
A Look Back at the Quality of Protein
Function Prediction Tools in CAFA
Morteza Pourreza Shahri1, Madhusudan Srinivasan1, Diane Bimczok2,
Upulee Kanewala1, and Indika Kahanda1

1Gianforte School of Computing, Montana State University, USA
2Department of Microbiology and Immunology, Montana State University, USA

Corresponding author:
Indika Kahanda

Email address: indika.kahanda@montana.edu

ABSTRACT

The Critical Assessment of protein Function Annotation algorithms (CAFA) is a large-scale experiment for
assessing the computational models for automated function prediction (AFP). The models presented in
CAFA have shown excellent promise in terms of prediction accuracy, but quality assurance has been
paid relatively less attention. The main challenge associated with conducting systematic testing on AFP
software is the lack of a test oracle, which determines passing or failing of a test case; unfortunately,
the exact expected outcomes are not well defined for the AFP task. Thus, AFP tools face the oracle
problem. Metamorphic testing (MT) is a technique used to test programs that face the oracle problem
using metamorphic relations (MRs). A MR determines whether a test has passed or failed by specifying
how the output should change according to a specific change made to the input. In this work, we use MT
to test nine CAFA2 AFP tools by defining a set of MRs that apply input transformations at the protein-level.
According to our initial testing, we observe that several tools fail all the test cases and two tools pass all
the test cases on different GO ontologies.

INTRODUCTION
Proteins are one of the main components of a living body. Proteins are important due to various vital
functions they perform in living cells. Basically, a cell is alive because of the functions of proteins.
However, these functions can sometimes be destructive. Therefore, knowing the functions of proteins is
critical. Over the years, a lot of effort has been spent on creating databases of protein functions. Gene
Ontology (GO) is a framework used for the model of biology which describes gene functions (Ashburner
et al., 2000). Gene Ontology is composed of different classes, each of which demonstrates a gene function,
and the hierarchical relations between classes. These relations can be is-a relations, part-of relations,
etc. Each class in Gene Ontology is known as GO term. Gene Ontology, similar to any other ontology
contains a DAG (Directed Acyclic Graph) form. Many proteins have GO annotations, however, large
portion of proteins do not have GO annotations. Manually annotating Gene Ontology is very expensive
and time-consuming. Therefore, computational models for predicting the corresponding GO terms are
essential. Even though many studies have been done on automated prediction of protein functions, a
criterion for evaluation of the tools was needed. As a result, Function Special Interest Group1 started to
evaluate these tools in the form of a challenge. This challenge is called Critical Assessment of protein
Function Annotation (CAFA). At the time of writing this paper, CAFA2 was the latest challenge that its
results of evaluation were publicly available (Jiang et al., 2016).

Many tools were presented in CAFA2. Based on the different criteria such as macro-AUROC, F-max,
and Smin , which were employed to evaluate the tools, several tools fall into the category of top-performing
tools. Nevertheless, selecting a tool from this list to perform experiments or research would be very
difficult. One way to select a tool is randomly picking a few tools, feeding well-known sequences into
the tools, and comparing the results with the experimentally validated terms, which are the results of

1https://biofunctionprediction.org/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Figure 1. Distribution of output GO terms for the protein TYRO HUMAN on Biological Process and
Molecular Function ontologies

a physical characterization of a gene that has supported its association with the GO term2. However,
using a few tools and sequences, users would observe that each tool provides different set of output GO
terms, and only a few terms would be in common with the experimentally validated terms. Figure 1
shows the distribution of GO terms using three randomly selected tools from the top-performing tools of
CAFA2 beside the corresponding experimentally validated terms of the well-known protein Tyrosinase.
The distribution of GO terms in Molecular Function ontology shows only one GO term is in common
between the three tools and the experimentally validated terms. This observation is true for the Biological
Process as well. The next important observation on Biological Process ontology is that one of the tools
returns about 1200 GO terms, whereas another tool outputs only four GO terms for the same protein. This
inconsistent behavior of the AFP tools makes it difficult for users to select a tool.

As mentioned earlier, there are a few problems associated with the AFP tools. The first problem is that
each tool returns different set of GO terms. The second problem of the tools is having a few GO terms in
common with the experimentally validated terms. Moreover, the experimentally validated terms set is
incomplete due to the lack of knowledge or experiments. Therefore, these problems cause consequences
on how a biologist would select a tool for their research, or how a developer would test their tool.

In this study, we explore the feasibility of applying a new method which is called Metamorphic
Testing (MT) for testing bioinformatics software. The results of this study show that several AFP tools
fail all the test cases and only at most two tools pass all the test cases.

Metamorphic Testing
In complex systems, such as AFP tools, it is practically difficult to determine whether the output provided
by the system for a given input is correct. This is known as the oracle problem. MT can be used to test
programs that face the oracle problem (Chen et al., 1998). The MT process involves deriving metamorphic
relations (MRs) and generating test cases based on the MR. The MRs are a set of properties derived from
the program under test and specifies how the output would change according to a specific change made to
the input. Source test cases are typically derived using a traditional test case generation approach such
as random test generation. Follow-up test cases are derived by applying the MR to the source test case.
Then, the source and follow-up test cases are executed and outputs of these test cases are used to verify
whether MR was violated or not. The violation of a MR indicates faults in the program.

Figure 2 shows how MT is applied to a sorting program. This sorting program arranges a random
set of numbers provided as input in the ascending order. A MR for the sorting program states that when
the original set of numbers are shuffled and used as a input to the program, the output must be equal to

2http://www.geneontology.org/page/guide-go-evidence-codes

2/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

the original output. Thus, the source test case can be created by generating a set of random numbers and
the follow-up test case can be created by shuffling the source test case. A fault is detected in the sorting
program if the output from the source and follow-up test case are not equal as defined in the MR.

Related Works
Srinivasan et al. worked on applying MT to LingPipe, a tool for processing text using computational
linguistics, which is often used in bioinformatics for bio-entity recognition from biomedical literature
(Srinivasan et al., 2018). The authors proposed 10 novel MRs and effectiveness of each of the MRs
to detect faults was identified using mutation testing approach. The effectiveness of each the MR was
calculated based on the ability to kill mutants. Mutation testing involves modifying a program in small
ways and each mutated version is called a mutant. The faults were identified using the MRs.

Lundgren et al. examined the effectiveness of the MRs on genome alignment tool (BBMap) (Lundgren
and Kanewala, 2016). The experiment results showed that MT could identify subtle faults. Ramanathan et
al. used MT to develop workflow of epidemiological models (Ramanathan et al., 2012). They showed that
MT can be useful when mathematical models fail. Pullum and Ozmen showed that MT could be effective
in testing epidemiological models (Pullum and Ozmen, 2012). They used a differential equation and
agent-based models for generating MR-transformed parameter values. Chen et al. used MT to test two
open-source bioinformatics programs (Chen et al., 2009). The first program GNLab, a tool for large-scale
analysis and simulation of gene regulatory networks. The second tool SeqMap deals with mapping a
short sequence that reads with a reference genome. Eleni et al. conducted metamorphic testing on three
commonly used NGS (Next Generation Sequencing) short-read alignment programs: BWA, Bowtie, and
Bowtie2 (Giannoulatou et al., 2014).

Figure 2. MT example for sorting program

METAMORPHIC TESTING FOR AFP TOOLS
The first step of applying MT to any problem is defining valid MRs for the problem. Defining the MRs
for the AFP tools would be tricky because they really depend on the input sequences. One of the simplest
MRs that could be defined is ”expecting a change” in the output GO terms for the proteins and their
corresponding well-studied variants. For instance, if the source test case is the canonical sequence of the
protein Tyrosinase, and the follow-up test case is a disease variant of this protein which causes Albinism
(OCA1A), biological knowledge says that the output GO terms of the canonical sequence and the disease
variant must be different.

Figure 3. Architecture of the Metamorphic Testing system on AFP tools

3/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Figure 4. The flow of selection of the tools

Therefore, as shown in Figure 3, we perform the following steps:

1. Running the program with the source test case and achieving Os as the output. The source test case
is a FASTA sequence and Os will be a set of GO terms.

2. Generating a follow-up test case using the source case, and executing the program with the follow-
up test case and getting O f . The follow-up test case also is a FASTA sequence derived from a
known variation of the source test case, and the output is a set of GO terms as well.

3. Checking whether the MR holds for Os and O f . In this example, the MR is any change in the list of
output GO terms, i.e. additions, deletions, etc. If the expected change is satisfied, it will be a pass,
otherwise, it will be a fail.

Tools Selection Criteria
To evaluate the feasibility of applying MT to AFP tools, first we need a set of AFP tools. For this purpose,
we started with the 28 top-performing tools from the CAFA2 challenge. From these 28 tools, most
are not publicly available, and some are very hard to setup and run. So, we selected tools that can be
set-up for execution by spending a maximum of thirty minutes by a graduate student. At the time of this
investigation, only three tools were publicly available or worked. As we want to do the experiments on as
many tools as possible, we contacted authors of the remaining 25 tools, asking them to run the sequences
used as source and follow-up test cases on their tools and send us the outputs. Twelve authors replied
the email, and 6 out of 12 authors sent us the outputs. Thus, we could evaluate the following nine tools
using the proposed MT approach: EVEX (Van Landeghem et al., 2012), PFP (Hawkins et al., 2009),
CONS (Khan et al., 2015), GORBI (Škunca et al., 2013), CBRG (Altenhoff et al., 2014), ProFun (Cao
and Cheng, 2016), PANNZER (Koskinen et al., 2015), Argot2 (Falda et al., 2012), and INGA (Piovesan
et al., 2015). Figure 4 shows the flow of selection of the tools.

Source and follow-up test Cases
We used 18 sequences from three carefully selected proteins to test the AFP tools. These proteins are:

• Tyrosinase (TYRO HUMAN)

• Cytokine receptor common subunit gamma (IL2RG HUMAN)

• Toll-like receptor 4 (TLR4 HUMAN)

The sequences consist of the canonical sequence and the sequences of variants as follows:

4/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Figure 5. Results on Molecular Function ontology

• TYRO HUMAN: (Canonical sequence + 7 disease variants)

• IL2RG HUMAN: (Canonical sequence + 4 disease variants)

• TLR4 HUMAN: (Canonical sequence + 2 splice variants + 2 natural variants)

For each protein, we use the canonical sequence as the source test case and each of the variant
sequences as the follow-up test case. Therefore, we have 15 pairs of source and follow-up test cases.

Test execution
The next step in applying MT to AFP tools is feeding the test cases into the tools, and checking whether
the MRs hold for each execution. Therefore, we have nine tools and 15 pairs of source and follow-up test
cases.

For each pair of source and follow-up test case, we store the output GO terms for the Molecular
Function and Biological Process ontologies in different files, and compare the GO terms of Os and O f ,
and we report the results of different ontologies separately. We ignore the Cellular Component ontology
for this study because the selected proteins have expected changes in the other two ontologies, and we are
not sure about the behavior of them on the Cellular Component ontology.

RESULTS
Figures 5 and 6 show the results of executing the tools with 15 test case pairs on Molecular Function
ontology and Biological Process ontology, respectively. Each pie chart shows the number of passes and
fails of the 15 test case pairs for a given tool.

As shown in Figure 5, four out of nine tools fail all the test cases. This phenomenon can happen if the
tools are not designed to detect the results of variations in the protein sequence. Another observation from
the Molecular Function ontology states that only one tool passes all the test cases. The rest of the tools
have a mix of passes and fails.

We validated the results by executing the tools on Biological Process ontology. As shown in Figure 6,
the same four tools failed again. Besides, on the Biological Process ontology, two tools passed all the test
cases.

CONCLUSIONS AND FUTURE WORKS
In this study, we explore the feasibility of applying MT to AFP tools. Biological knowledge enabled us
to expect some changes in the functions of some proteins. Therefore, it is possible to create MRs using
carefully selected protein examples such as disease variants.

Our results show that several tools do not pass all the test cases. We believe that the AFP community
need to work together for the quality assurance of these tools. The results also show that using MRs

5/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Figure 6. Results on Biological Process ontology

developed using the biological knowledge, we can detect faults in the tools. As a result, we conclude that
MT can be a promising avenue for testing AFP tools.

In future, we will communicate the results to the authors of the respective tools. Currently, we have
not analyzed the exact changes that caused the pass and fail. Therefore, as the next step, we will do a
post-analysis on the results to find the changes. We will also create more specific MRs such as the actual
change instead of just checking for the existence of a change.

We plan to develop an expanded test suite by exploring MRs for Cellular Component ontology and
Human Phenotype ontology, and by employing different types of protein examples. We will also work
with the AFP community to increase the number of tools to be tested. Eventually, we will develop a
testing framework which is readily available for the users and developers.

REFERENCES

Altenhoff, A. M., Škunca, N., Glover, N., Train, C.-M., Sueki, A., et al. (2014). The OMA orthology
database in 2015: function predictions, better plant support, synteny view and other improvements.
Nucleic acids research, 43(D1):D240–D249.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K.,
Dwight, S. S., Eppig, J. T., et al. (2000). Gene Ontology: tool for the unification of biology. Nature
genetics, 25(1):25.

Cao, R. and Cheng, J. (2016). Integrated protein function prediction by mining function associations,
sequences, and protein–protein and gene–gene interaction networks. Methods, 93:84–91.

Chen, T. Y., Cheung, S. C., and Yiu, S. M. (1998). Metamorphic testing: a new approach for generating
next test cases. Technical report, Technical Report HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, Hong Kong.

Chen, T. Y., Ho, J. W., Liu, H., and Xie, X. (2009). An innovative approach for testing bioinformatics
programs using metamorphic testing. BMC bioinformatics, 10(1):24.

Falda, M., Toppo, S., Pescarolo, A., Lavezzo, E., Di Camillo, B., Facchinetti, A., et al. (2012). Argot2: a
large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms.
BMC bioinformatics, 13(4):S14.

Giannoulatou, E., Park, S.-H., Humphreys, D. T., and Ho, J. W. (2014). Verification and validation of
bioinformatics software without a gold standard: a case study of bwa and bowtie. BMC bioinformatics,
15(16):S15.

Hawkins, T., Chitale, M., Luban, S., and Kihara, D. (2009). PFP: Automated prediction of Gene Ontology
functional annotations with confidence scores using protein sequence data. Proteins: Structure,
Function, and Bioinformatics, 74(3):566–582.

Jiang, Y., Oron, T. R., Clark, W. T., Bankapur, A. R., D’Andrea, D., Lepore, R., et al. (2016). An expanded
evaluation of protein function prediction methods shows an improvement in accuracy. Genome biology,
17(1):184.

6/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Khan, I. K., Wei, Q., Chapman, S., Kihara, D., et al. (2015). The PFP and ESG protein function prediction
methods in 2014: effect of database updates and ensemble approaches. GigaScience, 4(1):43.

Koskinen, P., Törönen, P., Nokso-Koivisto, J., and Holm, L. (2015). PANNZER: high-throughput
functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics,
31(10):1544–1552.

Lundgren, A. and Kanewala, U. (2016). Experiences of testing bioinformatics programs for detecting
subtle faults. In Proceedings of the International Workshop on Software Engineering for Science, pages
16–22. ACM.

Piovesan, D., Giollo, M., Leonardi, E., Ferrari, C., and Tosatto, S. C. (2015). INGA: protein function
prediction combining interaction networks, domain assignments and sequence similarity. Nucleic acids
research, 43(W1):W134–W140.

Pullum, L. L. and Ozmen, O. (2012). Early results from metamorphic testing of epidemiological models.
In 2012 ASE/IEEE International Conference on BioMedical Computing (BioMedCom), pages 62–67.
IEEE.

Ramanathan, A., Steed, C. A., and Pullum, L. L. (2012). Verification of compartmental epidemiological
models using metamorphic testing, model checking and visual analytics. In BioMedical Computing
(BioMedCom), 2012 ASE/IEEE International Conference on, pages 68–73. IEEE.

Škunca, N., Bošnjak, M., Kriško, A., Panov, P., Džeroski, S., et al. (2013). Phyletic profiling with
cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS computational biology,
9(1):e1002852.

Srinivasan, M., Pourreza Shahri, M., Kahanda, I., and Kanewala, U. (2018). Quality assurance of
bioinformatics software: a case study of testing a biomedical text processing tool using Metamorphic
Testing. In Proceedings of the 3rd International Workshop on Metamorphic Testing, pages 26–33.
ACM.

Van Landeghem, S., Hakala, K., Rönnqvist, S., Salakoski, T., Van de Peer, Y., and Ginter, F. (2012).
Exploring biomolecular literature with EVEX: connecting genes through events, homology, and indirect
associations. Advances in bioinformatics, 2012.

7/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27161v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

