) https://www.oagr.org.au/experiment/view/65/ (Weyrich et al., 2017). Two 

134 ancient dental calculus samples from (Warinner et al., 2014) were also downloaded from the 

135 SRA (SRR957739 and SRR957743). 

136

137 Reference databases

138 For the analysis of simulated metagenomes, we created databases that contained the exact same 

139 bacterial genomes present in the twenty simulated data sets. We downloaded 6,897 complete 

140 bacterial genomes from the NCBI Assembly (17th May 2017), along with their coding sequences 

141 (CDS) and translated coding sequences. These three sources of sequences were used to construct 

142 different MALT databases: MALTn-genome (complete genomes); MALTn-CDS (nucleotide 

143 coding sequencing from these genomes); and MALTx (translated coding sequences from these 

144 genomes). 

145

146 For the analysis of previously published dental calculus data, we used sequences from the four 

147 following databases: (1) 2014nr (NCBI non redundant protein BLAST database, downloaded 

148 11th November 2014; (Weyrich et al., 2017)); 2017nt (NCBI nucleotide BLAST database, 

149 downloaded 6th June 2017); (3) HOMD (all human oral microbial genomes (1,362) from the 

150 Human Oral Microbiome Database, downloaded July 2017); and (4) RefSeqGCS (47,713 

151 Complete-, Chromosome-, and Scaffold-level assemblies downloaded from NCBI RefSeq 

152 database (366 archaeal; 47,347 bacterial)). Genome accessions used for the RefSeqGCS and 

153 HOMD databases are available from figshare (https://doi.org/10.25909/5b84ddf58ac49, 

154 https://doi.org/10.25909/5b84d19aaff2a).

155

156 Generation of divergent sequences
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157 Nucleotide substitution rates are known to differ between different species of bacteria, making 

158 accurate modeling of bacterial genome evolution is a difficult task. Here, we apply a simplified 

159 approach that ignores insertions and deletions, and instead creates a worst-case scenario for 

160 benchmarking the effects of nucleotide substitutions on taxonomic classification. We chose a 

161 rate of 10-7 substitutions per site per year, representing the mean of known evolutionary rates for 

162 bacterial genomes (Duchêne et al., 2016). We assumed an average bacterial genome size of 3 

163 million bp, thus 10-7 * 3,000,000 = 0.3 substitutions per genome per year. Scaling up for multiple 

164 years yielded the following number of substitutions introduced per genome: 10,000 years = 

165 3,000 substitutions (0.1% of genome); 30,000 substitutions (1% of genome); and 300,000 

166 substitutions (10% of genome). We used these numbers to randomly mutate (substitutions only) 

167 the bacterial genomes using EMBOSS msbar (Rice, Longden & Bleasby, 2000). These 8mutated9 

168 genomes were then used as input for Gargammel, fragmented to the empirical ancient DNA 

169 fragment length distribution (Figure S1),  and deaminated using the heavy deamination 

170 magnitude (50% ·s) (Metagenome 21-23, Table S2). 

171

172 Data analysis

173 MALT-build v 0.3.8 was used on the reference sequences mentioned above with the default 

174 parameters. MALT-run v 0.3.8 was used to align the simulated and real data against the different 

175 databases using default settings and outputting BLAST text files (-a). The resulting BLAST text 

176 files were converted to RMA6 files using the MEGAN tool blast2rma and then imported and 

177 analyzed in MEGAN6 CE V6.8.13 (Huson et al., 2016). We used the weighted LCA algorithm 

178 (80% LCA percentage: -alg weighted -lcp 80) (Huson et al., 2016); the minimum support percent 

179 filter was set to 0.1% (-supp 0.1) for the published ancient dataset to remove poorly supported 

180 assignments (i.e. taxonomic assignments require at least 0.1% of the total sequences to be 

181 considered), and 0.01% for the simulated metagenomes (default); the minimum expected value 

182 (E-value) was set to 0.01 (-e 0.01); and all other values were left at default. Little research has 

183 been done regarding the effect of LCA parameters on taxonomic classification, and such research 

184 deserves its own study. Regardless, the parameters chosen for this study represent a conservative 

185 approach implemented to reduce noise within the data set. For the UPGMA tree comparison, 

186 species found in extraction blank controls were removed (filtered) from the ancient dental 

187 calculus samples (Weyrich et al., 2017). The UPGMA tree was then constructed by exporting the 
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188 Bray-Curtis distance matrices constructed at the species level from MEGAN6 into SplitsTree4 

189 (Huson & Bryant, 2006). The divergences between predicted and simulated abundances were 

190 calculated using log-odds scores: log odds = log2(predicted abundance/simulated abundance) and 

191 the Pearson correlation coefficient.

192

193 Results

194 MALTn classifies shorter DNA sequences than MALTx

195 We assessed the alignment performance of nucleotide-to-nucleotide (MALTn) and nucleotide-to-

196 protein (MALTx) alignments using simulated metagenomes that mimic the characteristics of 

197 ancient DNA (Figure S1). When comparing the differences between nucleotide or protein 

198 alignments on the empirical fragment length distribution simulated metagenome, MALTn-CDS 

199 (coding sequences only) classified 5.55-fold more total sequences than MALTx (protein 

200 translation of coding sequences only) (Figure 2). We investigated this phenomenon further by 

201 assessing nucleotide and protein alignment using simulated metagenomes with strict fragment 

202 lengths (30, 50 70, and 90 bp). MALTx analysis was unable to align sequences from the 30 and 

203 50 bp simulated metagenomes and only aligned 33% of sequences from the 70 bp simulated 

204 metagenome (Table 1). In contrast, MALTn-CDS aligned 86% of sequences at 30 bp (Table 1). 

205 As nucleotide alignments additionally provide the additional opportunity to identify non-coding 

206 sequences, we also compared nucleotide alignments to full genomes, rather than coding 

207 sequences.  Nucleotide alignments including non-coding sequences (MALTn-genome) were able 

208 to classify 6.19-fold more total sequences than MALTx for the empirical fragment length 

209 distribution (7- and 9.7-fold more sequences at the genus and species level, respectively) (Figure 

210 2; Table 1).

211

212 MALTn taxonomic classifications are more accurate than MALTx

213 While MALTn can classify more sequences than MALTx, the accuracy of these assignments has 

214 not yet been examined. We tested the accuracy of these assignments by comparing them to the 

215 <ground truth= (i.e. the actual composition of the simulated metagenomes). Overall, MALTn 

216 more accurately reconstructed the simulated, empirical length metagenome composition than 

217 MALTx (0.998; Pearson correlation; -0.48 sum of log-odds scores between MALTn-CDS and 
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218 actual metagenome) (Figure 3). Even though sequences below 50 bp were not classified, 

219 MALTx was able to faithfully reconstruct the simulated metagenome, albeit with poorer 

220 abundance predictions compared to nucleotide classifications (0.943; Pearson correlation and -

221 6.66 sum of log-odds scores between MALTx and actual metagenome) (Figure 3). MALTx 

222 misclassified more sequences, resulting in 24 taxa being falsely predicted, whereas only 0.29% 

223 of sequences were misclassified using nucleotide (MALTn-CDS) with 11 taxa being falsely 

224 predicted (Table S3). Additionally, classification accuracy with nucleotide alignments was not 

225 impacted by fragment length, as MALTn accurately classified sequences as short as 30bp 

226 (Figures S2 & S3). 

227 We also tested how non-coding sequences can impact the accuracy of taxonomic 

228 identifications. The addition of non-coding sequences to the reference database had a limited 

229 effect on the accuracy of taxonomic classifications, as the MALTn-genome classifications were 

230 almost identical to MALTn-CDS (0.999; Pearson correlation between MALTn-genome and 

231 MALTn-CDS) (Figure 3); however, fewer misclassifications at the species level were identified 

232 using MALTn-genome (11 species for MALTn-CDS vs. 2 species for MALTn-genome). 

233 Overall, these results suggest that MALTn classifications are more accurate than MALTx both in 

234 providing fewer misclassifications and by providing more accurate abundance predictions. 

235 Additionally, it appears that including non-coding information in reference databases (e.g. 

236 MALTn-genome) may also reduce misclassifications.

237

238 Deamination minimally affects alignment-based classification

239 We next tested the effects of deamination (a commonly observed form of ancient DNA damage) 

240 on alignment-based taxonomic classification. We tested three scenarios: light deamination 10% 

241 ·s (deamination rate on single-stranded overhangs), moderate deamination ~20% ·s, and heavy 

242 deamination 50% ·s (Table 2). Using the empirical fragment length distribution, heavy 

243 deamination did not substantially impact the number of sequences using MALTn (0.9% loss of 

244 sequences assigned at the species level for and MALTn-genome; 1.3% for MALTn-CDS; and 

245 9.2% for MALTx) (Table 2). As expected, lower magnitudes of deamination had an even smaller 

246 impact (Table 2). We also assessed the impacts of heavy deamination on the assignment of DNA 

247 sequences of different lengths. Shorter (30bp) sequences were more affected for nucleotide 

248 alignments (9.53% loss of sequences assigned at the species level for MALTn-genome, 8.41% 
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249 for MALTn-CDS; no alignments for MALTx), but this effect was not observed for sequences 

250 longer than 50bp (Tables S4-S6). Regarding taxonomic composition of the empirical read length 

251 metagenomes, heavy deamination did not substantially increase the percentage of 

252 misclassifications at the species level (0.06% to 0.07% for MALTn-genome, 0.29% to 0.30% for 

253 MALTn-CDS and 2.42% to 2.48% MALTx). Deamination also did not substantially affect 

254 taxonomic composition (Figures S4-S6). Overall, these results suggest that deamination 

255 minimally affects alignment-based taxonomic classification.

256

257 The influence of sequence divergence on taxonomic classification

258 The effects of sequence divergence on alignment-based taxonomic classification have not yet 

259 been explored. To this end, we created divergent simulated metagenomes by introducing random 

260 substitution mutations into the same reference genomes used in the above experiments. We chose 

261 three different divergence magnitudes: 0.1% sequence divergence (equating to roughly 10ky 

262 (thousand years) of evolution), 1% (100ky), and 10% (1,000ky), allowing us to examine the 

263 worst-case impacts of sequence divergence on taxonomic classification. Overall, MALTn-

264 genome, MALTn-CDS, and MALTx were able to effectively assign taxonomy with minimal loss 

265 of alignments (<1%) at 0.1% and 1% sequence divergence (Figure 4). At 10% divergence 

266 (1,000ky), the influence of divergence was more pronounced, as the percentage of sequences not 

267 assigned taxonomically increased from 2.28% to 25.1% for MALTn-genome, 13.48% to 35.7% 

268 for MALTn-CDS, and 85.45% to 95.4% for MALTx. Even with the loss of sequences assigned 

269 with 10% divergence, the taxonomic classifications and abundances remained relatively stable 

270 (Figures S7 & S8), although protein alignments were more affected (0.944 Pearson correlation 

271 coefficient between 1,000ky composition and actual simulated metagenome composition for 

272 MALTn-genome; 0.944 for MALTn-CDS; and 0.825 for MALTx). As expected, shorter 

273 sequences were more affected by sequence divergence and deamination (Figure S9). Overall, our 

274 simulations suggest that random sequence divergence of less than 1% minimally affects 

275 alignment-based taxonomic classifications. 

276

277 Reference database choice strongly influences taxonomic classification

278 Because alignment-based methods are highly reliant on reference sequences available in 

279 databases, we next sought to test the influence of database choice on taxonomic classification of 
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280 ancient microbial DNA. To this end, we constructed four different reference databases from 

281 different sources: 2014nr, 2017nt, HOMD, and RefSeqGCS. The 2014nr database contains the 

282 2014 non-redundant protein BLAST database, which was used in a recent paleomicrobiology 

283 publication (Weyrich et al., 2017) and represents the example of a database used with the 

284 MALTx method. The 2017nt databased contains all sequences within the 2017 NCBI nucleotide 

285 BLAST database; this is the default for BLAST searches on the NCBI website and does not 

286 include chromosome-, scaffold-, or contig-level genome assemblies. The HOMD database 

287 contains genomic sequences from the Human Oral Microbiome Database, which is a curated 

288 nucleotide database comprised of oral-associated microbial species and includes all genome 

289 assembly levels (complete genomes, chromosomes, scaffolds, and contigs). Lastly, the 

290 RefSeqGCS possesses complete, chromosome, and scaffold level genome assembly levels from 

291 bacterial and archaeal assemblies within the NCBI RefSeq. The RefSeqGCS database also 

292 contains substantially more entries than the HOMD database (e.g. 47,713 vs. 1,362 microbial 

293 genomes for HOMD) with a broader diversity of entries (i.e. not primarily oral taxa).

294 To test the effects of these different databases on the taxonomic classification of real data 

295 paleomicrobiological data, we aligned the sequences from four published dental calculus samples 

296 (three ancient, one modern) (Weyrich et al., 2017) against the four databases mentioned above. 

297 As expected, the MALTx approach using the 2014nr database assigned the least number of 

298 sequences taxonomically, while the MALTn approach using the RefSeqGCS database assigned 

299 the most sequences (Figure 5). In addition, the highest percentage of sequences assigned 

300 taxonomic classification was observed with the modern sample when using nucleotide 

301 alignments with the RefSeqGCS database (80.8% sequences assigned; Figure 5); this was in 

302 stark contrast to average percentage of reads assigned to three ancient oral metagenomes, where 

303 on average only 38.3% of sequences were classified. In the ancient samples, the highest number 

304 of classified species was observed when ancient sequences were aligned to the HOMD (Table 3), 

305 rather than the RefSeqGCS. The higher number of species observed when mapping to the 

306 HOMD could be due to either cross-mapping from environmental taxa (as it contains few 

307 soil/environmental genomes) or a higher diversity of oral-specific assemblies. Taxonomic 

308 compositions in the analysis were also markedly impacted by the database used (Figures S10-

309 S13; Table S7). Several oral taxa within the HOMD and RefSeqGCS databases are not present 

310 within the 2017nt database, such as Actinomyces dentalis, Bacteriodetes sp. oral taxon 274, 
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311 Capnocytophaga granulosa, Corynebacterium matruchotii, Methanobrevibacter oralis, 

312 Prevotella sp. oral taxon 317, and Pseudoramibacter alactolyticus. This is a likely reason for the 

313 2017nt assigning taxonomy to a smaller percentage of total sequences across all samples (24.3%) 

314 when compared to the HOMD (33.4%) and RefSeqGCS (38.3%). Overall, the RefSeqGCS 

315 database assigned the most sequences taxonomically and contained the most diverse selection of 

316 reference genomes, allowing for more efficient detection of both oral species and potential 

317 environmental contaminants. Therefore, we chose the RefSeqGCS for subsequent reanalysis of 

318 published dental calculus samples. 

319

320 Reanalysis of published dental calculus data with nucleotide alignment

321 To further test the performance of the RefSeqGCS database, we reanalyzed several published 

322 ancient dental calculus samples (total of n=24) (Weyrich et al., 2017), including samples from an 

323 additional study (n=2) (Warinner et al., 2014). We found that MALTn with the RefSeqGCS 

324 database substantially increased the number of sequences assigned taxonomically compared to 

325 published results (average of 64.2-fold increase with MALTn against the RefSeqGCS versus 

326 MALTx against the 2014nr; Table S8). Despite the increase in sequences assigned using 

327 MALTn, the average percentage of unassigned sequences remained relatively high (58.2%), 

328 although this was substantially lower than MALTx (94.2%). The MALTn-RefSeqGCS analysis 

329 also identified new species in ancient dental calculus specimens, including Acintomyces dentalis, 

330 Bacteroidetes sp. oral taxon 274, Capnocytophaga granulosa, Corynebacterium matruchotii, 

331 Eikenella corrodens, Lautropia mirabilis, Methanobrevibacter oralis, numerous Prevotella 

332 species, Pseudoramibacter alactolyticus, Slackia exigua, and Treponema socranskii. When a 

333 UPGMA tree was constructed using Bray-Curtis distances, ancient agriculturalists were still 

334 found to cluster independently from forager-gatherers, hunter-gatherers and the modern sample 

335 (Figure 6). However, the separation between the foragers and hunters was less pronounced than 

336 previously reported (Weyrich et al., 2017). Overall, these findings suggest that it will be 

337 important to revisit previously published datasets as reference databases become larger and 

338 analytical techniques are improved.

339

340 Discussion
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341 Using both simulated and real data, this study demonstrated that nucleotide-to-protein 

342 alignments currently struggle to assign taxonomy to the short DNA fragments typical of ancient 

343 DNA. We found that nucleotide-to-nucleotide alignments using MALTn can faithfully 

344 recapitulate simulated metagenomes with high accuracy even when sequences are extremely 

345 short (30bp), contain high levels of deamination, and possess random sequence divergence 

346 corresponding to 100,000 years of evolution. We also tested four different reference databases 

347 and find that database choice is an important factor to consider for alignment-based taxonomic 

348 classification in ancient metagenomic studies; however, we also find that whole genome 

349 information incorporated into database usage drastically improves sequence mappability. Finally, 

350 we performed an in-depth reanalysis of a previously published paleomicrobiome study, 

351 increasing the number of sequences assigned taxonomically by an average of 64.2-fold and 

352 identifying taxa previously unidentified in the original study. We hope that the findings and 

353 suggestions provided in this paper will help inform future paleomicrobiological researchers. 

354 We evaluated the performance of both nucleotide-to-nucleotide and nucleotide-to-protein 

355 alignments for taxonomic classification and found that sequences shorter than ~60 bp could not 

356 be aligned using a nucleotide-to-protein approach. This can limit the feasibility of nucleotide-to-

357 protein alignments for some paleomicrobiological studies given that ancient DNA sequences can 

358 be typically shorter than 60 bp. Nucleotide-to-protein alignments are limited by nucleotide 

359 translation, shortening the alignment length by a third (e.g. a 60bp nucleotide sequence = a 20 aa 

360 protein sequence) and yielding a lower alignment score (bit-score). Given that the default bit-

361 score threshold for MALT is 50, most short sequences would struggle to obtain a sufficient score 

362 to pass filtering. Additionally, amino acid scoring matrices can also influence the final score of 

363 the alignment; the default MALTx scoring matrix is BLOSUM62, which optimized for longer 

364 sequences (Pearson, 2013). The inability to align short sequences may also bias taxonomic 

365 composition towards modern environmental and laboratory contaminant taxa, whose sequences 

366 are typically longer. Despite these drawbacks, MALTx is one of the few methods that can be 

367 used to assess microbial protein functionality in ancient metagenomic data sets. New 

368 methodologies combining known functional classifications with nucleotide alignment strategies 

369 will likely improve assessments of microbial functional analysis in the future.

370 Despite the 5.55-fold loss of sequences assigned using nucleotide-to-protein alignments, 

371 the taxonomic classifications were relatively similar to the nucleotide alignments for the 
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372 simulated data set. However, nucleotide-to-nucleotide alignments lowered the rate of 

373 misclassifications. These misclassifications primarily resulted from the lack of non-coding 

374 sequences in the protein and CDS nucleotide databases, with misclassifications being supported 

375 by sequences that were derived from non-coding genes in the simulated inputs (e.g. tRNA, 

376 rRNA, etc.). Recent estimates from 2,671 complete bacterial genomes place the average 

377 percentage of non-coding DNA at 12% (Land et al., 2015); this represents a non-trivial amount 

378 of information that should be harnessed when using reference-based taxonomic alignment. 

379 Finally, we also demonstrated nucleotide-to-nucleotide alignments using MALT can faithfully 

380 recapitulate simulated taxonomic composition using sequences as short as 30 bp, highlighting the 

381 applicability of nucleotide-to-nucleotide alignments for ultra-short fragments typical of 

382 paleomicrobiological studies. Pending further optimization to nucleotide-to-protein alignment 

383 methods, we currently recommend using a nucleotide-to-nucleotide alignment approach for 

384 taxonomic classification of short length ancient DNA and the inclusion of non-coding 

385 information in reference databases to reduce potential misclassification and to increase the 

386 amount of information used in alignments. 

387 In this study, we tested the impacts of deamination on shotgun metagenomic taxonomic 

388 classifications. We demonstrated that high levels of cytosine deamination (50% ·s) did not 

389 substantially impact taxonomic classification in longer sequences; however, we observed a loss 

390 of ~15% of the species level classifications when analyzing 30 bp DNA sequences with this level 

391 of deamination. This suggests that the use of uracil-DNA-glycosylase (UDG) (Briggs et al., 

392 2010) 4 an enzyme that cleaves deaminated cytosines to reduce the rate of ancient DNA errors 

393 4 may not be required for microbial taxonomic classification of ancient remains, as this also 

394 reduces the total number of sequences that can be analyzed. Additionally, treatment with UDG 

395 4 either full or partial (Rohland et al., 2015) 4 substantially reduces a key source of ancient 

396 DNA authentication, which is critical in paleomicrobiological studies to verify ancient taxa from 

397 modern contamination. The lack of such authentication in paleomicrobiological research has 

398 already led to contentious claims (Austin et al., 1997; Weyrich, Llamas & Cooper, 2014; 

399 Eisenhofer, Cooper & Weyrich, 2017; Eisenhofer & Weyrich, 2018). Given the minimal impact 

400 of deamination on alignment-based taxonomic classification, and the importance of deamination 

401 as a measure of ancient DNA authenticity, we recommend against the use of UDG for future 

402 paleomicrobiological studies that focus on alignment-based classification.
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403 Sequence divergence is another characteristic of ancient DNA that can render taxonomic 

404 classification difficult. We tested three substitution-based sequence divergence simulations and 

405 found that rates of random sequence divergence corresponding to <100,000 years unlikely to 

406 alter paleomicrobiological classifications. A substantial reduction in the number of identified 

407 sequences was observed for samples with sequence divergence simulated at one million years 

408 (~20% loss of sequences assigned taxonomically). However, this is at the theoretical limit of 

409 DNA preservation (Allentoft et al., 2012) and is thus unlikely to hamper most 

410 paleomicrobiological studies. We also found that the shorter sequences were, the more they were 

411 affected by sequence divergence and deamination, and this can intuitively be explained by the 

412 reduction in raw alignment score due to mismatches to the reference. As such, the use of new 

413 molecular techniques to obtain even shorter DNA fragments (e.g. <25 bp (Glocke & Meyer, 

414 2017)) may prove especially difficult to classify taxonomically given the combined effects of 

415 sequence divergence and deamination. Overall, we found that alignment-based taxonomic 

416 classification appears robust against magnitudes of random nucleotide substitution that could be 

417 observed in ancient DNA <100,000 years old. Despite this, we did not test the impacts of 

418 insertions, deletions, and recombination on taxonomic classifications; all would likely further 

419 hinder taxonomic classifications. Future simulations accounting for differences in 

420 synonymous/non-synonymous mutations may give amino acid alignments the upper-hand given 

421 the excess synonymous mutations observed due to purifying selection (Ochman, 2003), although 

422 amino acid alignment scoring would still have to be optimized to deal with short DNA 

423 fragments. Additionally, future studies simulating the effects of insertions, deletions, and 

424 recombination on taxonomic classification are warranted. 

425 We found that database choice had a major impact on both the number of sequences that 

426 were assigned taxonomically, and the taxa classified. The 2017nt BLAST database performed 

427 poorly compared to the HOMD and RefSeqGCS, assigning on average 33% fewer sequences 

428 taxonomically and lacking numerous key oral taxa. This is likely because the 2017nt BLAST 

429 database does not contain draft, unfinished bacterial genomes assemblies, which is a major 

430 limitation for ancient dental calculus research given that some important oral taxa currently have 

431 only chromosome or scaffold-level assemblies, such as Acintomyces dentalis, Bacteroidetes sp. 

432 oral taxon 274, Capnocytophaga granulosa, Corynebacterium matruchotii, Eikenella corrodens, 

433 Lautropia mirabilis, Methanobrevibacter oralis, numerous Prevotella species, Pseudoramibacter 
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434 alactolyticus, Slackia exigua, and Treponema socranskii. While the HOMD database contained 

435 substantially fewer reference sequences compared to the RefSeqGCS (1,362 vs. 47,713, 

436 respectively), it performed comparably regarding the number of sequences assigned from ancient 

437 dental calculus samples. However, using the HOMD database alone for taxonomic classification 

438 of ancient dental calculus can be problematic, as it does not contain many environmental or 

439 laboratory contaminant taxa that are typically present in ancient samples. These environmental 

440 and laboratory contaminant taxa allow for the quantification of contamination and competitive 

441 alignment, which can prevent false positive assignments (Key et al., 2017). Overall, the larger 

442 diversity of the RefSeqGCS database increases its ability to classify the most sequences 

443 taxonomically, so we would recommend it over the others tested for future paleomicrobiological 

444 studies. However, further work is needed to assess and curate the quality of reference assemblies, 

445 especially of scaffold- and contig-level, to ensure reliable and accurate alignment-based 

446 taxonomic classification (Parks et al., 2015). There is also scope for a concerted effort by 

447 paleomicrobiological researchers to work together in constructing a curated, regularly updated 

448 reference database. This could help foster reproducibility and set a standard for future work in 

449 the field, similar to what has been accomplished by the HOMD for oral microbiome studies 

450 (Chen et al., 2010). 

451 We also performed a reanalysis of previously published ancient dental calculus data from 

452 Weyrich et al. (2017) to test if our in-silico findings were true for real data, explore the 

453 proportion of sequences currently classifiable, and see whether the relationships between 

454 samples changed when using the RefSeqGCS database. Nucleotide alignment against the 

455 RefSeqGCS database performed considerably better compared to protein alignment against the 

456 2014nr, with an average 64.2-fold increase in the number of sequences assigned taxonomically. 

457 As expected, this increase was higher for samples with shorter mean fragment lengths and 

458 highlights the importance of using nucleotide-to-nucleotide alignments to more accurately 

459 reconstruct ancient samples. Despite the substantial increase in the number of sequences aligned, 

460 the average number of sequences that did not have any alignment was still 58.2%. When 

461 compared to the latest extension to the human microbiome project where the average number of 

462 sequences without alignment was ~25% for 265 supragingival plaque samples (Lloyd-Price et 

463 al., 2017), this suggests that substantial reference bias exists for ancient calculus samples. This is 

464 not likely due to methodological differences between studies, as the modern calculus sample we 
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465 analyzed in this study (European descent) had a similar percentage of its sequences without 

466 alignment (19.4%) compared to ~25% for the (Lloyd-Price et al., 2017) study. One hypothesis 

467 for this finding is that modern reference databases are missing many oral microorganisms that 

468 were present in historical and ancient humans. Additionally, given that most modern microbiome 

469 studies and microbial genomes assembled are from European/American individuals (Consortium, 

470 2012; Lloyd-Price et al., 2017), current reference databases are likely missing oral microbial 

471 diversity from non-Industrial, non-Caucasian, or ancient human populations. Another possibility 

472 for this finding is DNA contamination of the dental calculus samples with ancient or modern soil 

473 microorganisms that do not currently have reference sequences. Regardless of the cause, 

474 additional steps could be taken to improve the number of ancient DNA sequences that can be 

475 taxonomically identified.  For example, de-novo assembled genomes from these ancient samples 

476 could be used as reference sequences for further alignment-based taxonomic classification. Such 

477 tools currently exist (Imelfort et al., 2014), but their performance on short and degraded ancient 

478 DNA is yet to be determined. An alternative and complementary approach is to obtain a greater 

479 diversity of high-quality reference genomes from modern samples, including from non-

480 Caucasian individuals. Until we can comfortably assign a higher proportion of ancient DNA 

481 sequences taxonomically, we recommend that paleomicrobiological researchers report the 

482 percentage of unassigned sequences when classifying taxonomy. 

483 Database sizes are a limitation for the currently implemented algorithms in MALT, as 

484 MALT uses large amounts of memory (e.g. >1 TB of RAM) when aligning sequences to the 

485 2017nt and RefSeqGCS databases, and these requirements will increase as more genomes are 

486 added to databases. We were not able to investigate eukaryotic or viral classification in ancient 

487 metagenomes due to memory constraints, and instead focused on prokaryotes which account for 

488 >99% of DNA in ancient dental calculus (Warinner, Speller & Collins, 2014; Weyrich et al., 

489 2017). A possible solution may be better database curation, e.g. through deduplication of the 

490 same strain with multiple entries, which could be accomplished using a sequence similarity 

491 clustering-based approach. Additionally, future algorithmic refinements in database compression 

492 may alleviate this issue. Ultimately, database choice is an essential facet of alignment-based 

493 taxonomic classification, and we urge researchers to carefully consider the pros and cons of 

494 different databases and how they can affect their findings. Additionally, databases are a fluid 
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495 issue; as more reference sequences are generated, reanalysis of paleomicrobiological datasets 

496 will be important to reassess past interpretations and findings.

497

498 Conclusions

499 Using both simulated and real data, this study demonstrated that nucleotide-to-protein alignments 

500 currently struggle to assign taxonomy to the short DNA fragments typical of ancient DNA. We 

501 found that nucleotide-to-nucleotide alignments using MALTn can faithfully recapitulate 

502 simulated metagenomes with high accuracy even when reads are extremely short (30bp) and 

503 contain high levels of deamination and random sequence divergence. corresponding to 100,000 

504 years of evolution minimally impact alignment-based classification. We also tested four different 

505 reference databases and find that database choice is an important factor to consider for 

506 alignment-based taxonomic classification in ancient metagenomic studies and that the 

507 application of full microbial references genomes within nucleotide alignment strategies currently 

508 produces the most robust results. Finally, we performed an in-depth reanalysis of previously 

509 published paleomicrobiome studies, increasing the number of reads assigned taxonomy by an 

510 average of 64.2-fold and identifying taxa previously unidentified in the original study. We hope 

511 that the findings and suggestions provided in this paper will help inform future 

512 paleomicrobiological researchers. 

513
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Figure 1

General overview of simulated data construction and analysis
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Figure 2

Percentage of reads assigned taxonomy using simulated metagenomes of empirical

ancient DNA fragment length against different MALT databases
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Figure 3

Species level taxonomic classification of empirical fragment length simulated

metagenome

Species coloured black were not used as input for constructing the simulated metagenomes

and are misclassifications.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27166v1 | CC BY 4.0 Open Access | rec: 4 Sep 2018, publ: 4 Sep 2018



Figure 4

Percentage of reads assigned taxonomy using divergent and deaminated simulated

metagenomes of typical ancient DNA fragment length.
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Figure 5

Percentage of reads assigned taxonomy to different taxonomic ranks for deeply

sequenced published data

Clustered columns represent samples analysed using different reference databases. Colours

indicate specificity of assignments.
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Figure 6

UPGMA tree of species-level Bray-Curtis dissimilarity of microbial composition between

samples

Branch scale bar represents Bray-Curtis dissimilarity between samples.
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Table 1(on next page)

Percentages of total reads assigned at different taxonomic levels with different read

length cutoffs
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Fragment length Reads assigned total Reads assigned genus Reads assigned species

30bp_MALTn-Genome 100 100 97

30bp_MALTn-CDS 86 86 83

30bp_MALTx 0 0 0

50bp_MALTn-Genome 100 100 98

50bp_MALTn-CDS 88 88 86

50bp_MALTx 0 0 0

70bp_MALTn-Genome 100 100 98

70bp_MALTn-CDS 90 90 88

70bp_MALTx 33 31 25

90bp_MALTn-Genome 100 100 98

90bp_MALTn-CDS 91 91 89

90bp_MALTx 82 75 55

Empirical_MALTn-Genome 99 98 97

Empirical_MALTn-CDS 87 87 86

Empirical_MALTx 16 14 10
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Table 2(on next page)

Effects of deamination on taxonomic classification of empirical ancient DNA read-length

distribution
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Fragment length Reads assigned total (%) Reads assigned genus (%) Reads assigned species (%)

MALTn-genomen0·s 98.6 98.4 96.6

MALTn-genomen10·s 98.4 98.2 96.5

MALTn-genomen20·s 98.5 98.3 96.5

MALTn-genomen50·s 97.7 97.5 95.7

MALTn-CDSn0·s 87.4 87.1 85.5

MALTn-CDSn10·s 87.2 86.9 85.3

MALTn-CDSn20·s 87.2 86.9 85.3

MALTn-CDSn50·s 86.5 86.2 84.6

MALTxn0·s 15.8 14.2 9.7

MALTxn10·s 15.2 13.7 9.4

MALTxn20·s 15.0 13.6 9.2

MALTxn50·s 14.5 13.1 8.9
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Table 3(on next page)

Number of genera and species identified in each MALT database
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Genus-level

Database: 2014nr 2017nt HOMD RefSeqGCS

CHIMP 46 57 35 52

ELSIDRON1 49 50 42 48

MODERN 23 32 28 29

SPYII 64 64 54 62

Average 46 51 40 48

Species-level

Database: 2014nr 2017nt HOMD RefSeqGCS

CHIMP 39 59 57 52

ELSIDRON1 42 53 73 69

MODERN 34 58 73 63

SPYII 87 86 74 77

Average 51 64 69 65
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