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In order to understand the distribution and prevalence of Ommatissus lybicus (Homoptera:

Tropiduchidae) as well as analyse their current biographical patterns and predict their

future spread, comprehensive and highly sophisticated information on the environmental,

climatic, and agricultural practices are essential. The analytical techniques available in

modern spatial analysis packages, such as Remote Sensing and Geographical Information

Systems, can help detect and model spatial links and correlations between the presence,

absence and density of O. lybicus in response to climatic, environmental and human

factors. The main objective of this paper is to review remote sensing and geographical

information analytical techniques that can be applied in mapping and modelling the

habitat and population density of O. lybicus in Oman. An exhaustive search of related

literature revealed that there are few studies linking location-based infestation levels of

pests like the O. lybicus with climatic, environmental and human practice related variables

in the Middle East. Our review also highlights the accumulated knowledge and addresses

the gaps in this area of research. Furthermore, it makes recommendations for future

studies, and gives suggestions on monitoring and surveillance sites that are necessary in

designing both local and regional level integrated pest management (IPM) policing of palm

tree and other affected cultivated crops.
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AFRI Aerosol Free Vegetation Index 

ANN Artificial neural network 

AI Artificial Intelligence  

ASTER Advanced Space Thermal Emission and Reflection Radiometer  

AVHRR Advanced Very High Resolution Radiometer 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer  

ALOS Advanced Land Observing Satellite  

AC Atmospheric correction  

ARVI Atmospherically Resistant Vegetation Index  

BIO Bare soil index 

CA Cellular Automata 

CART Classification and regression tree 

CIR Colour-infrared 

DEM Digital Elevation Model 

DVI Different vegetation index 

NDV Normalized different vegetation 

NDMI Normalisation different moisture index 

FS Fluorescence spectroscopy  

GIS Geographical Information Systems 

GEMI Global Environmental Monitoring Index  

GR Geometrical rectification 

GWR Geographically Weighted Regression  

HTI Humid-Thermal Index 

HTO Humid-Thermal Ratio

IPM Integrated Pest Management  

IR Image registration 

LIDAR Light detection and ranging 

LAI Leaf area index 

LWCI Leaf water content index 

MIR Mid-infrared 

MODIS Moderate Resolution Imaging Spectroradiometer 

MAS Multi-agent system 

MSS Landsat Multi-Spectral Scanner 

NAIP National Agricultural Imagery Programme 

NIR Near-infrared 

MNF Minimum noise fraction 

OBIA Object-based image analysis 

PVI Perpendicular Vegetation Index 

PCA Principal Components Analysis  

REPD Red-edge position determination 

RVI Ratio vegetation Index 

SAVI Soil adjusted vegetation 

SCI Shadow canopy index

SPOT Satellite Probatoire l’Observation de la Terre   

SVM Support vector machines 

TM Thematic Mapper

TC Topographic correction 

UAV Unmanned aerial vehicle 

VIS Visible 

VI Vegetation Indices 
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29 1. Introduction

30 Remote sensing is a powerful technology that has been applied in precision agriculture 

31 applications. Remotely sensed data can be used in mapping tools to classify crops and examine 

32 their health and viability. They can also be used for monitoring farming practices and to measure 

33 soil moisture across a wide area instead of at discrete point locations that are inherent to ground 

34 measurement. Based on these spatial differences, variable rate application of chemicals such as 

35 fertilisers or pesticides can be made. Remote sensing information can further be used to establish 

36 sub-field management zones, providing a less expensive yet finer resolution option than grid 

37 sampling. Although remote sensing technologies are more widely used in other industries, their 

38 potential for profitable use by farmers is less frequently studied. As examples in agriculture, 

39 remote sensing technologies have been used successfully for monitoring and mapping water stress, 

40 crop quality and growth, wetland, water quality, phosphorus and nitrogen deficiencies in 

41 vegetation, as well as detecting insect infestations (e.g. O. lybicus) and plant diseases.

42 1.1 Background 

43 The date palm, Phoenix dactylifera Linnaeus, is an important economic resource in the Sultanate 

44 of Oman. Plant-parasitic nematodes, associated with date palm trees in Oman and in most other 

45 Arab countries, can reduce their economic yields (El-Juhany 2010). A variety of insect pests can 

46 cause major damages to this crop through production losses and plant death (Abdullah et al. 2010; 

47 Al-Khatri 2004; Blumberg 2008; El-Shafie 2012; Howard 2001). One such species, Ommatissus 

48 lybicus de Bergevin 1930 (Hemiptera: Tropiduchidae), which is known more commonly as Dubas 

49 bug, has been identified as a major economic threat, and is presently affecting palm growth yield 

50 in Oman (Al-Yahyai 2006). Indeed, the Dubas bug has been identified as one of the primary 

51 reasons for the decline in date production in Oman (Al-Yahyai & Al-Khanjari 2008; Al-Zadjali et 
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52 al. 2006) (Table 1). It is also a principal pest of date palms in many locations throughout the Middle 

53 East, North Africa, Spain, and southeast Russia (Klein & Venezian 1985; Mifsud et al. 2010). The 

54 Dubas bug is believed to have been introduced into the Tigris-Euphrates River Valley, from where 

55 it has spread to other zones in recent decades (Blumberg 2008; El-Haidari et al. 1968) .

56 The Dubas bug is a sap feeding insect; both adults and nymphs suck the sap from date palms, 

57 thereby causing chlorosis (removal of photosynthetic cells and yellowing of fronds). Prolonged 

58 high infestation level will result in the flagging and destruction of palm plantations (Al-Khatri 

59 2004; Howard 2001; Hussain 1963; Mahmoudi et al. 2015; Mokhtar & Al Nabhani 2010; Shah et 

60 al. 2013). There is also an indirect effect whereby honeydew secretions produced by the Dubas 

61 bug can promote the growth of black sooty mould on the foliage and consequently a reduction in 

62 the photosynthetic rates of date palms (Blumberg 2008; Mokhtar & Al-Mjeini 1999; Shah et al. 

63 2012). Nymphs pass through five growth instars (Hussain 1963; Shah et al. 2012), with adult 

64 female Dubas bug reaching 5–6 mm and the males 3–3.5 mm in length (Aldryhim 2004; Mokhtar 

65 & Al Nabhani 2010). Their colour is yellowish-green while the main distinguishing feature 

66 between males and females is the presence of spots on females; males have a more tapered 

67 abdomen and larger wings relative to the abdomen. 
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68 Table 1. Classification of the Dubas bug

Phylum Arthropoda References 

Class Insecta 

Order Hemiptera (previously Homoptera)

Family Tropiduchidae

Genus Ommatissus

Full Name Ommatissus lybicus Bergevin

Preferred common name Date palm Dubas bug 

Synonym Old world Dubas bug 

(Al-Azawi 

1986; Al-

Mahmooli 

et al. 2005; 

Elwan & 

Al-

Tamimi 

1999; 

Hussein & 

Ali 1996; 

Jasim & 

Al-

Zubaidy 

2010; 

Kaszab et 

al. 1979; 

Khalaf et 

al. 2012; 

Mokhtar & 

Al 

Nabhani 

2010; 

Thacker et 

al. 2003)

Colour Yellowish-green 

69

70 1.2.Biology and Life History 

71 The biology of this species has been investigated in a number of studies (Al-Azawi 1986; 

72 Arbabtafti et al. 2014; Hussain 1963; Jasim & Al-Zubaidy 2010; Klein & Venezian 1985; 

73 Payandeh & Dehghan 2011; Shah et al. 2012). The Dubas bug produces two generations annually, 

74 including the spring and autumn generations (Blumberg 2008; Hussain 1963). In the spring 
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75 generation, eggs start hatching from February to April, after which nymphs pass through five 

76 instars to become adults in approximately 6–7 weeks. The eggs aestivate during the hot season 

77 (i.e., summer) until the autumn generation, when they start hatching from late August to the last 

78 week of October. A nymph takes about 6 weeks to develop into an adult, which then lives for about 

79 12 weeks. Females lay between 100 and 130 eggs (Elwan & Al-Tamimi 1999; Mokhtar & Al 

80 Nabhani 2010).The female Dubas bug lays her eggs by inserting them into holes in the tissue of 

81 the date palm frond at the end of each generation. The eggs remain dormant for about three months. 

82 When they hatch, the resulting nymphs remain on the fronds of the same tree, feeding on the sap 

83 and defecating large amounts of honeydew, which eventually covers the palm fronds and promotes 

84 the growth of black sooty mould. 

85 In extreme cases, the sooty mould that develops from the honeydew secretions can block the 

86 stomata of the leaves, causing partial or complete suffocation of the date palm, which in turn 

87 reduces its yield. The honeydew secretion also makes the dates unpalatable (Aminaee et al. 2010; 

88 El-Juhany 2010; El-Shafie et al. 2015; Gassouma 2004). The eggs of Dubas bug are sensitive to 

89 temperature. In summer, the eggs can hatch within 18–21 days, but in winter they may take up to 

90 170 days to hatch (Blumberg 2008). The developmental time of Dubas bug’s eggs has been studied 

91 at three different temperatures, 17.6, 27.5 and 32.4 °C in Oman (Al-Khatri 2011). The results 

92 showed that a temperature of 27.5 °C appeared to be the optimal temperature for the biological 

93 activities of this species (Al-Khatri 2011). At 35 °C, the biological processes of the pest are 

94 disrupted, thus leading to high mortality, particularly in females (Bagheri et al. 2016; Bedford et 

95 al. 2015). 

96 Investigations into the population and the fluctuation in spatial distribution of the two Dubas bug 

97 generations in the Bam region of Iran showed that this pest has an aggregated spatial distribution 
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98 pattern (Payandeh et al. 2010). Seasonal activities showed that nymphs were dynamic from April 

99 to May in the first generation and August to October in the second generation. In the first and 

100 second generations, the adults are active from May to June and from September to November, 

101 respectively. Earlier work (Blumberg 2008) reported that temperature exposure below 0 °C 

102 adversely affects the ability of adults to survive. The Dubas bug avoids direct sunlight (Klein & 

103 Venezian 1985; Shah et al. 2013), and it is spread via the transfer of infested offshoots as well as 

104 by wind or wind dust (Hassan 2014; Jasim & Al-Zubaidy 2010).

105 1.3. Biological Control

106 Some research has also been conducted on the natural biological control of the Dubas bug, such 

107 as using predators and parasites. Early results showed a variety of natural predators that could be 

108 used as biological control agents, among these being Aprostocetus sp., Oligosita sp.and Runcinia 

109 sp.(Cammell & Knight 1992) . Furthermore, (Hussain 1963) reported that the eggs of the Dubas 

110 bug could be parasitized by a small Chalcidoid, while the nymphs and adults were preyed upon by 

111 the larvae of the lace wing (Chrysopa carnea Steph.). Hussain also stated three adult species of 

112 Coccinellids that prey on nymphs and adults of the Dubas bug. However, further study is needed 

113 to determine the distributions of these natural enemies in Oman and their effectiveness in 

114 controlling Dubas bug populations. Some measure of success was also achieved with pathogenic 

115 bacteria as microbiological control agents, although their toxicological aspects require further 

116 research in order to assess the safety of their implementation at a large scale (Cannon 1998).  

117 1.4. Chemical Control 

118 Given the significant economic impact of this pest, research into effective management strategies 

119 demands high priority. Several insecticides have been evaluated for Dubas bug control in Oman 
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120 with SUMI-ALPHA® 5 EC being effective as a ground spray and KARATE® 2 ULV, TREBON® 

121 30 ULV and SUMICOMBI® 50 ULV achieving some measure of success as aerial sprays. 

122 KARATE-ZEON was also found to be very effective as it gave 100% reduction in numbers of 

123 Dubas bug instars and adults, between three and seven days after application. However, the use of 

124 this particular pesticide is restricted due to its side effects such as irritation (Al-Yahyai & Khan 

125 2015). In Israel, systemic carbamates such as aldicarb and butocarboxim have been successful, 

126 while in Iraq dichlorvos (DDVP) injected directly into the infected palms were also successful in 

127 suppressing the pest population (Blumberg 2008). Nonetheless, this method of control is expensive 

128 with negative environmental impacts on non-target species (particularly natural enemies of Dubas 

129 bug) as well as on human health. 

130 Research has shown that some pesticide residues persist in the fruit up to 60 days after application 

131 (Al-Samarrie & Akela 2011; Khan et al. 2001). In addition, chemical control has achieved limited 

132 successes and Dubas bug continues to pose a major challenge to Omani agriculture. More 

133 information about the biological and chemical control and their impacts can be found in literature 

134 (Shifley et al. 2014; Thacker et al. 2003).

135 1.5. Research Opportunities

136 A number of opportunities exist for research into the biology and ecology of this species in order 

137 to gain a thorough understanding of its life cycle and its distribution. The climatic factors that 

138 influence its survival and distribution also merit study because such information may be useful in 

139 determining current and future potential distributions, particularly in light of climate change. 

140 In a review of the effects of climate change on pest populations, an earlier report (Cammell & 

141 Knight 1992) suggested that increases in mean global temperatures, as well as changes in rainfall 

142 and wind patterns, could have profound impacts on the population dynamics, abundance and 
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143 distribution of insect pests of agricultural crops. More recent research has supported this finding 

144 (Bale et al. 2002; Cannon 1998; Cook 2008; Shifley et al. 2014; Tobin et al. 2014). A key issue in 

145 ecology and conservation is the mapping of pest species distributions as this information can be 

146 used to devise more effective management strategies for their control.

147 Mapping of Dubas bug infestations is important for developing predictive models that give the 

148 probability of occurrence, spatial distributions and densities under different environmental, 

149 meteorological, anthropogenic and resource availability conditions. Maps such as the Dubas bug 

150 hazard map can be used to devise an Integrated Palm Management (IPM) plan, thus enhancing 

151 capacity and educating farmers on how to apply IPM for the control of this pest. 

152 Mapping Dubas bug are also beneficial in terms of better planning of date palm orchard locations, 

153 better design and management of farms, what cultivars to plant, distance between palms, 

154 irrigations, pesticides, fertilisations, etc. There will also be savings in the cost of monitoring since 

155 remote sensing based techniques developed as parts of this study can provide a more efficient and 

156 cost-effective means for large scale monitoring of infestations and observation of stress levels on 

157 date palm trees.  

158 The aim of this review is to highlight technological advances in the fields of remote sensing (i.e. 

159 by aircraft or a satellite platform) and Geographical Information System (GIS) that can be used to 

160 significantly enhance our ability to detect and characterise physical and biological stresses on 

161 several plant species. In particular, advanced remote sensing and GIS techniques need to be 

162 developed and implemented for the surveillance and control of Dubas bug adults and nymphs over 

163 large spatial scales. In turn, this will greatly assist Plant Protection Service (PPS) projects, 

164 Integrated Pest Management Technology (IPMT) programs and farmers in protecting their palm 

165 tree orchards by adopting timely preventative actions.
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166 2. Remote Sensing Data

167 2.1 Data Requirements for Crop Management 

168 It is important to collect data regarding crops and soil and to identify the changes that occur in the 

169 field to achieve precise crop management in the agricultural sector. Data are needed on the 

170 conditions that are stable across seasons (e.g. crop type, soil fertility), differing during the seasons 

171 (e.g. pest attacks, water quality and quantity, nutrient contents, moisture, temperature), and on 

172 factors that contribute to crop yield variability. The acquisition of remote sensing data can be very 

173 valuable for assessing many of the agricultural variables described above and for determining the 

174 unique phenological cycles of agricultural crops in different geographic regions (Jensen 2000). 

175 This type of remote sensing information can be obtained through satellite and aircraft imagery.

176 Typically, date palm trees are 7–10 m tall with crowns 2–4 m in diameter, and the trees are 

177 normally spaced 3–5 m apart. The understory of date palm plantations might include banana palms, 

178 mango trees, acacia bushes, vegetable crops, grain crops, forage crops. The reflectance 

179 characteristics of a date palm area are often driven by the density and health of the understory 

180 vegetation (Harris 2003). It can be difficult to use small pixel data to study date palm areas with 

181 little or no understory vegetation because the small pixel effects may make it difficult to identify 

182 infestations (e.g. where date palms are infested between mountains and dry rivers) given the tree 

183 spacing and density of leaves and branches. Studies like (Hussain 1963; Mahmoudi et al. 2015) 

184 have revealed that heavy infestations occur mostly along valleys. Additionally, the characteristics 

185 of the understory vegetation may dominate the contribution of spectral responses rather than the 

186 tree vegetation themselves. 

187 However, small pixel data might be useful for investigating some palm tree areas, particularly 

188 those with close spacing and high branch densities when using Landsat data for example. 
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189 Similarly, spectral indices can be very widespread in remote sensing imagery of vegetation 

190 features, and thus the reflection of soil and rocks can become more dominant features than the 

191 reflection of sparse vegetation in arid and semi-arid areas. This will increase the difficulty in 

192 separating plants signals. 

193 Dubas bugs are active on leaflets, rachis, fruiting bunches and spines during different stages of 

194 growth of date palm trees. According to the Ministry of Agricultural and Fisheries (MAF), North 

195 Oman (26°50ʹ N to 22°26ʹ N, and 55°50ʹ E to 59°50ʹ E) (see Figure 1) experiences different levels 

196 of Dubas bug infestation and this has resulted in both direct and indirect damage to date palms and 

197 other trees nearby. 

198 These infestations are capable of causing up to 50% crop loss during a heavy infestation. Studies 

199 of insect pest of date tree palm indicated more than 54 arthropods species insects connected with 

200 date plantations. Nevertheless, Dubas bug and red weevil (RPW) Rhynchophorusferrugineus 

201 Oliver, and lesser moth, are considered major economically significant pests affecting growth and 

202 yield of date palm trees (Al-Zadjali et al. 2006).       
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203

204 Figure 1. Region of Oman showing plantations and areas of infestation with Dubas 

205 bugs

206 2.2 Optical Remote Sensing Data 

207 The vital feature of remote sensing is the detection of radiant energy emitted by various objects. 

208 The energy detected might be in the form of acoustic energy (sound) or electromagnetic energy 

209 (visible light, infrared heat, ultraviolet and microwaves). Remote sensing technology deployed 

210 from the ground, air, or space-based platforms is capable of providing detailed spectral, spatial and 

211 temporal information on vegetation health and is particularly useful for crop yield estimation 

212 applications. An earlier study (Justice et al. 2002) reported that remote sensing data can be linearly 

213 and nonlinearly transformed into information that is more highly correlated with real world 

214 phenomena through principle components analysis and various vegetation indices. 
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215 However, implementing change-detection analysis by using remote sensing data requires careful 

216 consideration of the remote sensor system, environmental characteristics and image processing 

217 methods. 

218 The temporal, spatial, spectral and radiometric resolution of remotely sensed data can have a 

219 significant impact on the success of remote sensing change detection projects (Coppin & Bauer 

220 1996; Lu et al. 2004; McFeeters 1996). Numerous remote sensing data are available that can be 

221 used for change detection agricultural indices applications, such as data from the Landsat Multi-

222 spectral Scanner (MSS), Landsat Thematic Mapper (TM), Satellite Pour l'Observation de la Terre 

223 (SPOT), Advanced Very High Resolution Radiometer (AVHRR), and radar and aerial 

224 photography. New sensors are also being deployed like the Moderate Resolution Imaging 

225 Spectroradiometer (MODIS) and the Advanced Space Borne Thermal Emission and Reflection 

226 Radiometer (ASTER) (Kattenborn et al. 2014). 

227 2.2.1. Temporal Resolution of Remote Sensing Data 

228 The temporal resolution of remote sensing data is important for commercial monitoring or 

229 management projects. The commercial Landsat and SPOT have revisit intervals of 16 and 26 days, 

230 respectively. The IKONOS revisit times range from 1 to 3 days. On the other hand, airborne 

231 (aircraft-mounted) sensors are more amenable to user defined re-visitation, and they have the 

232 added benefit of being able to run under a high cloud base. The capacity of high temporal resolution 

233 remote sensing technology has been exploited for monitoring seasonal vegetation variations. 

234 Monitoring seasonal changes in vegetation activities and crop phenology over wide areas is 

235 essential for several applications, including the estimation of net primary production and deciding 

236 time boundary conditions for crop yield modelling. We believe temporal remote sensing data can 
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237 be used to study seasonal Dubas bug infestations because there are two generations, namely spring 

238 and autumn. 

239 Temporal images (e.g. covering a 15-year period) can be used to classify and to determine the 

240 directions and speed of spread of Dubas bug infestations. Classification of all areas covered in the 

241 images typically represents the first task of a study, and a number of different areas can be selected 

242 to perform more intensive spatio-temporal risk assessment work. This approach can also be applied 

243 to historical images to obtain as much information as possible on selected areas. Moreover, change 

244 detection tools can be used for analyses by applying standard change detection algorithms. Change 

245 detection should be performed to quantify the degree of variation in the infestation levels that is 

246 needed to occur before the change can be detected by satellite technology. This is important for 

247 the development of a management and surveillance strategy for Dubas bug.

248 Multi-temporal RapidEye green-light data can be used to distinguish between different types of 

249 pest attacks on green vegetation (Marx et al. 2010). One study (Eitel et al. 2011) used the red-edge 

250 for early detection of infestations by girdling in New Mexico (USA). The limitation of using 

251 RapidEye data is that it may result in moderate classification accuracies, especially when the data 

252 are used alone (Ortiz et al. 2013).

253 2.2.2. Spatial Resolution of Remote Sensing Data 

254 Spatial resolution is measured in terms of the smallest target on the ground. The number of 

255 available image-forming pixels in the sensor and its distance from the ground contribute to 

256 determining the pixel-size on the ground and the overall image footprint. Notably, there are many 

257 types of sensors, including aerial cameras, aircraft scanners and satellite instruments that can 

258 collect low and high spatial resolution data on insect pests like Dubas bug. Ground-based 

259 spectrometer measurements can also be used to collect electromagnetic information. Depending 
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260 on the goals of a study, technology with an appropriate spatial resolution should be chosen. For 

261 example, certain Landsat data sets have spatial resolution of 30 m while certain SPOT data sets 

262 have spatial resolution of 20 m in each dimension. If it is a large scale study (e.g. large orchard), 

263 Landsat imagery at a 30 m resolution may be sufficient. 

264 However, if the study is for small orchards surrounding the mountains where several types of 

265 plantations are present, high resolution data would be needed. High resolution imagery products 

266 are available, such as SPOT’s panchromatic 10 m resolution data sets and Landsat’s multispectral 

267 scanner 20 m resolution imagery. Furthermore, very high resolution imagery are available, 

268 including QuickBird’s 2.15 m resolution images or the National Agricultural Imagery 

269 Programme’s (NAIP’s) 1m resolution orthophotographs. 

270 More recently, high resolution satellite imagery from IKONOS, which consists of 4 m resolution 

271 multispectral imagery, have become available; but the costs for obtaining such data remain a 

272 significant impediment to their widespread use. IKONOS can also provide 1 m resolution data. 

273 Aircraft mounted sensors flown up to approximately 3 km above the ground are capable of 

274 achieving 1–2 m resolution. These high resolution images as well as those from QuickBird and the 

275 new 8-band WorldView can be used to classify and map the spatial distribution and infestation 

276 levels of Dubas bug. In addition, the use of high resolution (and ultra- high resolution) airborne 

277 remote sensing data in agricultural applications has become more common in the last few years 

278 because of the proliferation of multispectral digital airborne sensors (Colomina & Molina 2014; 

279 Nebiker et al. 2008). Furthermore, very high resolution data collected with unmanned aerial 

280 vehicle (UAV)-based remote sensing technology can be used for detecting and mapping of plant 

281 diseases and infestations such as those due to Dubas bug. 
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282 More information about UAV technology can be found in reference (Sperlich et al. 2014). 

283 Limitations to the use of this technology include some practical constraints such as the weight of 

284 the imaging system, flight stability, equipment costs, operational logistics, lack of experienced 

285 personnel, and short flight durations due to the reliance on batteries (Zhang & Kovacs 2012). 

286 2.2.3 Spectral Resolution of Remote Sensing Data 

287 Spectral resolution is typically defined as the number of bands of the electromagnetic spectrum 

288 that are sensed by the remote sensing device. A very important aspect of spectral resolution is the 

289 width of the bands. Different band-widths have been employed extensively in multispectral 

290 imagery applications, and these data often cover an entire colour or colours such as, the red and 

291 blue bands of the spectrum. Multispectral systems commonly obtain data for 3–7 bands in a single 

292 observation such as in the visible and near-infrared regions of the electromagnetic spectrum. 

293 Multispectral imagery, however, lacks the sensitivity to detect subtle changes in tree canopy 

294 reflectance that are caused by physiologic stress from insects or pathogens (Lawrence & Labus 

295 2003).

296  

297 Nevertheless, the suitability depends also on what type of classification method is being used in 

298 the project. An earlier study (Dakshinamurti et al. 1971) found that multispectral photography is 

299 useful for clearly differentiating between coconut plantations and other crops such as jack fruit, 

300 mangoes and bananas in India. Another relevant study (Leckie et al.) used multispectral data for 

301 detecting and assessing trees infested with Phellinus weirii which causes Laminated root rot 

302 disease . Other work (Stephens et al. 1971) has shown that multispectral photography can be used 

303 to clearly distinguish between many types of fruit orchards and crops.
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304 On the other hand, hyperspectral imagery tends to have much narrower band widths, with several 

305 to many bands within a single colour of the spectrum. These might include the visible (VIS), near-

306 infrared (NIR), mid-infrared (MIR) and thermal infrared portions. In the visible portion of the 

307 electromagnetic spectrum (400 to 700 nm), the reflectance of healthy green vegetation is relatively 

308 low because of the strong absorption of light by the pigments in plant leaves. If there is a reduction 

309 in pigments (e.g. chlorophyll) due to pests, the reflectance in the affected spectral region will 

310 increase. A past study (Vigier et al. 2004) reported that reflectance in the red wavelengths (e.g. 

311 675–685 nm) dominated most of detection data for Sclerotinia spp. stem rot infections in soybeans. 

312 Over approximately 700 to 1300 nm (the NIR portion), the reflectance of healthy vegetation is 

313 very high. Damages caused by Dubas bug infestations in the form of black sooty mould on palm 

314 tree leaves and understory vegetation that is promoted by bug excrement causes overall reflectance 

315 in the NIR region to be lower than expected.

316 Hyperspectral imaging is of considerable interest for applications in precision agriculture. 

317 Hyperspectral remote sensing is useful for extracting vegetation parameters such as the Leaf Area 

318 Index (LAI), chlorophyll content and leaf nutrient concentrations. One study (Demetriades-Shah 

319 et al. 1990) reported that the red edge in hyperspectral remote sensing technology represent the 

320 transition from low reflectance in the visible region of spectrum to high NIR reflectance that 

321 especially sensitive to chlorosis and crop stress. In general, the spectral responses reflect the 

322 conditions of plant leaves and crops to stress (Carter & Knapp 2001; Mazza et al. 2000; Zwiggelaar 

323 1998). Hyperspectral data were used to map high-risk areas for insect infestations in Malaysia 

324 (Shafri & Hamdan 2009). The new hyperspectral remote sensing technology could be used to 

325 develop early (pre-visual) detection methods for Dubas bug infestations. 
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326 Recently, some optical satellite products that include red-edge band data have been produced. 

327 These could allow for the identification of changes in the health of green vegetation during early 

328 stages of change (Apan et al. 2005; Eitel et al. 2011; Pinter Jr et al. 2003; Prabhakar et al. 2011) . 

329 Optical remote sensing can be used to estimate vegetation biomass though the use of common 

330 vegetation indices such as Ratio Vegetation Index (RVI) and Soil Adjusted Vegetation (SAVI). 

331 Aerial photography and videography have been found to be valuable for assessing trees 

332 management in many applications in agriculture worldwide (Lamb & Brown 2001; Lema et al. 

333 1988). In particular, colour-infrared (CIR) aerial photographs are tremendously useful for many 

334 applications, including stress detection in vegetation. Healthy vegetation is highly reflective in the 

335 NIR band of the electromagnetic spectrum, and this causes healthy vegetation to appear magenta 

336 on a CIR photo. Vegetation that is stressed because of drought, pest infestations or contamination, 

337 exhibits lower NIR reflectance, and this is readily visible in a CIR photograph. More information 

338 and examples of the use of CIR to detect insect infestations in agricultural crops and forests can 

339 be found in (Singh et al. 2009; Singh et al. 2010). 

340 Colour-infrared technology with supporting hyperspectral reflectance data could be used to 

341 identify specific trees and fronds of date palm trees that have been infested with Dubas bug. These 

342 methods can be used to monitor changes in infestation levels according to honeydew, which is 

343 converted to sooty mould on the fronds during high levels of infestation. Honeydew secretion is a 

344 good indicator of Dubas bug feeding activity (Al-Abbasi 1988). The indirect assessments of the 

345 insect populations can be carried out by measuring the amounts of honeydew caused by the insects 

346 (Southwood 1978). Additionally, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) can 

347 be used to determine the extent and severity of Dubas bug infestation damage in different areas.

348 2.3 Radar Data
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349 For many years, airborne technology has been employed in agricultural operations. Nevertheless, 

350 space-borne synthetic aperture radar (SAR) technology such as those of the Advanced Land 

351 Observing satellite; TerraSAR-X and Phased Array L-band have become available since the 2000s. 

352 Multiple radar sensors can work autonomously to detect solar radiation variation, but dissimilar 

353 optical sensors from which spectral reflectance measurements are taken affected differently by 

354 variation in the solar emission. Radar technology has found limited applications in regional studies 

355 because of its high costs, the narrow swath widths and limited extent of coverage. However, active 

356 radar systems have been widely used to monitor the dispersal and migratory flight behaviour of 

357 economically important insects such as honeybees, noctuid moths and grasshoppers (Loper 1992; 

358 Reynolds et al. 2009; Riley 1989). 

359 The data can be extracted routinely by using the existing network of weather radars, and it can be 

360 used to alert growers that local crops are at heightened risk (Westbrook & Isard 1999). Such 

361 information can then be used for fine tuning pest management practices such as pesticide 

362 applications, and could potentially reduce pesticide use by nearly 50% and lessen the overall 

363 impact of toxic chemicals on the environment (Dupont et al. 2000), as well as on the natural 

364 enemies of these insect pests. Table 2 shows example applications of different remote sensing 

365 technologies used to detect change in vegetation. 

366 Table 2. Example applications of the use of remote sensing technologies to detect change 

367 in vegetation

Satellite and 

aircraft sensor

Spatial resolution Biophysical variables for vegetation
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Landsat  7 

(ETM+)

15m Panchromatic (Pan) bands; 30 m in 

the sex VIS, NIR, IR and shortwave 

(SWIR) infrared bands; and 60 m in the 

thermal infrared bands.

Landsat 8  

(OLI)

15m pan bands; 30m in the sex VIS, 

NIR, SWIR1, SWIR2; and 30 m in the 

cirrus bands  

Designed to monitor seasonal and small-scale 

processes on a global scale such as cycles of 

vegetation  and agriculture (Acharya & Thapa 

2015; Bouyer et al. 2010; Hall et al. 2006; Pinter 

Jr et al. 2003; Seelan et al. 2003; Teke et al. 2013)

(dos Santos et al. 2016; Gooshbor et al. 2016; 

Jadhav & Patil 2014; White & Roy 2015)

ASTER

15m in the VIS and NIR range, 30m in 

the shortwave infrared band

land cover classification and change detection 

(Hatfield & Pinter 1993; Seelan et al. 2003; Teke 

et al. 2013)

NOAA 

(AVHRR)

1.1 km spatial resolution Large-area land cover and vegetation mapping.

SPOT 

5 and 2.5 meter in single-band, and 10 

meters in multiband

Land cover and agricultural (Wolter et al. 2009)

GeoEye 

/IKONOS 

Panchromatic at 1m resolution and 

multispectral at 4m resolution  and 

color images at 1m

Digital 

Globe’s / 

QuickBird

Panchromatic with 61-cenimetres 

resolution and multispectral images with 

2.44 m resolution and color images with 

70-centimetres

RADAR 

(SAR)

3 m resolution

LIDAR

0.5 to 2 m resolution and vertical 

accuracy of less than 15- centimetres

Pigments

Canopy structure

Biomass derive from vegetation indices

Leaf index 

Vegetation stress

Absorbed photosynthetically active radiation 

Evaporations  (Abdullah & Umer 2004; Cox 

2002; Drake 2002; Feng et al. 2003; Reynolds & 

Riley 1997; Seelan et al. 2003; Westbrook & 

Isard 1999; Willers et al. 2012; Wulder et al. 

2006)

368

369 2.4 Spectroscopic Analysis 
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370 Fluorescence spectroscopy (FS) is a type of spectroscopic method by which fluorescence is 

371 measured of an object of interest following excitation by rays of light. Fluorescence has been used 

372 for vegetation research to monitor stress levels and physiological states in plants. There are two 

373 types of fluorescence. The first is blue-green fluorescence in the ~400–600 nm range and the 

374 second type is chlorophyll fluorescence in the ~650–800 nm range. Fluorescence spectroscopy can 

375 be used to monitor nutrient deficiencies, environmental conditions based on stress levels, 

376 infestations and plant diseases. In fact, it can be used to monitor fruit quality, photosynthetic 

377 activity, tissue stress and infestations in many types of crops (Karoui & Blecker 2011; Tremblay 

378 et al. 2012). 

379 Remote Sensing is a powerful technique for visualising, diagnosing and quantifying plant 

380 responses to stress like temperature, drought, salinity, flooding and mineral toxicity. Approaches 

381 can range from the use of simple combinations of thermal and reflectance sensor data to visible 

382 reflectance and fluorescence data. In particular, combined fluorescence reflectance and thermal 

383 imaging sensor data can be used for quick investigations of vegetation stress (Lenk et al. 2007). 

384 2.5 Solar Radiation and the Humid-Thermal Index (HTI) 

385 Biological systems are highly dependent on two most important climatic factors, namely 

386 temperature and precipitation. Temperature is influenced by solar radiation and thermal emissions, 

387 while precipitation controls the dry or wet conditions (humidity) associated with plant growth. 

388 These factors are especially important in regions where extreme temperatures and humidity 

389 conditions are prevalent and large fluctuations exist throughout the seasons as such conditions can 

390 predispose plants to insect pests and diseases. In this regard, solar radiation models can be used to 

391 investigate insect infestations. Solar radiation models can be applied to calculate the potential solar 

392 radiation at a chosen location over a 12-month period. An earlier study (Kirkpatrick & Nunez 
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393 1980) discovered positive results after investigating the relationships between solar radiation and 

394 the distribution of several species of eucalyptus along a single transect in the Risdon Hills in 

395 Tasmania. The advantage of modelling solar radiation is that it can be calculated at any slope and 

396 for any latitude.

397 Solar radiation models have been widely used for applications in ecology, biology, forestry and 

398 agriculture where the spatial variation of solar radiation is more significant than averaged regional 

399 values. Solar radiation models that collect data over long periods of time for huge areas can be 

400 useful for acquiring diverse information on features such as plant biomass, species locations, 

401 biodiversity and possible vegetation, wildlife locations, and for mapping topographic variants 

402 using direct shortwave radiation. One limitation of these models is that data are affected by the 

403 precision of the digital elevation model (DEM) that was used. Errors in the DEM will incur errors 

404 in the calculated values of slope and that can affect the accuracy of shading by adjacent terrain. 

405 However, the accuracy of solar radiation models may be affected more by atmospheric conditions 

406 than by terrain features.

407 Solar radiation can be used to calculate the potential solar inputs at infested and non-infested palm 

408 tree locations seasonally (i.e. for the spring and autumn Dubas bug generations) for a 12-month 

409 period. The results from solar radiation studies can then be used to find correlations with different 

410 infestation levels to examine if solar radiation plays a determinant role in different infestation 

411 levels (see Figure 3). Solar radiation can also be used to study the presence/absence and density of 

412 animals, plants diseases and infestations such as those caused by Dubas bug. More information on 

413 the theory and technical aspects of solar radiation models can be found in (Bonan 1989; Dubayah 

414 & Rich 1995; Flint & Childs 1987; Geiger et al. 2002; Hetrick et al. 1993; Kumar et al. 1997; Swift 

415 1976). 
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416

417 Figure 2. A diagram showing the design and use of solar radiation models to analyse the 

418 relationship between Dubas bug infestation levels and positional solar radiation 

419 The Humid-Thermal Index (HTI), which sometimes called the Humid-Thermal Ratio (HTR), has 

420 successfully been used to develop and test relationships between different plant infestations levels 

421 in varied climate conditions in areas such as Australia, India, Europe, and North America. An HTR 

422 prototype has been developed to simulate ecological conditions appropriate for the establishments 

423 and spread of plant diseases in India (Jhorar et al. 1997). The HTR method has also been used to 

424 evaluate the risk of the establishment and spread of Karnal in wheat, grown under a variety of 

425 climatic conditions and in different areas (Mavi et al. 1992; Stansbury & Pretorius 2001; Workneh 

426 et al. 2008). This method has potential value in researching insect pests and their associated 

427 diseases, which may allow for the predictions of occurrence and non-occurrence under specific 

428 combinations of climate and weather conditions. 

429 Such predictions would be useful to help prioritise human effort when conditions are expected to 

430 be unfavourable. Predictions could also be used for preparation in advanced to meet the challenges 
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431 posed by threats of heavy crop losses. The HTR data can be extracted from remote sensing pre-

432 visual reductions in chlorophyll, which are useful for early stress detection at the palm tree-level 

433 or in different aged stands. 

434 3. Vegetation

435 3.1 Image processing for vegetation 

436 In order to detect changes, important information must be provided including spatial distributions 

437 of change, change rates, change trajectories for different vegetation types, and assessment of the 

438 accuracy of the change detection results. The three main steps in implementing change detection 

439 are (1) image pre-processing, e.g geometrical rectification (GR), image registration (IR), minimum 

440 noise fraction (MNF) analysis, radiometric, automorphic and topographic correction (the latter is 

441 needed if the study area is close to mountains) (Bishop & Colby 2002; Civco 1989; Muller et al. 

442 1988; Teillet et al. 1982); (2) selection of optimal techniques to conduct the change detection 

443 analysis; and (3) accuracy assessments (Datt et al. 2003; Lu et al. 2004; Lunetta et al. 2006; Lyon 

444 et al. 1998; Song et al. 2001) (see Fig.3). 

445 Although the selection of appropriate change detection techniques is important for the accuracy of 

446 change results; in practice, it might not be easy to select a suitable algorithm for a specific change 

447 detection application. Some simple techniques can be used to provide change and non-change 

448 information (e.g. image differencing). Other techniques may be used to provide a complex matrix 

449 of change direction data such as that used for post-classification comparisons (Lu et al. 2004). This 

450 review provides examples of change detection methods that can be used to address Dubas bug 

451 infestations and their impacts on date palm trees. 

452 3.2 Techniques and Methods 
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453 3.2.1 Vegetation Indices

454 Vegetation indexes (VIs) are used to compile data into a single number that quantifies vegetation 

455 biomass and/or plant vigour for each pixel in a remote sensing image. An index is computed by 

456 using several spectral bands that are sensitive to plant biomass and vigour. Such indices can be 

457 used to (1) specify the amount of vegetation (e.g. biomass, SAVI, the percentage of vegetation 

458 cover); (2) discriminate between soil and vegetation; and (3) reduce atmospheric and topographic 

459 effects. However, variability in VI data can arise from atmospheric effects, viewing and 

460 illumination angles, sensor calibrations, errors in geometric registration, subpixel water and 

461 clouds, snow cover, background materials, image compositing and landscape topography (e.g. 

462 slope and relief). For example, in sparsely vegetated areas, the reflectance of soil and sand are 

463 much higher than the reflection of vegetation; so the detection of reflection from the vegetation 

464 cover is difficult.

465 3.2.1.1 Difference Vegetation Index

466 The Difference Vegetation Index (DVI) is the simplest vegetation index (DVI = NIR – Red). DVI 

467 is sensitive to the amount of vegetation, and it can be used to distinguish between soil and 

468 vegetation. However, it does consider the difference between reflectance and radiance caused by 

469 the atmosphere and shadows (Jiang et al. 2006). Previous research (Glenn et al. 2008) that used 

470 the utility of image differencing, image rationing, and the vegetation index for detecting gypsy 

471 moth defoliation found that a difference of the MSS7/MSS5 ratio was more useful for delineating 

472 defoliated areas than any single band-pair difference. 

473 3.2.1.2 Ratio-Based Vegetation Indices 
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474 Ratio-based Vegetation Indices are also called the simple ratio (SR) or RVI (SR = NIR/Red). The 

475 SR provides valuable information about vegetation biomass or Leaf Area Index (LAI) variations 

476 in high-biomass vegetation areas such as forests. It is also useful in low-biomass situations, such 

477 as those containing soil, water, ice, etc., where the SR indicates the amount of vegetation present. 

478 The SR is capable of reducing the effects of the atmosphere and topography on the analysis results. 

479 3.2.1.3. Normalised Difference Vegetation Index  

480 Normalised Difference Vegetation Index (NDVI) are generally well-documented, quality-

481 controlled data sources that have been re-processed for many applications and problems. 

482 Limitations and causes of error in the NDVI data are related to satellites and include such issues 

483 as the sensor resolution, standardisation techniques, digital quantisation errors, ground and 

484 atmospheric conditions, and orbital and sensor variations (Gutman 1999; James & Kalluri 1994). 

485 It is possible to use the NDVI values to discriminate between dense forests, non-forested areas, 

486 agricultural fields and savannahs; however, distinguishing between forests with different dominant 

487 species is not possible by using this type of remote sensing data because several assemblages of 

488 plant species can produce similar NDVI values or similar NDVI temporal trends. Atmospheric 

489 conditions are another aspect that must be considered when using the NDVI. 

490 One study (Nageswara Rao et al. 2004) reported that bananas and coconuts have close greenness 

491 profiles in mid-April, but have rather distinct greenness profiles in mid-March. Another study 

492 (Chavez & MacKinnon 1994) reported that red band image differencing provided better change 

493 detection results for vegetation than red data when using the NDVI in arid and semi-arid 

494 environments of south-western United States. The NDVI may not be appropriate to use in dry 

495 areas, and caution is warranted for such applications. Date palms trees are often planted in a regular 
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496 grid pattern, as are olive trees and such trees may be able to be easily distinguished with NDVI 

497 data. 

498 3.2.1.4. Normalisation Difference Moisture Index 

499 The Normalisation Difference Moisture Index (NDMI) data can be used to determine the threshold 

500 presence of pest infestations (green attack). Such data can also be potentially used for deriving 

501 regional estimates of the year of stand death, for example, by using Landsat data and decision tree 

502 analysis. However, there are limitations associated with using the NDMI, which  include 

503 difficulties in detecting low rates of infestation and the need to add images from other dates (to 

504 achieve a higher temporal frequency) to quantify the spectral response to insects such as the Dubas 

505 bug. 

506 The application of a VI such as the NDVI and SAVI to multispectral satellite imagery (blue, red 

507 and NIR) has been shown to be useful to quantify variations in plant vigour, make relative biomass 

508 predictions, assess yields and investigate the occurrences of pests and disease attacks outbreaks 

509 (Plant 2001). Landsat TM data can be used to assess both plant age and LAI values by applying a 

510 number of indices such as the Shadow Index (SI), Bare soil Index (BI), NDVI, and Advanced 

511 Vegetation Index (AVI). 

512 3.2.2. Transformation

513 Feature space transformation, which relates to band space, involves processing data that are n-

514 dimensions. It may be difficult to visualise these data because the feature space (where n is roughly 

515 the number of bands). However, several mathematical techniques are readily available to analyse 

516 the feature space; they include Principal Components Analysis (PCA), Kauth’s Tasseled Cap 

517 (KTC), Perpendicular Vegetation Index (PVI), Leaf Water content Index (LWCI), SAVI, NDMI, 
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518 Atmospherically Resistant Vegetation Index (ARVI), Aerosol Free Vegetation Index (AFRI), 

519 Global Environmental Monitoring Index (GEMI), and Red-Edge Position (REP) Determination. 

520 These techniques and many more can be used to find areas that contain plentiful spectral 

521 information. Feature space transformation is useful to visualise pixel data and analyse information. 

522 It involves transforming the feature space mathematically in order to isolate groups of pixels that 

523 may be related (e.g. certain types of vegetation).

524 The PCA and the KTC transformations can be used for land cover change detection via NIR 

525 reflectance or greenness data that can detect crop type changes between vegetation and non-

526 vegetation features (Gorczyca et al. 1993; Lu et al. 2004). An earlier study (Rondeaux et al. 1996) 

527 found that SAVI, where the value X was tuned to 0.16, easily out-performed all other indices when 

528 applied to agricultural surfaces. Others  (Kaufman & Tanre 1992; Leprieur et al. 1996) have 

529 concluded that the GEMI and ARVI are less sensitive to atmosphere, but may be incapable of 

530 dealing with variation in soil reflectance. More information about feature space transformation can 

531 be found in (Crippen 1990; Richardson & Wiegand 1977). According to (Darvishzadeh et al. 

532 2008), REP is the most studied feature on vegetation spectral curve because it is strongly correlated 

533 with foliar chlorophyll content and can be a sensitive indicator of stress in vegetation.

534 3.2.3. Classification 

535 The objective of image classification is to categorise all pixels in the imagery into one of several 

536 land cover classes or themes. The categorised data can then be used to produce thematic maps of 

537 land cover (e.g. vegetation type) based on remotely sensed data. Most image processing techniques 

538 offers several methods to test hypotheses. The best-known methods include supervised and 

539 unsupervised classification; however, these techniques require ground reference data.
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540 Maximum Likelihood Classification, for example, requires samples of pixels obtained by field 

541 observations or aerial photography interpretations that are deemed to be representative of specific 

542 land cover types. The Maximum Likelihood method relies on the assumption that the populations 

543 from which these training samples are drawn, are multivariate–normal in their distributions. The 

544 traditional methods employ classical image classification algorithms (e.g. k-means and 

545 ISODATA) for unsupervised classification, and maximum likelihood classification for supervised 

546 classification. 

547 3.2.3.1. Maximum likelihood classification algorithm 

548 The maximum likelihood classification algorithm (or parametric information extraction) is the 

549 most widely adopted parametric classification algorithm. However, it requires normally distributed 

550 training data, especially for n (rarely the case) to compute the class variance and covariance 

551 matrices. Another limitation is that it is difficult to integrate non-image categorical data into a 

552 maximum likelihood classification. However, fuzzy maximum likelihood classification algorithms 

553 are also available (Zhang & Foody 2001). 

554 3.2.3.2. Classification techniques 

555 Supervised classification. The supervised classification methods can be used to select 

556 representative samples for each land cover class in a digital image. Sample land classes are more 

557 commonly called training sites. The image classification software uses the training sites to identify 

558 the land cover classes in the entire image. The classification of land cover is based on spectral 

559 signatures defined in the training set. The digital image classification software determines the class 

560 based on what it resembles most in the training set. The limitation on the use of supervised 

561 classification is that analysis are required to identify areas on an image of known informational 
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562 types and to create a training area (group of pixels) from which the computer generates a statistics 

563 file (Mountrakis et al. 2011). 

564 Unsupervised classification. The advantage of the use of unsupervised classification is that all 

565 spectral variation in the image are captured and used to group the imagery data into clusters. The 

566 major disadvantage is that is difficult to completely label all the clusters to produce the thematic 

567 map.   

568 Combined and advanced methods. Many examples exist whereby the supervised and unsupervised 

569 techniques were combined together in analyses. The associated advantages and disadvantages can 

570 be found in (Castellana et al. 2007; Pao & Sobajic 1992). However, the combined approach only 

571 slightly improves the ability to create thematic maps when compared to using each technique 

572 separately. Moreover, a large amount of effort has been devoted to developing advanced 

573 classification approaches to improve our ability to create thematic maps from digital remotely 

574 sensed imagery. One of the most recent advances has been the adoption of artificial neural 

575 networks (ANNs) in the place of maximum likelihood classification (standard in most remote 

576 sensing software). This review only covers a few of the non-parametric techniques. 

577 The difference between parametric and non-parametric techniques is that a parametric signature is 

578 based on statistical parameters (e.g., the mean) of the pixels that are in the training area 

579 (assumption of normal distribution), while the non-parametric signature is not based on statistics.

580 Artificial neural network (ANNs). Fortunately, the ANN methods (non-parametric information 

581 extraction) do not require normally distributed training data, and may be used to integrate with 

582 virtually any type of spatially distributed data in classification. The disadvantage of using ANN is 

583 that occasionally it is difficult to determine exactly how the ANN came up with a certain 

584 assumption because such information is locked within weights in a hidden layer or layers. The 
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585 method has been used successfully for classifying infestations, diseases/conditions of plants and 

586 the associated damage based on spectral data (Cox 2002; Liu et al. 2010; Pydipati et al. 2005). In 

587 recent years, spectral mixture analysis, ANNs, GISs and remote sensing data have become 

588 important tools for change detection applications.  

589 Artificial intelligence (AI). Use of nonmetric information extraction or AI methods allows the 

590 computer to analyse data perhaps better than people. The benefits of using AI for image analysis 

591 involve the use of expert systems that place all the information contained within an image in its 

592 proper context with ancillary data and then to extract valuable information (Duda et al. 2001).

593 Classification and regression tree (CART). Classification and regression tree is a non-parametric 

594 algorithm that uses a set of training data to develop a hierarchical decision tree. The decision tree 

595 is created by using a binary partitioning algorithm that selects the best variable by which to split 

596 the data into separate categories at each level of the hierarchy. Once the final tree is generated, it 

597 can be used to label all unknown pixels in the image. This method has been widely used in the last 

598 few years both for pixel-based and object-based image classification. This method is also 

599 extremely robust and provides significantly better map accuracies than those that have been 

600 achieved by using more basic approaches (Lawrence & Wright 2001). 

601 Support vector machines (SVMs). Support vector machines are derived from the field of statistical 

602 learning theory and have been used in the machine vision field for the last 10 years. These methods 

603 have been developed for use in creating thematic maps from remotely sensed imagery. The SVM 

604 performs by projecting the training data using a kernel function and this results in a data set that 

605 can then be linearly separated. The capability to separate out the various informational classes in 

606 the imagery is a powerful advantage. The use of SVM is relatively new, but it offers great potential 

607 for creating thematic maps from digital imagery. 
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608 Several advanced techniques for classifying digital remotely sensed data involve the extensive 

609 development and adoption of object-based image analysis. Moreover, advanced image 

610 classification techniques such as k-means, ISODATA, fuzzy ARTMP, fuzzy multivariate cluster 

611 analysis, the WARD minimum variance technique, SOM, the artificial neural classification 

612 algorithm (i.e. for the propagation of neural networks and self-organising maps) and Bayesian 

613 analysis can be used (1) for the classification of remotely sensed data; and (2) to delineate 

614 horticultural crops in satellite maps. The major advantage of these techniques is their ability to 

615 generate a matrix of change information and to reduce external impacts from the atmospheric and 

616 environmental differences among the multi-temporal images. However, it may be difficult to select 

617 high quality and sufficiently numerous training sets for image classification, in particular for 

618 important historical image data classifications due to the lack of data. Notably, it is a time 

619 consuming and difficult task to produce highly accurate classifications when high quality training 

620 sample data are not available. More information about improving classification results and reviews 

621 of these advanced methods can be found in the literature (Lu et al. 2003; Lu & Weng 2007; Lunetta 

622 et al. 2006; Monteiro et al. 2003; Rogan et al. 2002). 

623 All these classifications are performed on a pixel-by-pixel basis. Therefore, given that a pixel maps 

624 an arbitrary delineation of an area on the ground, any selected pixel may or may not be 

625 reprehensive of the vegetation/land cover of that area. In object-based image analysis (OBIA), 

626 unlabelled pixels are grouped into meaningful polygons that are then classified as polygon pixels. 

627 The OBIA technique can be used to increases the number of attributes such as polygon shapes, 

628 textures, perimeter to area ratios, and many others that can be used to classify accurately groups 

629 of pixels. More information about this method, also called segmentation, can be found in (Blaschke 

630 2010; Dey et al. 2010; Haralick & Shapiro 1985; Stafford 2000) .
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631 Classified satellite imagery can also be used to extract palm crown data. The centre of crowns can 

632 be isolated because they often remain green and are not as severely impacted by the Dubas bug as 

633 the palm fronds. Densities of the Dubas bug tend to be highest outside of the crown region. The 

634 removal of the centre and concentration on the outer parts of the vegetation can then lead to a 

635 higher probability of detecting the impacts of Dubas bug and categorising the infestation levels 

636 accurately. The images can also be used by classification techniques (e.g. unsupervised) to detect 

637 stages for which users do not have ground truth data. 

638 3.2.4 Image Segmentation Techniques 

639 Image segmentation techniques can be used to extract information on palm canopies. The crown 

640 information can be used to calculate the density of palms per unit. This information can then be 

641 applied as part of a GIS-based spatial analysis to answer questions about whether infestation levels 

642 are linked to the density of palms or not. The crown information could also be used to determine 

643 the random or systematic nature of farms. 

644 This information can be further used in GIS-based analyses to answer questions about whether or 

645 not randomly situated plants have a higher risk of infestation than non-randomly situated plants. 

646 Such information would be useful for determining the optimal row spacing. Research published in 

647 the literature suggests that those plantations that have wide row spacing have a lesser likelihood 

648 of Dubas bug infestations (Ali & Hama 2016). The row spacing data extracted from satellite 

649 imagery could thus be used to confirm the relationship between row spacing and infestation levels. 

650 3.2.5. Image Fusion 

651 Image fusion is a technology that merges two or more images of the same area collected by 

652 different sensors or at different wavelengths. For example, merging a 2.5 m multispectral image 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2716v1 | CC BY 4.0 Open Access | rec: 13 Jan 2017, publ: 13 Jan 2017



653 with a 0.7 m panchromatic image can be done to capitalise on the advantages of both image sets. 

654 The panchromatic images have very good spatial resolution but lack the multiband information 

655 that the 2.3 m multispectral image provides. Thus, the advantage of using image fusion for change 

656 detection is that fusion can allow for both high spatial and spectral resolutions, which will enable 

657 users to extract high quality land cover/vegetation information. Image fusion techniques such as 

658 the HSV (hue, saturation, value), Brovey, Gram-Schmidt and Principle Components methods can 

659 be used to compare the accuracy and distortion levels of images (e.g., 8-band Worldview images). 

660 4. Accuracy Assessment 

661 Accuracy assessment is an important part of any classification algorithm process, and it should be 

662 undertaken for every project because it is difficult to know how accurate a classification is without 

663 an accuracy assessment. The accuracy of a classification is usually assessed by comparing the 

664 classification with some reference data that is believed to accurately reflect the true land-cover. 

665 Reference data may include ground truth data, higher resolution satellite images and maps derived 

666 from aerial photographic interpretations. However, in the case for all reference data, even ground 

667 truth data, these data sets may also contain some inaccuracies. More information about accuracy 

668 assessments can be found in (Congalton 2001; Foody 2002; Gibbs et al. 2010; Hirano et al. 2003; 

669 Huang et al. 2007; Hughes et al. 2006; Stehman & Czaplewski 1998).

670 An essential aspect of any digital remote sensing project is accuracy assessment. (Congalton & 

671 Green 2008) reported that historically, thematic maps generated from information analogous to 

672 remotely sensed data through the use of photographic interpretations were not assessed for 

673 accuracy. However, the accuracy of thematic maps became a standard part of mapping projects 

674 with the advent of digital remote sensing technologies and quantitative assessment tools. There are 

675 two methods for assessing the accuracy of a map derived from remotely sensed imagery. They 
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676 assess the positional and thematic accuracy. The accuracy of a map is actually a combination of 

677 these two accuracy features, and neither can be ignored in a valid assessment process. An error 

678 can appear if the map location is wrong (i.e. missing polygons or distorted lines) or if the map 

679 labels are wrong. 

680 Positional accuracy methods can be used to provide an assessment of the differences in distance 

681 among a sample of locations on the map and those same locations on a reference data set. This 

682 same basic process can be used in assessing the thematic accuracy of a map, and it involves a 

683 number of initial considerations such as taking into account the sources of errors and the proper 

684 selection of classification systems. Determination of the thematic accuracy is more complicated 

685 than that of the positional accuracy. 

686 This is due to the size requirements for sampling thematic accuracy assessments, which are larger 

687 than those for positional accuracy assessments. An error matrix technique can be used to compute 

688 the thematic accuracy, and the error matrix can be generated by using reference data and correct 

689 or incorrect designations; one can also use qualifiers such as good, acceptable and poor to produce 

690 a fuzzy error matrix. Additionally, there are a number of analysis techniques that can be performed 

691 using the error matrix, such as the Kappa analysis. The Kappa analysis can be used to test 

692 statistically whether or not one error matrix is significantly different than another (Goodchild 

693 1994).

694
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695

696 Figure 3. Flowchart of an image processing methodology, which include three main steps for 

697 implementing change detection research, namely (1) image pre–processing work; geometrical 

698 replication (GR), image registration (IR), minimum nose fraction (MNF) analysis, radiometric 

699 correction (RC), atmospheric correction (AC) and topographic correction (TC); (2) selection 

700 of optimal techniques to conduct the change detection; and (3) accuracy assessments to obtain 

701 final maps.        

702 5. Modelling the spatial relationships between insect infestations and the environmental 

703 and climate factors  

704 While remote sensing techniques focus on visual and pre-visual detection and mapping, GIS 

705 techniques can be used to evaluate correlations, identify important variables, and develop 

706 predictive models. Geographical Information system functions and tools have made it possible to 

707 implement state-of-the-art spatial autoregressive techniques to investigate many research 

708 problems. Advances in GIS software, such as ArcInfo®, have greatly reduced the time for 
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709 estimating spatial parameters. For example, regression analysis allows users to examine, model 

710 and explore spatial relationships in order to better understand the factors behind the observed 

711 spatial patterns. It also allows users to predict hypotheses based on understanding of these factors. 

712 There are three main types of regressions, namely, linear regression, local regression, and logistic 

713 regression. Linear regression can be used to predict the values of y from values of xi as follows: 

714                                           (1)1 1 2 2 ... n ny a b x b x b x    

715 where y is the dependent variable, xi represents the independent variables i, and bi, …, bn are the 

716 regression coefficients. However, this requires several assumptions about the error, or residuals, 

717 between the predicted values and the actual values (Miles & Shevlin 2001). Some errors are related 

718 to a normal distribution for a set of independent variables, while others are related to the expected 

719 mean value of zero. Linear regression has been used to model wildlife home ranges (Anderson et 

720 al. 2005) and soil moisture (Lookingbill & Urban 2004). According to (Harris et al.), Local 

721 Regression or Geographically Weighted Regression (GWR) analysis can be used to predict 

722 information for every known point in order to derive a local model. Moreover, parameters for this 

723 method can include variations in space, thereby providing a basis for exploring non-stationary 

724 spatial relationships. The logistic regression method can be applied to model spatial relationships 

725 between features, such as when the dependent variable is categorical (e.g., presence or absence 

726 data) and when the independent variables are categorical, numeric or both (Menard 2002). The 

727 advantage of using the logistic regression is that it does not require the same set of rigid 

728 assumptions as required by linear regression.  

729 Various studies have involved the use of autoregressive models to investigate the relationships 

730 between insect infestations and factors that are based on environmental information. (Munar-Vivas 

731 et al.) combined environmental information, spatial data and attribute data in GIS-based maps to 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2716v1 | CC BY 4.0 Open Access | rec: 13 Jan 2017, publ: 13 Jan 2017



732 assess the impact of Moko disease on banana yields in Colombia. Specifically, they used a 

733 regression model to investigate the relationship between infested areas and distances from the 

734 Moko foci to cable-ways and drainage channels. (Coops et al.) studied the associations among the 

735 likelihood of occurrence, forest structure and forest predisposition variables using regression tree 

736 models. They found through modelling that location and slope were the major factors driving 

737 variations in the probability of red tree outbreaks. The GWR model has been used to detect high-

738 risk infestations caused by mountain pine beetle invasions of lodge-pole pine forests over large 

739 areas (Robertson et al. 2008). 

740 It is important to start by using single variables to develop correlations before moving to more 

741 complicated predictive models and regression analyses, where all factors are incorporated to 

742 investigate which combination of factors is most conducive to the survival and spread of insects 

743 or diseases. In our study, for instance, GWR could be used to model the correlation between Dubas 

744 bug infestation and meteorological variables such as humidity, rainfall, temperature, wind 

745 direction and wind speed; GWR could also be applied to model the correlations between Dubas 

746 bug infestations and environmental variables including soil type, slope, aspect ratio, ecology, soil 

747 salinity and solar radiation. Additionally, autoregressive models could be used to investigate the 

748 relationships between Dubas bug infestations and human practices such as irrigation, plantation 

749 systems, insecticide use, and methods of spraying.

750 5.1 Suitability Model for Detecting and Investigating Insect Infestations 

751 All of the methods used to study the relationships between dependent and independent variables 

752 discussed previously are traditional statistical methods, which sometimes might not reflect the 

753 complicated relationships between infestations and environmental factors. In particular, ecological 

754 and geographical environments represent complex systems in which individual elements interact 
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755 to create complex behaviour, and consequently, complex methods such as ANN, Cellular 

756 Automata (CA), and multi-agent systems (MAS) may be better suited to study the relationships 

757 and conduct factor analyses in insect infestation or disease detection research and to perform 

758 spread simulations (De Smith et al. 2007).

759 Numerous suitability models have been proposed to identify locations that have a particular set of 

760 characteristics. These models, which can be used to estimate the suitability, include BIOCLIM, 

761 DOMAIN, GARP, MAXENT, RNNDOM, FOREST, GLM and GAM. For example, BIOCLIM 

762 methods can be used to map the distributions of any biological entity, including pest species 

763 (Hernandez et al. 2006). These methods use algorithms to compute the similarity of locations by 

764 comparing the values for environmental factors at any location to a percentile distribution of the 

765 values at known location occurrences. 

766 In (Hernandez et al. 2006), the authors compared four different models (BIOCLIM, GAPP, 

767 DOMIN and MAXENT) and found that MAXENT was most capable for producing useful results 

768 with small sample sizes and minimum species occurrences. These models can also be used to 

769 identify areas that are susceptible to risks such as insect infestations, based on conditions favoured 

770 by the species. For example, a relevant study (Drees et al. 2010) used the habitat suitability 

771 selection method to model potential conservation areas for a rare ground beetle species (using 

772 Barcode Index Number or BIN). Specifically, they used five different data sets to identify several 

773 key habitat factors for Carabus variolosus stress levels. A model was developed in (Bone et al. 

774 2005) by using fuzzy theory to identify areas of susceptibility to Dendroctonus ponderosae 

775 Hopkins in Canada. However, GIS data have unique characteristics that can impact the results of 

776 the model (Crooks & Castle 2012). For example, a vector data models use the geometric features 

777 of points, polygons and lines to represent spatial objects, which is ideal for working with discrete 
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778 factors with well-defined locations and shapes. However, vector data models do not work well 

779 with spatial features that vary continuously over space such as elevation, temperature, soil 

780 moisture, rainfall, solar radiation and slope. Raster data models are better at representing 

781 geographical phenomena that are spatially continuous because they are much easier to manipulate 

782 than vector data models. 

783 As a result, raster data models are often used for finding and rating suitable locations and the raster 

784 overlay results are formatted in a single layer of suitable versus unsuitable cells, rather than in a 

785 vector layer with many polygons and an attribute table, which contains the attribute values for each 

786 of the polygons.There are two ways to create raster suitability layers. The first approach is to query 

787 the individual sources to create the suitability layer. The query can be used to create a suitability 

788 layer with two values, ‘1’ for cells meeting all criteria of a suitable habitat, and ‘0’ for the others. 

789 Because the layer consists of only two values, one indicating suitable and the other unsuitable 

790 cells, they are called binary suitability layers. Binary processing however is not always necessary. 

791 Combined with other evaluation models, suitability mapping can be achieved by overlaying 

792 directly or by post processing the overlay results. Figure 4 shows a process that could be used to 

793 find suitable location conditions (habitat) for insects such as Dubas bug by using a raster method 

794 overlay. 

795
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796 Figure 4. Schematic of the process that can be used to model the suitable location for 

797 Dubas bug infestations   

798 The uncertainty that results from geo-processing operations, demonstrates that sophisticated 

799 spatial analysis cannot be achieved using traditional, deterministic geoprocessing methods alone 

800 (Goodchild & Glennon 2010; Zhang & Goodchild 2002) . Fuzzy logic is a superset of Boolean 

801 logic and has the ability to handle uncertainty in data that arises from vagueness instead of 

802 randomness alone (Li et al. 2010). 

803 Fuzzy logic can be utilised to extract information from high resolution remote sensing data and 

804 combined with a raster-based GIS to produce maps representing the spatial variation of 

805 vulnerability to pests across a landscape. This method also allows for partial association with one 

806 or more classes, meaning that objects may be represented by a value based on a membership 

807 function between ‘0’ and ‘1’. The membership function of an element x belonging to a fuzzy set 

808 A is computed by:                           

809

810                                                            (2): [0,1]A U 

811 where U is the universal set of x. The concept of fuzzy sets has also been employed for defining 

812 the spatial and attributes characteristics of geographic objects (Burrough & Frank 1996; Wang & 

813 Hall 1996). The results of such analysis can be rendered directly into a decision framework via 

814 maps, tables, and charts. The results can also be used in further analyses or to provide additional 

815 understanding of the problem. 

816 The challenge in any particular area of study is the geographical extent and the resolution of 

817 analysis, which is determined by the phenomenon being modelled. To achieve validity, researchers 

818 must ensure that they are using accurate and current data whenever possible. If the data are from 
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819 one’s own organisation, one can rely on data quality controls that are in place. Data quality should 

820 be checked against alternate sources if possible in order to ensure it meets the requirements of the 

821 analysis. Assessing the quality of data will provide guidance to predicting what level of confidence 

822 can be attributed to the result of the modelling work.

823 6. Conclusions

824 In this review, a variety of spatial information technologies, including remote sensing and GIS 

825 methods, have been shown to be useful in areas of research involving insect infestations 

826 worldwide. Environmental and climatic conditions are very important in determining the 

827 distribution and survival of any species, including the Dubas bug, which is a problematic pest in 

828 date palm plantations. We argue that most of the current research on Dubas bug has focused on its 

829 ecology, biology or control mechanisms only. There has been very limited research linking the 

830 presence/absence, density, spatial and temporal distributions (Al-Kindi et al. 2017) of Dubas bug 

831 with environmental, meteorological, and human practices that promote its development, 

832 prevalence and spread. Understanding the distribution and affinity of the Dubas bug in terms of 

833 these variables and mapping of the data can play a key role in its control and management, as well 

834 as resource allocation. 

835 Accurate data on the area involved and resources affected are needed. Similarly, data on areas 

836 where the problem is more severe than others are similarly required. The presence of insect 

837 infestation causing widespread damage is often an indication of a deeper agricultural health 

838 problem. Therefore, it is necessary to examine site and stand conditions, past management 

839 practices, climatic variables, and other conditions that may favour the spared of damaging agents.       

840 Technical advances in the field of remote sensing from aircraft or satellite platforms have greatly 

841 enhanced the ability to detect and quantify physical and biological stresses in several plant species. 
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842 Argent techniques need to be developed and implemented in surveillance and control of the Dubas 

843 bug over large areas in order to provide IPM and relevant information in time for preventative 

844 action to be taken. Remotely sensed satellite data are another source of useful information for GIS 

845 users. For instance, the spatial resolution of satellite images relates to ground pixels. Satellite 

846 images can be processed digitally to produce a wide variety of thematic data for a GIS project such 

847 as ones involving land use, vegetation types, crop health or eroded soil. Satellite images can 

848 provide timely data if they are collected at regular intervals. They can also provide temporal data 

849 that are valuable for recording and monitoring changes in both terrestrial and aquatic 

850 environments.

851 GIS can assist environmental modellers with data visualisation, database management and 

852 exploration. A regression model relies on overlays to combine data for the statistical analysis of 

853 dependent and independent variables. GIS and its functionalities can be used to build or assist in 

854 building a spatially explicit model from geospatial data. Climatic factors such as extreme 

855 temperature, high relative humidity, the occurrence of cyclones, severe rain and hail storms, and 

856 environmental factors like soil and water salinity and human practices such as traditional and 

857 outdated methods of cultivation, all require further investigation in future research.
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