Remote Sensing and Geographical Information Analytical Techniques for Modelling *Ommatissus lybicus* (Hemiptera: Tropiduchidae) Habitat and Population Densities

Khalifa M Al-Kindi ¹, Paul Kwan Correspond. ¹, Nigel Andrew ², Mitchell Welch ¹

¹ School of Science and Technology, University of New England, Armidale, NSW, Australia
² Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, Australia

Corresponding Author: Paul Kwan
Email address: paul.kwan@une.edu.au

In order to understand the distribution and prevalence of *Ommatissus lybicus* (Homoptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and highly sophisticated information on the environmental, climatic, and agricultural practices are essential. The analytical techniques available in modern spatial analysis packages, such as Remote Sensing and Geographical Information Systems, can help detect and model spatial links and correlations between the presence, absence and density of *O. lybicus* in response to climatic, environmental and human factors. The main objective of this paper is to review remote sensing and geographical information analytical techniques that can be applied in mapping and modelling the habitat and population density of *O. lybicus* in Oman. An exhaustive search of related literature revealed that there are few studies linking location-based infestation levels of pests like the *O. lybicus* with climatic, environmental and human practice related variables in the Middle East. Our review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance sites that are necessary in designing both local and regional level integrated pest management (IPM) policing of palm tree and other affected cultivated crops.
Remote sensing and Geographical Information Analytical Techniques for Modelling

Ommatissus lybicus (Hemiptera: Tropiduchidae) Habitat and Population Densities

Khalifa M. Al-Kindi 1*, Paul Kwan 1 Nigel R. Andrew 2 and Mitchell Welch 1.

1 School of Science and Technology, University of New England, Armidale, NSW 2351, Australia; kalkindi@myune.edu.au (KA), paul.kwan@une.edu.au (PK) and mwelch8@une.edu.au (MW)

2 Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW 2351, Australia; nandrew@une.edu.au (NA)

* Correspondence: kalkindi@myune.edu.au; Tel.: +61 2 6773 2034

Abstract: In order to understand the distribution and prevalence of *Ommatissus lybicus* (Homoptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and highly sophisticated information on the environmental, climatic, and agricultural practices are essential. The analytical techniques available in modern spatial analysis packages, such as Remote Sensing and Geographical Information Systems, can help detect and model spatial links and correlations between the presence, absence and density of *O. lybicus* in response to climatic, environmental and human factors. The main objective of this paper is to review remote sensing and geographical information analytical techniques that can be applied in mapping and modelling the habitat and population density of *O. lybicus* in Oman. An exhaustive search of related literature revealed that there are few studies linking location-based infestation levels of pests like the *O. lybicus* with climatic, environmental and human practice related variables in the Middle East. Our review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future
studies, and gives suggestions on monitoring and surveillance sites that are necessary in designing both local and regional level integrated pest management (IPM) policing of palm tree and other affected cultivated crops.

Keywords: Remote Sensing; GIS; Dubas Bug; *Ommatissus lybicus*

Abbreviations used in the paper
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRI</td>
<td>Aerosol Free Vegetation Index</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Space Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>Airborne Visible/Infrared Imaging Spectrometer</td>
</tr>
<tr>
<td>ALOS</td>
<td>Advanced Land Observing Satellite</td>
</tr>
<tr>
<td>AC</td>
<td>Atmospheric correction</td>
</tr>
<tr>
<td>ARVI</td>
<td>Atmospherically Resistant Vegetation Index</td>
</tr>
<tr>
<td>BIO</td>
<td>Bare soil index</td>
</tr>
<tr>
<td>CA</td>
<td>Cellular Automata</td>
</tr>
<tr>
<td>CART</td>
<td>Classification and regression tree</td>
</tr>
<tr>
<td>CIR</td>
<td>Colour-infrared</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DVI</td>
<td>Different vegetation index</td>
</tr>
<tr>
<td>NDV</td>
<td>Normalized different vegetation</td>
</tr>
<tr>
<td>NDMI</td>
<td>Normalisation different moisture index</td>
</tr>
<tr>
<td>FS</td>
<td>Fluorescence spectroscopy</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information Systems</td>
</tr>
<tr>
<td>GEMI</td>
<td>Global Environmental Monitoring Index</td>
</tr>
<tr>
<td>GR</td>
<td>Geometrical rectification</td>
</tr>
<tr>
<td>GWR</td>
<td>Geographically Weighted Regression</td>
</tr>
<tr>
<td>HTI</td>
<td>Humid-Thermal Index</td>
</tr>
<tr>
<td>HTO</td>
<td>Humid-Thermal Ratio</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>IR</td>
<td>Image registration</td>
</tr>
<tr>
<td>LIDAR</td>
<td>Light detection and ranging</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LWCI</td>
<td>Leaf water content index</td>
</tr>
<tr>
<td>MIR</td>
<td>Mid-infrared</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MAS</td>
<td>Multi-agent system</td>
</tr>
<tr>
<td>MSS</td>
<td>Landsat Multi-Spectral Scanner</td>
</tr>
<tr>
<td>NAIP</td>
<td>National Agricultural Imagery Programme</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-infrared</td>
</tr>
<tr>
<td>MNF</td>
<td>Minimum noise fraction</td>
</tr>
<tr>
<td>OBIA</td>
<td>Object-based image analysis</td>
</tr>
<tr>
<td>PVI</td>
<td>Perpendicular Vegetation Index</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Components Analysis</td>
</tr>
<tr>
<td>REPD</td>
<td>Red-edge position determination</td>
</tr>
<tr>
<td>RVI</td>
<td>Ratio vegetation Index</td>
</tr>
<tr>
<td>SAVI</td>
<td>Soil adjusted vegetation</td>
</tr>
<tr>
<td>SCI</td>
<td>Shadow canopy index</td>
</tr>
<tr>
<td>SPOT</td>
<td>Satellite Probatoire l’Observation de la Terre</td>
</tr>
<tr>
<td>SVM</td>
<td>Support vector machines</td>
</tr>
<tr>
<td>TM</td>
<td>Thematic Mapper</td>
</tr>
<tr>
<td>TC</td>
<td>Topographic correction</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned aerial vehicle</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible</td>
</tr>
<tr>
<td>VI</td>
<td>Vegetation Indices</td>
</tr>
</tbody>
</table>
1. Introduction

Remote sensing is a powerful technology that has been applied in precision agriculture applications. Remotely sensed data can be used in mapping tools to classify crops and examine their health and viability. They can also be used for monitoring farming practices and to measure soil moisture across a wide area instead of at discrete point locations that are inherent to ground measurement. Based on these spatial differences, variable rate application of chemicals such as fertilisers or pesticides can be made. Remote sensing information can further be used to establish sub-field management zones, providing a less expensive yet finer resolution option than grid sampling. Although remote sensing technologies are more widely used in other industries, their potential for profitable use by farmers is less frequently studied. As examples in agriculture, remote sensing technologies have been used successfully for monitoring and mapping water stress, crop quality and growth, wetland, water quality, phosphorus and nitrogen deficiencies in vegetation, as well as detecting insect infestations (e.g. *O. lybicus*) and plant diseases.

1.1 Background

The date palm, *Phoenix dactylifera* Linnaeus, is an important economic resource in the Sultanate of Oman. Plant-parasitic nematodes, associated with date palm trees in Oman and in most other Arab countries, can reduce their economic yields (El-Juhany 2010). A variety of insect pests can cause major damages to this crop through production losses and plant death (Abdullah et al. 2010; Al-Khatri 2004; Blumberg 2008; El-Shafie 2012; Howard 2001). One such species, *Ommatissus lybicus* de Bergevin 1930 (Hemiptera: Tropiduchidae), which is known more commonly as Dubas bug, has been identified as a major economic threat, and is presently affecting palm growth yield in Oman (Al-Yahyai 2006). Indeed, the Dubas bug has been identified as one of the primary reasons for the decline in date production in Oman (Al-Yahyai & Al-Khanjari 2008; Al-Zadjali et
It is also a principal pest of date palms in many locations throughout the Middle East, North Africa, Spain, and southeast Russia (Klein & Venezian 1985; Mifsud et al. 2010). The Dubas bug is believed to have been introduced into the Tigris-Euphrates River Valley, from where it has spread to other zones in recent decades (Blumberg 2008; El-Haidari et al. 1968).

The Dubas bug is a sap feeding insect; both adults and nymphs suck the sap from date palms, thereby causing chlorosis (removal of photosynthetic cells and yellowing of fronds). Prolonged high infestation level will result in the flagging and destruction of palm plantations (Al-Khatri 2004; Howard 2001; Hussain 1963; Mahmoudi et al. 2015; Mokhtar & Al Nabhani 2010; Shah et al. 2013). There is also an indirect effect whereby honeydew secretions produced by the Dubas bug can promote the growth of black sooty mould on the foliage and consequently a reduction in the photosynthetic rates of date palms (Blumberg 2008; Mokhtar & Al-Mjeini 1999; Shah et al. 2012). Nymphs pass through five growth instars (Hussain 1963; Shah et al. 2012), with adult female Dubas bug reaching 5–6 mm and the males 3–3.5 mm in length (Aldryhim 2004; Mokhtar & Al Nabhani 2010). Their colour is yellowish-green while the main distinguishing feature between males and females is the presence of spots on females; males have a more tapered abdomen and larger wings relative to the abdomen.
Table 1. Classification of the Dubas bug

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Arthropoda</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Hemiptera (previously Homoptera)</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Tropiduchidae</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Ommatissus</td>
<td></td>
</tr>
<tr>
<td>Synonym</td>
<td>Old world Dubas bug</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Yellowish-green</td>
<td></td>
</tr>
</tbody>
</table>

1.2. Biology and Life History

The biology of this species has been investigated in a number of studies (Al-Azawi 1986; Arbabtafti et al. 2014; Hussain 1963; Jasim & Al-Zubaidy 2010; Klein & Venezian 1985; Payandeh & Dehghan 2011; Shah et al. 2012). The Dubas bug produces two generations annually, including the spring and autumn generations (Blumberg 2008; Hussain 1963). In the spring
generation, eggs start hatching from February to April, after which nymphs pass through five
instars to become adults in approximately 6–7 weeks. The eggs aestivate during the hot season
(i.e., summer) until the autumn generation, when they start hatching from late August to the last
week of October. A nymph takes about 6 weeks to develop into an adult, which then lives for about
12 weeks. Females lay between 100 and 130 eggs (Elwan & Al-Tamimi 1999; Mokhtar & Al
Nabhani 2010). The female Dubas bug lays her eggs by inserting them into holes in the tissue of
the date palm frond at the end of each generation. The eggs remain dormant for about three months.
When they hatch, the resulting nymphs remain on the fronds of the same tree, feeding on the sap
and defecating large amounts of honeydew, which eventually covers the palm fronds and promotes
the growth of black sooty mould.

In extreme cases, the sooty mould that develops from the honeydew secretions can block the
stomata of the leaves, causing partial or complete suffocation of the date palm, which in turn
reduces its yield. The honeydew secretion also makes the dates unpalatable (Aminaei et al. 2010;
El-Juhany 2010; El-Shafie et al. 2015; Gassouma 2004). The eggs of Dubas bug are sensitive to
temperature. In summer, the eggs can hatch within 18–21 days, but in winter they may take up to
170 days to hatch (Blumberg 2008). The developmental time of Dubas bug’s eggs has been studied
at three different temperatures, 17.6, 27.5 and 32.4 °C in Oman (Al-Khatri 2011). The results
showed that a temperature of 27.5 °C appeared to be the optimal temperature for the biological
activities of this species (Al-Khatri 2011). At 35 °C, the biological processes of the pest are
disrupted, thus leading to high mortality, particularly in females (Bagheri et al. 2016; Bedford et
al. 2015).

Investigations into the population and the fluctuation in spatial distribution of the two Dubas bug
generations in the Bam region of Iran showed that this pest has an aggregated spatial distribution
pattern (Payandeh et al. 2010). Seasonal activities showed that nymphs were dynamic from April to May in the first generation and August to October in the second generation. In the first and second generations, the adults are active from May to June and from September to November, respectively. Earlier work (Blumberg 2008) reported that temperature exposure below 0 °C adversely affects the ability of adults to survive. The Dubas bug avoids direct sunlight (Klein & Venezuelan 1985; Shah et al. 2013), and it is spread via the transfer of infested offshoots as well as by wind or wind dust (Hassan 2014; Jasim & Al-Zubaidy 2010).

1.3. Biological Control

Some research has also been conducted on the natural biological control of the Dubas bug, such as using predators and parasites. Early results showed a variety of natural predators that could be used as biological control agents, among these being *Aprostocetus* sp., *Oligosita* sp. and *Runcinia* sp. (Cammell & Knight 1992). Furthermore, (Hussain 1963) reported that the eggs of the Dubas bug could be parasitized by a small Chalcidoid, while the nymphs and adults were preyed upon by the larvae of the lace wing (*Chrysopa carnea* Steph.). Hussain also stated three adult species of Coccinellids that prey on nymphs and adults of the Dubas bug. However, further study is needed to determine the distributions of these natural enemies in Oman and their effectiveness in controlling Dubas bug populations. Some measure of success was also achieved with pathogenic bacteria as microbiological control agents, although their toxicological aspects require further research in order to assess the safety of their implementation at a large scale (Cannon 1998).

1.4. Chemical Control

Given the significant economic impact of this pest, research into effective management strategies demands high priority. Several insecticides have been evaluated for Dubas bug control in Oman.
with SUMI-ALPHA® 5 EC being effective as a ground spray and KARATE® 2 ULV, TREBON® 30 ULV and SUMICOMBI® 50 ULV achieving some measure of success as aerial sprays. KARATE-ZEON was also found to be very effective as it gave 100% reduction in numbers of Dubas bug instars and adults, between three and seven days after application. However, the use of this particular pesticide is restricted due to its side effects such as irritation (Al-Yahyai & Khan 2015). In Israel, systemic carbamates such as aldicarb and butocarboxim have been successful, while in Iraq dichlorvos (DDVP) injected directly into the infected palms were also successful in suppressing the pest population (Blumberg 2008). Nonetheless, this method of control is expensive with negative environmental impacts on non-target species (particularly natural enemies of Dubas bug) as well as on human health.

Research has shown that some pesticide residues persist in the fruit up to 60 days after application (Al-Samarrie & Akela 2011; Khan et al. 2001). In addition, chemical control has achieved limited successes and Dubas bug continues to pose a major challenge to Omani agriculture. More information about the biological and chemical control and their impacts can be found in literature (Shifley et al. 2014; Thacker et al. 2003).

1.5. Research Opportunities

A number of opportunities exist for research into the biology and ecology of this species in order to gain a thorough understanding of its life cycle and its distribution. The climatic factors that influence its survival and distribution also merit study because such information may be useful in determining current and future potential distributions, particularly in light of climate change. In a review of the effects of climate change on pest populations, an earlier report (Cammell & Knight 1992) suggested that increases in mean global temperatures, as well as changes in rainfall and wind patterns, could have profound impacts on the population dynamics, abundance and
distribution of insect pests of agricultural crops. More recent research has supported this finding (Bale et al. 2002; Cannon 1998; Cook 2008; Shifley et al. 2014; Tobin et al. 2014). A key issue in ecology and conservation is the mapping of pest species distributions as this information can be used to devise more effective management strategies for their control.

Mapping of Dubas bug infestations is important for developing predictive models that give the probability of occurrence, spatial distributions and densities under different environmental, meteorological, anthropogenic and resource availability conditions. Maps such as the Dubas bug hazard map can be used to devise an Integrated Palm Management (IPM) plan, thus enhancing capacity and educating farmers on how to apply IPM for the control of this pest.

Mapping Dubas bug are also beneficial in terms of better planning of date palm orchard locations, better design and management of farms, what cultivars to plant, distance between palms, irrigations, pesticides, fertilisations, etc. There will also be savings in the cost of monitoring since remote sensing based techniques developed as parts of this study can provide a more efficient and cost-effective means for large scale monitoring of infestations and observation of stress levels on date palm trees.

The aim of this review is to highlight technological advances in the fields of remote sensing (i.e. by aircraft or a satellite platform) and Geographical Information System (GIS) that can be used to significantly enhance our ability to detect and characterise physical and biological stresses on several plant species. In particular, advanced remote sensing and GIS techniques need to be developed and implemented for the surveillance and control of Dubas bug adults and nymphs over large spatial scales. In turn, this will greatly assist Plant Protection Service (PPS) projects, Integrated Pest Management Technology (IPMT) programs and farmers in protecting their palm tree orchards by adopting timely preventative actions.
2. Remote Sensing Data

2.1 Data Requirements for Crop Management

It is important to collect data regarding crops and soil and to identify the changes that occur in the field to achieve precise crop management in the agricultural sector. Data are needed on the conditions that are stable across seasons (e.g. crop type, soil fertility), differing during the seasons (e.g. pest attacks, water quality and quantity, nutrient contents, moisture, temperature), and on factors that contribute to crop yield variability. The acquisition of remote sensing data can be very valuable for assessing many of the agricultural variables described above and for determining the unique phenological cycles of agricultural crops in different geographic regions (Jensen 2000). This type of remote sensing information can be obtained through satellite and aircraft imagery.

Typically, date palm trees are 7–10 m tall with crowns 2–4 m in diameter, and the trees are normally spaced 3–5 m apart. The understory of date palm plantations might include banana palms, mango trees, acacia bushes, vegetable crops, grain crops, forage crops. The reflectance characteristics of a date palm area are often driven by the density and health of the understory vegetation (Harris 2003). It can be difficult to use small pixel data to study date palm areas with little or no understory vegetation because the small pixel effects may make it difficult to identify infestations (e.g. where date palms are infested between mountains and dry rivers) given the tree spacing and density of leaves and branches. Studies like (Hussain 1963; Mahmoudi et al. 2015) have revealed that heavy infestations occur mostly along valleys. Additionally, the characteristics of the understory vegetation may dominate the contribution of spectral responses rather than the tree vegetation themselves.

However, small pixel data might be useful for investigating some palm tree areas, particularly those with close spacing and high branch densities when using Landsat data for example.
Similarly, spectral indices can be very widespread in remote sensing imagery of vegetation features, and thus the reflection of soil and rocks can become more dominant features than the reflection of sparse vegetation in arid and semi-arid areas. This will increase the difficulty in separating plants signals.

Dubas bugs are active on leaflets, rachis, fruiting bunches and spines during different stages of growth of date palm trees. According to the Ministry of Agricultural and Fisheries (MAF), North Oman (26°50ʹ N to 22°26ʹ N, and 55°50ʹ E to 59°50ʹ E) (see Figure 1) experiences different levels of Dubas bug infestation and this has resulted in both direct and indirect damage to date palms and other trees nearby.

These infestations are capable of causing up to 50% crop loss during a heavy infestation. Studies of insect pest of date tree palm indicated more than 54 arthropods species insects connected with date plantations. Nevertheless, Dubas bug and red weevil (RPW) *Rhynchophorus ferrugineus* Oliver, and lesser moth, are considered major economically significant pests affecting growth and yield of date palm trees (Al-Zadjali et al. 2006).
Figure 1. Region of Oman showing plantations and areas of infestation with Dubas bugs.

2.2 Optical Remote Sensing Data

The vital feature of remote sensing is the detection of radiant energy emitted by various objects. The energy detected might be in the form of acoustic energy (sound) or electromagnetic energy (visible light, infrared heat, ultraviolet and microwaves). Remote sensing technology deployed from the ground, air, or space-based platforms is capable of providing detailed spectral, spatial and temporal information on vegetation health and is particularly useful for crop yield estimation applications. An earlier study (Justice et al. 2002) reported that remote sensing data can be linearly and nonlinearly transformed into information that is more highly correlated with real world phenomena through principle components analysis and various vegetation indices.
However, implementing change-detection analysis by using remote sensing data requires careful consideration of the remote sensor system, environmental characteristics and image processing methods.

The temporal, spatial, spectral and radiometric resolution of remotely sensed data can have a significant impact on the success of remote sensing change detection projects (Coppin & Bauer 1996; Lu et al. 2004; McFeeters 1996). Numerous remote sensing data are available that can be used for change detection agricultural indices applications, such as data from the Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper (TM), Satellite Pour l'Observation de la Terre (SPOT), Advanced Very High Resolution Radiometer (AVHRR), and radar and aerial photography. New sensors are also being deployed like the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Space Borne Thermal Emission and Reflection Radiometer (ASTER) (Kattenborn et al. 2014).

2.2.1. Temporal Resolution of Remote Sensing Data

The temporal resolution of remote sensing data is important for commercial monitoring or management projects. The commercial Landsat and SPOT have revisit intervals of 16 and 26 days, respectively. The IKONOS revisit times range from 1 to 3 days. On the other hand, airborne (aircraft-mounted) sensors are more amenable to user defined re-visitation, and they have the added benefit of being able to run under a high cloud base. The capacity of high temporal resolution remote sensing technology has been exploited for monitoring seasonal vegetation variations.

Monitoring seasonal changes in vegetation activities and crop phenology over wide areas is essential for several applications, including the estimation of net primary production and deciding time boundary conditions for crop yield modelling. We believe temporal remote sensing data can
be used to study seasonal Dubas bug infestations because there are two generations, namely spring and autumn.

Temporal images (e.g. covering a 15-year period) can be used to classify and to determine the directions and speed of spread of Dubas bug infestations. Classification of all areas covered in the images typically represents the first task of a study, and a number of different areas can be selected to perform more intensive spatio-temporal risk assessment work. This approach can also be applied to historical images to obtain as much information as possible on selected areas. Moreover, change detection tools can be used for analyses by applying standard change detection algorithms. Change detection should be performed to quantify the degree of variation in the infestation levels that is needed to occur before the change can be detected by satellite technology. This is important for the development of a management and surveillance strategy for Dubas bug.

Multi-temporal RapidEye green-light data can be used to distinguish between different types of pest attacks on green vegetation (Marx et al. 2010). One study (Eitel et al. 2011) used the red-edge for early detection of infestations by girdling in New Mexico (USA). The limitation of using RapidEye data is that it may result in moderate classification accuracies, especially when the data are used alone (Ortiz et al. 2013).

2.2.2. Spatial Resolution of Remote Sensing Data

Spatial resolution is measured in terms of the smallest target on the ground. The number of available image-forming pixels in the sensor and its distance from the ground contribute to determining the pixel-size on the ground and the overall image footprint. Notably, there are many types of sensors, including aerial cameras, aircraft scanners and satellite instruments that can collect low and high spatial resolution data on insect pests like Dubas bug. Ground-based spectrometer measurements can also be used to collect electromagnetic information. Depending
on the goals of a study, technology with an appropriate spatial resolution should be chosen. For example, certain Landsat data sets have spatial resolution of 30 m while certain SPOT data sets have spatial resolution of 20 m in each dimension. If it is a large scale study (e.g. large orchard), Landsat imagery at a 30 m resolution may be sufficient.

However, if the study is for small orchards surrounding the mountains where several types of plantations are present, high resolution data would be needed. High resolution imagery products are available, such as SPOT’s panchromatic 10 m resolution data sets and Landsat’s multispectral scanner 20 m resolution imagery. Furthermore, very high resolution imagery are available, including QuickBird’s 2.15 m resolution images or the National Agricultural Imagery Programme’s (NAIP’s) 1m resolution orthophotographs.

More recently, high resolution satellite imagery from IKONOS, which consists of 4 m resolution multispectral imagery, have become available; but the costs for obtaining such data remain a significant impediment to their widespread use. IKONOS can also provide 1 m resolution data. Aircraft mounted sensors flown up to approximately 3 km above the ground are capable of achieving 1–2 m resolution. These high resolution images as well as those from QuickBird and the new 8-band WorldView can be used to classify and map the spatial distribution and infestation levels of Dubas bug. In addition, the use of high resolution (and ultra- high resolution) airborne remote sensing data in agricultural applications has become more common in the last few years because of the proliferation of multispectral digital airborne sensors (Colomina & Molina 2014; Nebiker et al. 2008). Furthermore, very high resolution data collected with unmanned aerial vehicle (UAV)-based remote sensing technology can be used for detecting and mapping of plant diseases and infestations such as those due to Dubas bug.
More information about UAV technology can be found in reference (Sperlich et al. 2014). Limitations to the use of this technology include some practical constraints such as the weight of the imaging system, flight stability, equipment costs, operational logistics, lack of experienced personnel, and short flight durations due to the reliance on batteries (Zhang & Kovacs 2012).

2.2.3 Spectral Resolution of Remote Sensing Data

Spectral resolution is typically defined as the number of bands of the electromagnetic spectrum that are sensed by the remote sensing device. A very important aspect of spectral resolution is the width of the bands. Different band-widths have been employed extensively in multispectral imagery applications, and these data often cover an entire colour or colours such as, the red and blue bands of the spectrum. Multispectral systems commonly obtain data for 3–7 bands in a single observation such as in the visible and near-infrared regions of the electromagnetic spectrum. Multispectral imagery, however, lacks the sensitivity to detect subtle changes in tree canopy reflectance that are caused by physiologic stress from insects or pathogens (Lawrence & Labus 2003).

Nevertheless, the suitability depends also on what type of classification method is being used in the project. An earlier study (Dakshinamurti et al. 1971) found that multispectral photography is useful for clearly differentiating between coconut plantations and other crops such as jack fruit, mangoes and bananas in India. Another relevant study (Leckie et al.) used multispectral data for detecting and assessing trees infested with *Phellinus weirii* which causes Laminated root rot disease. Other work (Stephens et al. 1971) has shown that multispectral photography can be used to clearly distinguish between many types of fruit orchards and crops.
On the other hand, hyperspectral imagery tends to have much narrower band widths, with several to many bands within a single colour of the spectrum. These might include the visible (VIS), near-infrared (NIR), mid-infrared (MIR) and thermal infrared portions. In the visible portion of the electromagnetic spectrum (400 to 700 nm), the reflectance of healthy green vegetation is relatively low because of the strong absorption of light by the pigments in plant leaves. If there is a reduction in pigments (e.g. chlorophyll) due to pests, the reflectance in the affected spectral region will increase. A past study (Vigier et al. 2004) reported that reflectance in the red wavelengths (e.g. 675–685 nm) dominated most of detection data for *Sclerotinia* spp. stem rot infections in soybeans.

Over approximately 700 to 1300 nm (the NIR portion), the reflectance of healthy vegetation is very high. Damages caused by Dubas bug infestations in the form of black sooty mould on palm tree leaves and understory vegetation that is promoted by bug excrement causes overall reflectance in the NIR region to be lower than expected.

Hyperspectral imaging is of considerable interest for applications in precision agriculture. Hyperspectral remote sensing is useful for extracting vegetation parameters such as the Leaf Area Index (LAI), chlorophyll content and leaf nutrient concentrations. One study (Demetriades-Shah et al. 1990) reported that the red edge in hyperspectral remote sensing technology represent the transition from low reflectance in the visible region of spectrum to high NIR reflectance that especially sensitive to chlorosis and crop stress. In general, the spectral responses reflect the conditions of plant leaves and crops to stress (Carter & Knapp 2001; Mazza et al. 2000; Zwiggelaar 1998). Hyperspectral data were used to map high-risk areas for insect infestations in Malaysia (Shafri & Hamdan 2009). The new hyperspectral remote sensing technology could be used to develop early (pre-visual) detection methods for Dubas bug infestations.
Recently, some optical satellite products that include red-edge band data have been produced. These could allow for the identification of changes in the health of green vegetation during early stages of change (Apan et al. 2005; Eitel et al. 2011; Pinter Jr et al. 2003; Prabhakar et al. 2011). Optical remote sensing can be used to estimate vegetation biomass though the use of common vegetation indices such as Ratio Vegetation Index (RVI) and Soil Adjusted Vegetation (SAVI).

Aerial photography and videography have been found to be valuable for assessing trees management in many applications in agriculture worldwide (Lamb & Brown 2001; Lema et al. 1988). In particular, colour-infrared (CIR) aerial photographs are tremendously useful for many applications, including stress detection in vegetation. Healthy vegetation is highly reflective in the NIR band of the electromagnetic spectrum, and this causes healthy vegetation to appear magenta on a CIR photo. Vegetation that is stressed because of drought, pest infestations or contamination, exhibits lower NIR reflectance, and this is readily visible in a CIR photograph. More information and examples of the use of CIR to detect insect infestations in agricultural crops and forests can be found in (Singh et al. 2009; Singh et al. 2010).

Colour-infrared technology with supporting hyperspectral reflectance data could be used to identify specific trees and fronds of date palm trees that have been infested with Dubas bug. These methods can be used to monitor changes in infestation levels according to honeydew, which is converted to sooty mould on the fronds during high levels of infestation. Honeydew secretion is a good indicator of Dubas bug feeding activity (Al-Abbasi 1988). The indirect assessments of the insect populations can be carried out by measuring the amounts of honeydew caused by the insects (Southwood 1978). Additionally, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) can be used to determine the extent and severity of Dubas bug infestation damage in different areas.

2.3 Radar Data
For many years, airborne technology has been employed in agricultural operations. Nevertheless, space-borne synthetic aperture radar (SAR) technology such as those of the Advanced Land Observing satellite; TerraSAR-X and Phased Array L-band have become available since the 2000s. Multiple radar sensors can work autonomously to detect solar radiation variation, but dissimilar optical sensors from which spectral reflectance measurements are taken affected differently by variation in the solar emission. Radar technology has found limited applications in regional studies because of its high costs, the narrow swath widths and limited extent of coverage. However, active radar systems have been widely used to monitor the dispersal and migratory flight behaviour of economically important insects such as honeybees, noctuid moths and grasshoppers (Loper 1992; Reynolds et al. 2009; Riley 1989). The data can be extracted routinely by using the existing network of weather radars, and it can be used to alert growers that local crops are at heightened risk (Westbrook & Isard 1999). Such information can then be used for fine tuning pest management practices such as pesticide applications, and could potentially reduce pesticide use by nearly 50% and lessen the overall impact of toxic chemicals on the environment (Dupont et al. 2000), as well as on the natural enemies of these insect pests. Table 2 shows example applications of different remote sensing technologies used to detect change in vegetation.

Table 2. Example applications of the use of remote sensing technologies to detect change in vegetation

<table>
<thead>
<tr>
<th>Satellite and aircraft sensor</th>
<th>Spatial resolution</th>
<th>Biophysical variables for vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Resolution and bands</td>
<td>Applications</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Landsat 7 (ETM+)</td>
<td>15m Panchromatic (Pan) bands; 30 m in the sex VIS, NIR, IR and shortwave SWIR bands; and 60 m in the thermal infrared bands.</td>
<td>Designed to monitor seasonal and small-scale processes on a global scale such as cycles of vegetation and agriculture (Acharya & Thapa 2015; Bouyer et al. 2010; Hall et al. 2006; Pinter Jr et al. 2003; Seelan et al. 2003; Teke et al. 2013)</td>
</tr>
<tr>
<td>Landsat 8 (OLI)</td>
<td>15m panchromatic bands; 30m in the sex VIS, NIR, SWIR1, SWIR2; and 30 m in the cirrus bands</td>
<td>Designed to monitor seasonal and small-scale processes on a global scale such as cycles of vegetation and agriculture (dos Santos et al. 2016; Gooshbor et al. 2016; Jadhav & Patil 2014; White & Roy 2015)</td>
</tr>
<tr>
<td>ASTER</td>
<td>15m in the VIS and NIR range, 30m in the shortwave infrared band</td>
<td>Land cover classification and change detection (Hatfield & Pinter 1993; Seelan et al. 2003; Teke et al. 2013)</td>
</tr>
<tr>
<td>NOAA (AVHRR)</td>
<td>1.1 km spatial resolution</td>
<td>Large-area land cover and vegetation mapping.</td>
</tr>
<tr>
<td>SPOT</td>
<td>5 and 2.5 meter in single-band, and 10 meters in multiband</td>
<td>Land cover and agricultural (Wolter et al. 2009)</td>
</tr>
<tr>
<td>GeoEye /IKONOS</td>
<td>Panchromatic at 1m resolution and multispectral at 4m resolution and color images at 1m</td>
<td>Pigments</td>
</tr>
<tr>
<td>Digital Globe’s /QuickBird</td>
<td>Panchromatic with 61-centimetres and multispectral images with 2.44 m resolution and color images with 70-centimetres</td>
<td>Canopy structure, Pigments, Leaf index</td>
</tr>
<tr>
<td>Radar (SAR)</td>
<td>3 m resolution</td>
<td>Vegetation stress (Abdullah & Umer 2004; Cox 2002; Drake 2002; Feng et al. 2003; Reynolds & Riley 1997; Seelan et al. 2003; Westbrook & Isard 1999; Willers et al. 2012; Wulder et al. 2006)</td>
</tr>
<tr>
<td>LIDAR</td>
<td>0.5 to 2 m resolution and vertical accuracy of less than 15- centimetres</td>
<td>Absorbed photosynthetically active radiation (Abdullah & Umer 2004; Cox 2002; Drake 2002; Feng et al. 2003; Reynolds & Riley 1997; Seelan et al. 2003; Westbrook & Isard 1999; Willers et al. 2012; Wulder et al. 2006)</td>
</tr>
</tbody>
</table>

2.4 Spectroscopic Analysis
Fluorescence spectroscopy (FS) is a type of spectroscopic method by which fluorescence is measured of an object of interest following excitation by rays of light. Fluorescence has been used for vegetation research to monitor stress levels and physiological states in plants. There are two types of fluorescence. The first is blue-green fluorescence in the ~400–600 nm range and the second type is chlorophyll fluorescence in the ~650–800 nm range. Fluorescence spectroscopy can be used to monitor nutrient deficiencies, environmental conditions based on stress levels, infestations and plant diseases. In fact, it can be used to monitor fruit quality, photosynthetic activity, tissue stress and infestations in many types of crops (Karoui & Blecker 2011; Tremblay et al. 2012).

Remote Sensing is a powerful technique for visualising, diagnosing and quantifying plant responses to stress like temperature, drought, salinity, flooding and mineral toxicity. Approaches can range from the use of simple combinations of thermal and reflectance sensor data to visible reflectance and fluorescence data. In particular, combined fluorescence reflectance and thermal imaging sensor data can be used for quick investigations of vegetation stress (Lenk et al. 2007).

2.5 Solar Radiation and the Humid-Thermal Index (HTI)

Biological systems are highly dependent on two most important climatic factors, namely temperature and precipitation. Temperature is influenced by solar radiation and thermal emissions, while precipitation controls the dry or wet conditions (humidity) associated with plant growth. These factors are especially important in regions where extreme temperatures and humidity conditions are prevalent and large fluctuations exist throughout the seasons as such conditions can predispose plants to insect pests and diseases. In this regard, solar radiation models can be used to investigate insect infestations. Solar radiation models can be applied to calculate the potential solar radiation at a chosen location over a 12-month period. An earlier study (Kirkpatrick & Nunez
1980) discovered positive results after investigating the relationships between solar radiation and the distribution of several species of eucalyptus along a single transect in the Risdon Hills in Tasmania. The advantage of modelling solar radiation is that it can be calculated at any slope and for any latitude.

Solar radiation models have been widely used for applications in ecology, biology, forestry and agriculture where the spatial variation of solar radiation is more significant than averaged regional values. Solar radiation models that collect data over long periods of time for huge areas can be useful for acquiring diverse information on features such as plant biomass, species locations, biodiversity and possible vegetation, wildlife locations, and for mapping topographic variants using direct shortwave radiation. One limitation of these models is that data are affected by the precision of the digital elevation model (DEM) that was used. Errors in the DEM will incur errors in the calculated values of slope and that can affect the accuracy of shading by adjacent terrain. However, the accuracy of solar radiation models may be affected more by atmospheric conditions than by terrain features.

Solar radiation can be used to calculate the potential solar inputs at infested and non-infested palm tree locations seasonally (i.e. for the spring and autumn Dubas bug generations) for a 12-month period. The results from solar radiation studies can then be used to find correlations with different infestation levels to examine if solar radiation plays a determinant role in different infestation levels (see Figure 3). Solar radiation can also be used to study the presence/absence and density of animals, plants diseases and infestations such as those caused by Dubas bug. More information on the theory and technical aspects of solar radiation models can be found in (Bonan 1989; Dubayah & Rich 1995; Flint & Childs 1987; Geiger et al. 2002; Hetrick et al. 1993; Kumar et al. 1997; Swift 1976).
The Humid-Thermal Index (HTI), which sometimes called the Humid-Thermal Ratio (HTR), has successfully been used to develop and test relationships between different plant infestations levels in varied climate conditions in areas such as Australia, India, Europe, and North America. An HTR prototype has been developed to simulate ecological conditions appropriate for the establishments and spread of plant diseases in India (Jhorar et al. 1997). The HTR method has also been used to evaluate the risk of the establishment and spread of *Karnal* in wheat, grown under a variety of climatic conditions and in different areas (Mavi et al. 1992; Stansbury & Pretorius 2001; Workneh et al. 2008). This method has potential value in researching insect pests and their associated diseases, which may allow for the predictions of occurrence and non-occurrence under specific combinations of climate and weather conditions. Such predictions would be useful to help prioritise human effort when conditions are expected to be unfavourable. Predictions could also be used for preparation in advanced to meet the challenges
posed by threats of heavy crop losses. The HTR data can be extracted from remote sensing pre-
visual reductions in chlorophyll, which are useful for early stress detection at the palm tree-level
or in different aged stands.

3. Vegetation

3.1 Image processing for vegetation

In order to detect changes, important information must be provided including spatial distributions
of change, change rates, change trajectories for different vegetation types, and assessment of the
accuracy of the change detection results. The three main steps in implementing change detection
are (1) image pre-processing, e.g. geometrical rectification (GR), image registration (IR), minimum
noise fraction (MNF) analysis, radiometric, automorphic and topographic correction (the latter is
needed if the study area is close to mountains) (Bishop & Colby 2002; Civco 1989; Muller et al.
1988; Teillet et al. 1982); (2) selection of optimal techniques to conduct the change detection
analysis; and (3) accuracy assessments (Datt et al. 2003; Lu et al. 2004; Lunetta et al. 2006; Lyon
et al. 1998; Song et al. 2001) (see Fig.3).

Although the selection of appropriate change detection techniques is important for the accuracy of
change results; in practice, it might not be easy to select a suitable algorithm for a specific change
detection application. Some simple techniques can be used to provide change and non-change
information (e.g. image differencing). Other techniques may be used to provide a complex matrix
of change direction data such as that used for post-classification comparisons (Lu et al. 2004). This
review provides examples of change detection methods that can be used to address Dubas bug
infestations and their impacts on date palm trees.

3.2 Techniques and Methods
3.2.1 Vegetation Indices

Vegetation indexes (VIs) are used to compile data into a single number that quantifies vegetation biomass and/or plant vigour for each pixel in a remote sensing image. An index is computed by using several spectral bands that are sensitive to plant biomass and vigour. Such indices can be used to (1) specify the amount of vegetation (e.g. biomass, SAVI, the percentage of vegetation cover); (2) discriminate between soil and vegetation; and (3) reduce atmospheric and topographic effects. However, variability in VI data can arise from atmospheric effects, viewing and illumination angles, sensor calibrations, errors in geometric registration, subpixel water and clouds, snow cover, background materials, image compositing and landscape topography (e.g. slope and relief). For example, in sparsely vegetated areas, the reflectance of soil and sand are much higher than the reflection of vegetation; so the detection of reflection from the vegetation cover is difficult.

3.2.1.1 Difference Vegetation Index

The Difference Vegetation Index (DVI) is the simplest vegetation index (DVI = NIR – Red). DVI is sensitive to the amount of vegetation, and it can be used to distinguish between soil and vegetation. However, it does consider the difference between reflectance and radiance caused by the atmosphere and shadows (Jiang et al. 2006). Previous research (Glenn et al. 2008) that used the utility of image differencing, image rationing, and the vegetation index for detecting gypsy moth defoliation found that a difference of the MSS7/MSS5 ratio was more useful for delineating defoliated areas than any single band-pair difference.

3.2.1.2 Ratio-Based Vegetation Indices
Ratio-based Vegetation Indices are also called the simple ratio (SR) or RVI (SR = NIR/Red). The SR provides valuable information about vegetation biomass or Leaf Area Index (LAI) variations in high-biomass vegetation areas such as forests. It is also useful in low-biomass situations, such as those containing soil, water, ice, etc., where the SR indicates the amount of vegetation present. The SR is capable of reducing the effects of the atmosphere and topography on the analysis results.

3.2.1.3. Normalised Difference Vegetation Index

Normalised Difference Vegetation Index (NDVI) are generally well-documented, quality-controlled data sources that have been re-processed for many applications and problems. Limitations and causes of error in the NDVI data are related to satellites and include such issues as the sensor resolution, standardisation techniques, digital quantisation errors, ground and atmospheric conditions, and orbital and sensor variations (Gutman 1999; James & Kalluri 1994).

It is possible to use the NDVI values to discriminate between dense forests, non-forested areas, agricultural fields and savannahs; however, distinguishing between forests with different dominant species is not possible by using this type of remote sensing data because several assemblages of plant species can produce similar NDVI values or similar NDVI temporal trends. Atmospheric conditions are another aspect that must be considered when using the NDVI. One study (Nageswara Rao et al. 2004) reported that bananas and coconuts have close greenness profiles in mid-April, but have rather distinct greenness profiles in mid-March. Another study (Chavez & MacKinnon 1994) reported that red band image differencing provided better change detection results for vegetation than red data when using the NDVI in arid and semi-arid environments of south-western United States. The NDVI may not be appropriate to use in dry areas, and caution is warranted for such applications. Date palms trees are often planted in a regular
grid pattern, as are olive trees and such trees may be able to be easily distinguished with NDVI data.

3.2.1.4. Normalisation Difference Moisture Index

The Normalisation Difference Moisture Index (NDMI) data can be used to determine the threshold presence of pest infestations (green attack). Such data can also be potentially used for deriving regional estimates of the year of stand death, for example, by using Landsat data and decision tree analysis. However, there are limitations associated with using the NDMI, which include difficulties in detecting low rates of infestation and the need to add images from other dates (to achieve a higher temporal frequency) to quantify the spectral response to insects such as the Dubas bug.

The application of a VI such as the NDVI and SAVI to multispectral satellite imagery (blue, red and NIR) has been shown to be useful to quantify variations in plant vigour, make relative biomass predictions, assess yields and investigate the occurrences of pests and disease attacks outbreaks (Plant 2001). Landsat TM data can be used to assess both plant age and LAI values by applying a number of indices such as the Shadow Index (SI), Bare soil Index (BI), NDVI, and Advanced Vegetation Index (AVI).

3.2.2. Transformation

Feature space transformation, which relates to band space, involves processing data that are n-dimensions. It may be difficult to visualise these data because the feature space (where n is roughly the number of bands). However, several mathematical techniques are readily available to analyse the feature space; they include Principal Components Analysis (PCA), Kauth’s Tasseled Cap (KTC), Perpendicular Vegetation Index (PVI), Leaf Water content Index (LWCI), SAVI, NDMI,
Atmospherically Resistant Vegetation Index (ARVI), Aerosol Free Vegetation Index (AFRI), Global Environmental Monitoring Index (GEMI), and Red-Edge Position (REP) Determination. These techniques and many more can be used to find areas that contain plentiful spectral information. Feature space transformation is useful to visualise pixel data and analyse information. It involves transforming the feature space mathematically in order to isolate groups of pixels that may be related (e.g. certain types of vegetation).

The PCA and the KTC transformations can be used for land cover change detection via NIR reflectance or greenness data that can detect crop type changes between vegetation and non-vegetation features (Gorczyca et al. 1993; Lu et al. 2004). An earlier study (Rondeaux et al. 1996) found that SAVI, where the value X was tuned to 0.16, easily out-performed all other indices when applied to agricultural surfaces. Others (Kaufman & Tanre 1992; Leprieur et al. 1996) have concluded that the GEMI and ARVI are less sensitive to atmosphere, but may be incapable of dealing with variation in soil reflectance. More information about feature space transformation can be found in (Crippen 1990; Richardson & Wiegand 1977). According to (Darvishzadeh et al. 2008), REP is the most studied feature on vegetation spectral curve because it is strongly correlated with foliar chlorophyll content and can be a sensitive indicator of stress in vegetation.

3.2.3. Classification

The objective of image classification is to categorise all pixels in the imagery into one of several land cover classes or themes. The categorised data can then be used to produce thematic maps of land cover (e.g. vegetation type) based on remotely sensed data. Most image processing techniques offers several methods to test hypotheses. The best-known methods include supervised and unsupervised classification; however, these techniques require ground reference data.
Maximum Likelihood Classification, for example, requires samples of pixels obtained by field observations or aerial photography interpretations that are deemed to be representative of specific land cover types. The Maximum Likelihood method relies on the assumption that the populations from which these training samples are drawn, are multivariate–normal in their distributions. The traditional methods employ classical image classification algorithms (e.g. k-means and ISODATA) for unsupervised classification, and maximum likelihood classification for supervised classification.

3.2.3.1. Maximum likelihood classification algorithm

The maximum likelihood classification algorithm (or parametric information extraction) is the most widely adopted parametric classification algorithm. However, it requires normally distributed training data, especially for n (rarely the case) to compute the class variance and covariance matrices. Another limitation is that it is difficult to integrate non-image categorical data into a maximum likelihood classification. However, fuzzy maximum likelihood classification algorithms are also available (Zhang & Foody 2001).

3.2.3.2. Classification techniques

Supervised classification. The supervised classification methods can be used to select representative samples for each land cover class in a digital image. Sample land classes are more commonly called training sites. The image classification software uses the training sites to identify the land cover classes in the entire image. The classification of land cover is based on spectral signatures defined in the training set. The digital image classification software determines the class based on what it resembles most in the training set. The limitation on the use of supervised classification is that analysis are required to identify areas on an image of known informational
types and to create a training area (group of pixels) from which the computer generates a statistics file (Mountrakis et al. 2011).

Unsupervised classification. The advantage of the use of unsupervised classification is that all spectral variation in the image are captured and used to group the imagery data into clusters. The major disadvantage is that is difficult to completely label all the clusters to produce the thematic map.

Combined and advanced methods. Many examples exist whereby the supervised and unsupervised techniques were combined together in analyses. The associated advantages and disadvantages can be found in (Castellana et al. 2007; Pao & Sobajic 1992). However, the combined approach only slightly improves the ability to create thematic maps when compared to using each technique separately. Moreover, a large amount of effort has been devoted to developing advanced classification approaches to improve our ability to create thematic maps from digital remotely sensed imagery. One of the most recent advances has been the adoption of artificial neural networks (ANNs) in the place of maximum likelihood classification (standard in most remote sensing software). This review only covers a few of the non-parametric techniques.

The difference between parametric and non-parametric techniques is that a parametric signature is based on statistical parameters (e.g., the mean) of the pixels that are in the training area (assumption of normal distribution), while the non-parametric signature is not based on statistics.

Artificial neural network (ANNs). Fortunately, the ANN methods (non-parametric information extraction) do not require normally distributed training data, and may be used to integrate with virtually any type of spatially distributed data in classification. The disadvantage of using ANN is that occasionally it is difficult to determine exactly how the ANN came up with a certain assumption because such information is locked within weights in a hidden layer or layers. The
method has been used successfully for classifying infestations, diseases/conditions of plants and the associated damage based on spectral data (Cox 2002; Liu et al. 2010; Pydipati et al. 2005). In recent years, spectral mixture analysis, ANNs, GISs and remote sensing data have become important tools for change detection applications.

Artificial intelligence (AI). Use of nonmetric information extraction or AI methods allows the computer to analyse data perhaps better than people. The benefits of using AI for image analysis involve the use of expert systems that place all the information contained within an image in its proper context with ancillary data and then to extract valuable information (Duda et al. 2001).

Classification and regression tree (CART). Classification and regression tree is a non-parametric algorithm that uses a set of training data to develop a hierarchical decision tree. The decision tree is created by using a binary partitioning algorithm that selects the best variable by which to split the data into separate categories at each level of the hierarchy. Once the final tree is generated, it can be used to label all unknown pixels in the image. This method has been widely used in the last few years both for pixel-based and object-based image classification. This method is also extremely robust and provides significantly better map accuracies than those that have been achieved by using more basic approaches (Lawrence & Wright 2001).

Support vector machines (SVMs). Support vector machines are derived from the field of statistical learning theory and have been used in the machine vision field for the last 10 years. These methods have been developed for use in creating thematic maps from remotely sensed imagery. The SVM performs by projecting the training data using a kernel function and this results in a data set that can then be linearly separated. The capability to separate out the various informational classes in the imagery is a powerful advantage. The use of SVM is relatively new, but it offers great potential for creating thematic maps from digital imagery.
Several advanced techniques for classifying digital remotely sensed data involve the extensive development and adoption of object-based image analysis. Moreover, advanced image classification techniques such as k-means, ISODATA, fuzzy ARTMP, fuzzy multivariate cluster analysis, the WARD minimum variance technique, SOM, the artificial neural classification algorithm (i.e. for the propagation of neural networks and self-organising maps) and Bayesian analysis can be used (1) for the classification of remotely sensed data; and (2) to delineate horticultural crops in satellite maps. The major advantage of these techniques is their ability to generate a matrix of change information and to reduce external impacts from the atmospheric and environmental differences among the multi-temporal images. However, it may be difficult to select high quality and sufficiently numerous training sets for image classification, in particular for important historical image data classifications due to the lack of data. Notably, it is a time consuming and difficult task to produce highly accurate classifications when high quality training sample data are not available. More information about improving classification results and reviews of these advanced methods can be found in the literature (Lu et al. 2003; Lu & Weng 2007; Lunetta et al. 2006; Monteiro et al. 2003; Rogan et al. 2002).

All these classifications are performed on a pixel-by-pixel basis. Therefore, given that a pixel maps an arbitrary delineation of an area on the ground, any selected pixel may or may not be comprehensive of the vegetation/land cover of that area. In object-based image analysis (OBIA), unlabelled pixels are grouped into meaningful polygons that are then classified as polygon pixels. The OBIA technique can be used to increases the number of attributes such as polygon shapes, textures, perimeter to area ratios, and many others that can be used to classify accurately groups of pixels. More information about this method, also called segmentation, can be found in (Blaschke 2010; Dey et al. 2010; Haralick & Shapiro 1985; Stafford 2000).
Classified satellite imagery can also be used to extract palm crown data. The centre of crowns can be isolated because they often remain green and are not as severely impacted by the Dubas bug as the palm fronds. Densities of the Dubas bug tend to be highest outside of the crown region. The removal of the centre and concentration on the outer parts of the vegetation can then lead to a higher probability of detecting the impacts of Dubas bug and categorising the infestation levels accurately. The images can also be used by classification techniques (e.g. unsupervised) to detect stages for which users do not have ground truth data.

3.2.4 Image Segmentation Techniques

Image segmentation techniques can be used to extract information on palm canopies. The crown information can be used to calculate the density of palms per unit. This information can then be applied as part of a GIS-based spatial analysis to answer questions about whether infestation levels are linked to the density of palms or not. The crown information could also be used to determine the random or systematic nature of farms. This information can be further used in GIS-based analyses to answer questions about whether or not randomly situated plants have a higher risk of infestation than non-randomly situated plants. Such information would be useful for determining the optimal row spacing. Research published in the literature suggests that those plantations that have wide row spacing have a lesser likelihood of Dubas bug infestations (Ali & Hama 2016). The row spacing data extracted from satellite imagery could thus be used to confirm the relationship between row spacing and infestation levels.

3.2.5. Image Fusion

Image fusion is a technology that merges two or more images of the same area collected by different sensors or at different wavelengths. For example, merging a 2.5 m multispectral image
with a 0.7 m panchromatic image can be done to capitalise on the advantages of both image sets. The panchromatic images have very good spatial resolution but lack the multiband information that the 2.3 m multispectral image provides. Thus, the advantage of using image fusion for change detection is that fusion can allow for both high spatial and spectral resolutions, which will enable users to extract high quality land cover/vegetation information. Image fusion techniques such as the HSV (hue, saturation, value), Brovey, Gram-Schmidt and Principle Components methods can be used to compare the accuracy and distortion levels of images (e.g., 8-band Worldview images).

4. Accuracy Assessment

Accuracy assessment is an important part of any classification algorithm process, and it should be undertaken for every project because it is difficult to know how accurate a classification is without an accuracy assessment. The accuracy of a classification is usually assessed by comparing the classification with some reference data that is believed to accurately reflect the true land-cover. Reference data may include ground truth data, higher resolution satellite images and maps derived from aerial photographic interpretations. However, in the case for all reference data, even ground truth data, these data sets may also contain some inaccuracies. More information about accuracy assessments can be found in (Congalton 2001; Foody 2002; Gibbs et al. 2010; Hirano et al. 2003; Huang et al. 2007; Hughes et al. 2006; Stehman & Czaplewski 1998).

An essential aspect of any digital remote sensing project is accuracy assessment. (Congalton & Green 2008) reported that historically, thematic maps generated from information analogous to remotely sensed data through the use of photographic interpretations were not assessed for accuracy. However, the accuracy of thematic maps became a standard part of mapping projects with the advent of digital remote sensing technologies and quantitative assessment tools. There are two methods for assessing the accuracy of a map derived from remotely sensed imagery. They
assess the positional and thematic accuracy. The accuracy of a map is actually a combination of these two accuracy features, and neither can be ignored in a valid assessment process. An error can appear if the map location is wrong (i.e. missing polygons or distorted lines) or if the map labels are wrong.

Positional accuracy methods can be used to provide an assessment of the differences in distance among a sample of locations on the map and those same locations on a reference data set. This same basic process can be used in assessing the thematic accuracy of a map, and it involves a number of initial considerations such as taking into account the sources of errors and the proper selection of classification systems. Determination of the thematic accuracy is more complicated than that of the positional accuracy.

This is due to the size requirements for sampling thematic accuracy assessments, which are larger than those for positional accuracy assessments. An error matrix technique can be used to compute the thematic accuracy, and the error matrix can be generated by using reference data and correct or incorrect designations; one can also use qualifiers such as good, acceptable and poor to produce a fuzzy error matrix. Additionally, there are a number of analysis techniques that can be performed using the error matrix, such as the Kappa analysis. The Kappa analysis can be used to test statistically whether or not one error matrix is significantly different than another (Goodchild 1994).
Figure 3. Flowchart of an image processing methodology, which include three main steps for implementing change detection research, namely (1) image pre-processing work; geometrical replication (GR), image registration (IR), minimum nose fraction (MNF) analysis, radiometric correction (RC), atmospheric correction (AC) and topographic correction (TC); (2) selection of optimal techniques to conduct the change detection; and (3) accuracy assessments to obtain final maps.

5. Modelling the spatial relationships between insect infestations and the environmental and climate factors

While remote sensing techniques focus on visual and pre-visual detection and mapping, GIS techniques can be used to evaluate correlations, identify important variables, and develop predictive models. Geographical Information system functions and tools have made it possible to implement state-of-the-art spatial autoregressive techniques to investigate many research problems. Advances in GIS software, such as ArcInfo®, have greatly reduced the time for
estimating spatial parameters. For example, regression analysis allows users to examine, model and explore spatial relationships in order to better understand the factors behind the observed spatial patterns. It also allows users to predict hypotheses based on understanding of these factors.

There are three main types of regressions, namely, linear regression, local regression, and logistic regression. Linear regression can be used to predict the values of y from values of x_i as follows:

$$
 y = a + b_1 x_1 + b_2 x_2 + ... + b_n x_n
$$

where y is the dependent variable, x_i represents the independent variables i, and b_1, ..., b_n are the regression coefficients. However, this requires several assumptions about the error, or residuals, between the predicted values and the actual values (Miles & Shevlin 2001). Some errors are related to a normal distribution for a set of independent variables, while others are related to the expected mean value of zero. Linear regression has been used to model wildlife home ranges (Anderson et al. 2005) and soil moisture (Lookingbill & Urban 2004). According to (Harris et al.), Local Regression or Geographically Weighted Regression (GWR) analysis can be used to predict information for every known point in order to derive a local model. Moreover, parameters for this method can include variations in space, thereby providing a basis for exploring non-stationary spatial relationships. The logistic regression method can be applied to model spatial relationships between features, such as when the dependent variable is categorical (e.g., presence or absence data) and when the independent variables are categorical, numeric or both (Menard 2002). The advantage of using the logistic regression is that it does not require the same set of rigid assumptions as required by linear regression.

Various studies have involved the use of autoregressive models to investigate the relationships between insect infestations and factors that are based on environmental information. (Munar-Vivas et al.) combined environmental information, spatial data and attribute data in GIS-based maps to
assess the impact of Moko disease on banana yields in Colombia. Specifically, they used a regression model to investigate the relationship between infested areas and distances from the Moko foci to cable-ways and drainage channels. (Coops et al.) studied the associations among the likelihood of occurrence, forest structure and forest predisposition variables using regression tree models. They found through modelling that location and slope were the major factors driving variations in the probability of red tree outbreaks. The GWR model has been used to detect high-risk infestations caused by mountain pine beetle invasions of lodge-pole pine forests over large areas (Robertson et al. 2008).

It is important to start by using single variables to develop correlations before moving to more complicated predictive models and regression analyses, where all factors are incorporated to investigate which combination of factors is most conducive to the survival and spread of insects or diseases. In our study, for instance, GWR could be used to model the correlation between Dubas bug infestation and meteorological variables such as humidity, rainfall, temperature, wind direction and wind speed; GWR could also be applied to model the correlations between Dubas bug infestations and environmental variables including soil type, slope, aspect ratio, ecology, soil salinity and solar radiation. Additionally, autoregressive models could be used to investigate the relationships between Dubas bug infestations and human practices such as irrigation, plantation systems, insecticide use, and methods of spraying.

5.1 Suitability Model for Detecting and Investigating Insect Infestations

All of the methods used to study the relationships between dependent and independent variables discussed previously are traditional statistical methods, which sometimes might not reflect the complicated relationships between infestations and environmental factors. In particular, ecological and geographical environments represent complex systems in which individual elements interact
to create complex behaviour, and consequently, complex methods such as ANN, Cellular Automata (CA), and multi-agent systems (MAS) may be better suited to study the relationships and conduct factor analyses in insect infestation or disease detection research and to perform spread simulations (De Smith et al. 2007).

Numerous suitability models have been proposed to identify locations that have a particular set of characteristics. These models, which can be used to estimate the suitability, include BIOCLIM, DOMAIN, GARP, MAXENT, RNNDOM, FOREST, GLM and GAM. For example, BIOCLIM methods can be used to map the distributions of any biological entity, including pest species (Hernandez et al. 2006). These methods use algorithms to compute the similarity of locations by comparing the values for environmental factors at any location to a percentile distribution of the values at known location occurrences.

In (Hernandez et al. 2006), the authors compared four different models (BIOCLIM, GAPP, DOMIN and MAXENT) and found that MAXENT was most capable for producing useful results with small sample sizes and minimum species occurrences. These models can also be used to identify areas that are susceptible to risks such as insect infestations, based on conditions favoured by the species. For example, a relevant study (Drees et al. 2010) used the habitat suitability selection method to model potential conservation areas for a rare ground beetle species (using Barcode Index Number or BIN). Specifically, they used five different data sets to identify several key habitat factors for *Carabus variolosus* stress levels. A model was developed in (Bone et al. 2005) by using fuzzy theory to identify areas of susceptibility to *Dendroctonus ponderosae* Hopkins in Canada. However, GIS data have unique characteristics that can impact the results of the model (Crooks & Castle 2012). For example, a vector data models use the geometric features of points, polygons and lines to represent spatial objects, which is ideal for working with discrete
factors with well-defined locations and shapes. However, vector data models do not work well with spatial features that vary continuously over space such as elevation, temperature, soil moisture, rainfall, solar radiation and slope. Raster data models are better at representing geographical phenomena that are spatially continuous because they are much easier to manipulate than vector data models.

As a result, raster data models are often used for finding and rating suitable locations and the raster overlay results are formatted in a single layer of suitable versus unsuitable cells, rather than in a vector layer with many polygons and an attribute table, which contains the attribute values for each of the polygons. There are two ways to create raster suitability layers. The first approach is to query the individual sources to create the suitability layer. The query can be used to create a suitability layer with two values, ‘1’ for cells meeting all criteria of a suitable habitat, and ‘0’ for the others. Because the layer consists of only two values, one indicating suitable and the other unsuitable cells, they are called binary suitability layers. Binary processing however is not always necessary.

Combined with other evaluation models, suitability mapping can be achieved by overlaying directly or by post processing the overlay results. Figure 4 shows a process that could be used to find suitable location conditions (habitat) for insects such as Dubas bug by using a raster method overlay.
Figure 4. Schematic of the process that can be used to model the suitable location for Dubas bug infestations

The uncertainty that results from geo-processing operations, demonstrates that sophisticated spatial analysis cannot be achieved using traditional, deterministic geoprocessing methods alone (Goodchild & Glennon 2010; Zhang & Goodchild 2002). Fuzzy logic is a superset of Boolean logic and has the ability to handle uncertainty in data that arises from vagueness instead of randomness alone (Li et al. 2010).

Fuzzy logic can be utilised to extract information from high resolution remote sensing data and combined with a raster-based GIS to produce maps representing the spatial variation of vulnerability to pests across a landscape. This method also allows for partial association with one or more classes, meaning that objects may be represented by a value based on a membership function between ‘0’ and ‘1’. The membership function of an element x belonging to a fuzzy set A is computed by:

$$
\mu_A : U \rightarrow [0,1]
$$

where U is the universal set of x. The concept of fuzzy sets has also been employed for defining the spatial and attributes characteristics of geographic objects (Burrough & Frank 1996; Wang & Hall 1996). The results of such analysis can be rendered directly into a decision framework via maps, tables, and charts. The results can also be used in further analyses or to provide additional understanding of the problem.

The challenge in any particular area of study is the geographical extent and the resolution of analysis, which is determined by the phenomenon being modelled. To achieve validity, researchers must ensure that they are using accurate and current data whenever possible. If the data are from
one’s own organisation, one can rely on data quality controls that are in place. Data quality should be checked against alternate sources if possible in order to ensure it meets the requirements of the analysis. Assessing the quality of data will provide guidance to predicting what level of confidence can be attributed to the result of the modelling work.

6. Conclusions

In this review, a variety of spatial information technologies, including remote sensing and GIS methods, have been shown to be useful in areas of research involving insect infestations worldwide. Environmental and climatic conditions are very important in determining the distribution and survival of any species, including the Dubas bug, which is a problematic pest in date palm plantations. We argue that most of the current research on Dubas bug has focused on its ecology, biology or control mechanisms only. There has been very limited research linking the presence/absence, density, spatial and temporal distributions (Al-Kindi et al. 2017) of Dubas bug with environmental, meteorological, and human practices that promote its development, prevalence and spread. Understanding the distribution and affinity of the Dubas bug in terms of these variables and mapping of the data can play a key role in its control and management, as well as resource allocation.

Accurate data on the area involved and resources affected are needed. Similarly, data on areas where the problem is more severe than others are similarly required. The presence of insect infestation causing widespread damage is often an indication of a deeper agricultural health problem. Therefore, it is necessary to examine site and stand conditions, past management practices, climatic variables, and other conditions that may favour the spared of damaging agents. Technical advances in the field of remote sensing from aircraft or satellite platforms have greatly enhanced the ability to detect and quantify physical and biological stresses in several plant species.
Argent techniques need to be developed and implemented in surveillance and control of the Dubas bug over large areas in order to provide IPM and relevant information in time for preventative action to be taken. Remotely sensed satellite data are another source of useful information for GIS users. For instance, the spatial resolution of satellite images relates to ground pixels. Satellite images can be processed digitally to produce a wide variety of thematic data for a GIS project such as ones involving land use, vegetation types, crop health or eroded soil. Satellite images can provide timely data if they are collected at regular intervals. They can also provide temporal data that are valuable for recording and monitoring changes in both terrestrial and aquatic environments.

GIS can assist environmental modellers with data visualisation, database management and exploration. A regression model relies on overlays to combine data for the statistical analysis of dependent and independent variables. GIS and its functionalities can be used to build or assist in building a spatially explicit model from geospatial data. Climatic factors such as extreme temperature, high relative humidity, the occurrence of cyclones, severe rain and hail storms, and environmental factors like soil and water salinity and human practices such as traditional and outdated methods of cultivation, all require further investigation in future research.

Acknowledgments: We thank the Unit of Cultivations Protection in the Ministry of Agriculture and Fisheries of the Sultanate of Oman for providing the data on DB infestations in the study area.

References

Acharya M, and Thapa R. 2015. REMOTE SENSING AND ITS APPLICATION IN AGRICULTURAL PEST MANAGEMENT. "Seven Billion Dreams One Planet Consume With Care."

Al-Khatri S. 2004. Date palm pests and their control. Proceedings, Date Palm Regional Workshop on Ecosystem-Based IPM for Date Palm in Gulf Countries UAE University, Al Ain, UAE. p 84-88.

Al-Khatri SAH. 2011. Biological, ecological and phylogenetic studies of Pseudoligosita babylonica viggiani, a native egg parasitoid of Dubas bug Ommatissus lybicus de Bergevin, the major pest of date palm in the Sultanate of Oman. University of Reading.

Bagheri A, Fathipour Y, Askari-Seyahoei M, and Zeinolabedini M. 2016. How Different Populations and Host Plant Cultivars Affect Two-Sex Life Table Parameters of the Date Palm Hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae). *Journal of Agricultural Science and Technology* 18:1605-1619.

Coppin PR, and Bauer ME. 1996. Geographic objects with indeterminate boundaries: CRC Press.

Richardson AJ, and Wiegand C. 1977. Distinguishing vegetation from soil background information. [by gray mapping of Landsat MSS data.

Shifley SR, Moser WK, Nowak DJ, Miles PD, Butler BJ, Aguilar FX, DeSantis RD, and Greenfield EJ. 2014. Five anthropogenic factors that will radically alter forest conditions and management needs in the northern United States. Forest Science 60:914-925.

