
Phylogenetic analysis of software evolution, a case study:

VE&MINT

Alvaro Ortiz-Troncoso Corresp. 1

1 Science Programme Public Engagement with Science, Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the

Humboldt University Berlin, Berlin, Germany

Corresponding Author: Alvaro Ortiz-Troncoso

Email address: alvaro.ortiztroncoso@mfn.berlin

Open source projects may face a forking situation at some point during their life-cycle. The

traditional view is that forks are a waste of project resources and should be avoided.

However, in a wider technological and organisational context, forks can be a way to foster

the creation of a software ecosystem. Either way, forking is explicitly allowed by open

source licenses. Notwithstanding, methods for quantifying the evolution of forks are

currently scarce. The present work attempts to answer the question whether a real-life

project has forked. It does so by considering code and organisational characteristics of the

project, and analysing these characteristics by applying methods ported from biological

phylogenetics. After finding that the project is forked, implications for project governance

are discussed.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Phylogenetic analysis of software1

evolution, a case study: VE&MINT2

Alvaro Ortiz-Troncoso1
3

1Museum für Naturkunde Berlin4

Corresponding author:5

Alvaro Ortiz-Troncoso1
6

Email address: alvaro.OrtizTroncoso@mfn.berlin7

ABSTRACT8

Open source projects may face a forking situation at some point during their life-cycle. The traditional view

is that forks are a waste of project resources and should be avoided. However, in a wider technological

and organisational context, forks can be a way to foster the creation of a software ecosystem. Either

way, forking is explicitly allowed by open source licenses. Notwithstanding, methods for quantifying the

evolution of forks are currently scarce. The present work attempts to answer the question whether a

real-life project has forked. It does so by considering code and organisational characteristics of the

project, and analysing these characteristics by applying methods ported from biological phylogenetics.

After finding that the project is forked, implications for project governance are discussed.

9

10

11

12

13

14

15

16

1 INTRODUCTION17

In open source software development, a fork is a bifurcation from an existing project, resulting in18

an autonomous development strand, with its own name, infrastructure, code base, and community19

of developers (Robles and González-Barahona, 2012). Organisations adopting open source software20

development might face a fork situation during the software’s life-cycle, or might voluntarily fork existing21

software as a means to solve technical-, license-, and team-related issues (Nyman and Lindman, 2013;22

Robles and González-Barahona, 2012).23

Knowing whether a project will likely fork (or has forked already) can therefore facilitate project24

management. Phylogenetic methods, ported from evolutionary biology, can be used to estimate a25

phylogenetic tree of a project (Ortiz-Troncoso, 2018a), and hence provide a method for estimating26

whether two diverging development strands are more likely to fork than to merge. The present work27

applies phylogenetic methods to the evolution of a real-world project, VE&MINT.28

The VE&MINT project is a cooperation between several German institutes: MINT-Kolleg Baden-29

Württemberg with the VEMINT-Konsortium, the Leibniz Universität Hannover, and the Technische30

Universität Berlin (VE&MINT, 2016). The project’s purpose is to offer a preparatory mathematics course31

online1. Technically, course modules are written using the document preparation system LaTeX. The32

modules are transformed into formats suitable for online presentation using a software originally authored33

at the Karlsruhe Institute of Technology (KIT) and further developed at the Technische Universität Berlin34

(TUB). There are two main software development strands: the KIT and the TUB strands. These strands35

are developed by different teams, yet the name of the project is the same, and the teams have access to each36

other’s code repositories. Therefore, the definition of fork proposed by Robles and González-Barahona37

(2012), introduced above, applies only in part. The purpose of the present analysis is to study the evolution38

of the VE&MINT project by answering the following question:39

Research Question40

Can the KIT and TUB software development strands be considered parts of one project or is the41

original project forked in two different projects?42

1The version of the course developed at the Technische Universität Berlin can be accessed at: https://www.

math4refugees.tu-berlin.de/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

https://www.math4refugees.tu-berlin.de/
https://www.math4refugees.tu-berlin.de/

The answer to this question could be instrumental in directing the development effort in future iterations43

of the project.44

2 MATERIALS AND METHODS45

The “master” branch, maintained by the Karlsruhe Institute of Technology (KIT) and the “multilang”46

branch, maintained by the Technische Universität Berlin (TUB) were used for the analysis, as these are47

the two branches under active development.48

The two development strands do not have a common release scheme. In order to quantify development,49

it was necessary to create releases. This was accomplished by creating a release for each month in each50

branch. As TUB development started in June 2016, the chosen time period spans from the 1st July 201651

to the 1st January 2018.52

Software metrics were computed for each month in each branch. The choice of software metrics is53

based, with alterations, on the overview of software metrics provided by Nagappan et al. (2008). Metrics54

about team members were anonymised. A summary of the metrics retained and of their data types is55

given in table 1.56

Table 1. Summary of metrics and their data types

Metric Domain Data type

Presence (or absence) of a file in a

release

One measurement for each version

of a file in a release

Boolean

File changes (checksums) One measurement for each version

of a file in a release

categorical

Code churn: line count for each

code file

One measurement for each version

of a code file in a release

integer

Team composition: presence

(or absence) of a team member

(anonymised) for each release

One measurement for each team

member contributing to a release

Boolean

Edit frequency: count of edits by

each team member (anonymised) for

each release

One measurement for each team

member contributing to a release

integer

Code ownership: count of commits

by each team member (anonymised)

for each release

One measurement for each team

member contributing to a release

integer

A matrix of pairwise dissimilarity between releases was computed. As the measurements used are of57

different data types (table 1), the Gower algorithm for computing distance matrices was used, since this58

algorithm can combine measurements of mixed data types (D’Orazio, 2016).59

The Neighbour-Joining (NJ) algorithm (Saitou and Nei, 1987) was used to estimate a phylogenetic60

tree from the distance matrix, as previous work on well-documented cases of forks, e.g., the MySQL /61

MariaDB fork (Ortiz-Troncoso, 2018a), suggests that the NJ algorithm produces the most accurate results62

when applied to the evolution of software. The tree was rooted at the last release prior to the start of63

development at the TUB (June 2016).64

A cophenetic distance matrix was computed to obtain a numerical representation of the phylogenetic65

tree: The elements of the cophenetic distance matrix are the pairwise distances between the tips of the66

tree (R Development Core Team, 2008, p. 1275). The correlation between the distance matrix (obtained67

from code and team characteristics) and the cophenetic distance matrix (obtained from the tree) was used68

as a measurement of how well the tree represents the data.69

Whether the VE&MINT project is forked was answered by performing a comparison of the mean70

cophenetic distance between releases in the same development strand (“branches”) vs. across strands71

(“forks”), (building upon Ortiz-Troncoso (2018a)). The research question can be expressed as a statistical72

hypothesis:73

2/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Statistical hypothesis74

A project is forked when a branch can be told from a fork by examining the pairwise distance between75

releases: if the mean cophenetic distance between releases is significantly different (p<0.05) and76

larger depending on whether the releases are on the same or on different development strands, then77

the project is forked.78

The research question can thus be answered by comparing the means of the pairwise cophenetic79

distances for two treatments (“branches” and “forks”). Two variables are examined: one nominal variable,80

whether a pair of releases are on the same development strand (“branches”) or on different development81

strands (“forks”); and one measurement variable: the pairwise cophenetic distance between releases.82

As the variance of the measurement variable is not assumed to be equal for the two treatments, the83

Welch two-sample t-test was chosen (McDonald, 2014, p. 130). A t-test assumes that the data is normally84

distributed. Performing a t-test on data that is not normally distributed increases the risk of false positives85

(McDonald, 2014, p. 128). Previous work has shown that the distribution of cophenetic distances between86

software releases is not normally distributed, but that the square root of distances better fits the normal87

distribution (Ortiz-Troncoso, 2018a). Therefore, the t-test was performed on square root transformed data.88

The source code of the KIT development strand can be downloaded from https://bitbucket.89

org/dhaase/ve-und-mint/src/master/, and the TUB source from https://gitlab.tubit.90

tu-berlin.de/stefan.born/VEUNDMINT_TUB_Brueckenkurs. The data set composed91

of measurements of code and anonymized organisational characteristics can be downloaded from:92

http://doi.org/10.5281/zenodo.1327424. The analysis was done using Evorepo, a soft-93

ware for constructing phylogenetic trees of software evolution (Ortiz-Troncoso, 2018b). The source code94

to produce the phylogenetic analysis for this work can be downloaded from: https://zenodo.org/95

record/1401151.96

3 RESULTS97

The measurements obtained from the releases were stored in a database and exported to a spreadsheet98

consisting of one column for each release and one row for each measurement. Two data sets were created:99

one for the measurements obtained from code characteristics and one for the measurements obtained from100

team characteristics (table 1). A matrix of pairwise distances between releases was computed based on101

each data set, and a phylogenetic tree was estimated from the distance matrix obtained from each data102

set, applying the methods described above (figures 1 and 2). The trees represents the distance matrix103

accurately (code data: 0.9999605 correlation, p < 2.2×10−16; team data: 0.9843978 correlation, p <104

2.2×10−16).105

3/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

https://bitbucket.org/dhaase/ve-und-mint/src/master/
https://bitbucket.org/dhaase/ve-und-mint/src/master/
https://bitbucket.org/dhaase/ve-und-mint/src/master/
https://gitlab.tubit.tu-berlin.de/stefan.born/VEUNDMINT_TUB_Brueckenkurs
https://gitlab.tubit.tu-berlin.de/stefan.born/VEUNDMINT_TUB_Brueckenkurs
https://gitlab.tubit.tu-berlin.de/stefan.born/VEUNDMINT_TUB_Brueckenkurs
http://doi.org/10.5281/zenodo.1327424
https://zenodo.org/record/1401151
https://zenodo.org/record/1401151
https://zenodo.org/record/1401151

TUB.2016.07.01

TUB.2016.08.01

TUB.2016.09.01

TUB.2016.10.01

TUB.2016.11.01

TUB.2016.12.01

TUB.2017.01.01

TUB.2017.02.01

TUB.2017.03.01

TUB.2017.04.01

TUB.2017.05.01

TUB.2017.06.01

TUB.2017.07.01

TUB.2017.08.01

TUB.2017.09.01

TUB.2017.10.01

TUB.2017.11.01

TUB.2017.12.01

TUB.2018.01.01

KIT.2016.06.01

KIT.2016.07.01

KIT.2016.08.01

KIT.2016.09.01

KIT.2016.10.01

KIT.2016.11.01

KIT.2016.12.01

KIT.2017.01.01

KIT.2017.02.01

KIT.2017.03.01

KIT.2017.04.01

KIT.2017.05.01

KIT.2017.06.01

KIT.2017.07.01

KIT.2017.08.01

KIT.2017.09.01

KIT.2017.10.01

KIT.2017.11.01

KIT.2017.12.01

KIT.2018.01.01

Figure 1. A phylogenetic tree of the VE&MINT project, obtained from code characteristics.

4/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

TUB.2016.07.01

TUB.2016.08.01

TUB.2016.09.01

TUB.2016.10.01

TUB.2016.11.01

TUB.2016.12.01

TUB.2017.01.01

TUB.2017.02.01

TUB.2017.03.01

TUB.2017.04.01

TUB.2017.05.01

TUB.2017.06.01

TUB.2017.07.01

TUB.2017.08.01

TUB.2017.09.01

TUB.2017.10.01

TUB.2017.11.01

TUB.2017.12.01

TUB.2018.01.01

KIT.2016.06.01

KIT.2016.07.01

KIT.2016.08.01

KIT.2016.09.01

KIT.2016.10.01

KIT.2016.11.01

KIT.2016.12.01

KIT.2017.01.01

KIT.2017.02.01

KIT.2017.03.01

KIT.2017.04.01

KIT.2017.05.01

KIT.2017.06.01

KIT.2017.07.01

KIT.2017.08.01

KIT.2017.09.01

KIT.2017.10.01

KIT.2017.11.01

KIT.2017.12.01

KIT.2018.01.01

Figure 2. A phylogenetic tree of the VE&MINT project, obtained from team characteristics.

In order to answer the research question, a relation was sought between the main pairwise distance106

between releases and whether these releases are part of the same development strand (“branches”)107

or are part of different strands (“forks”). The analysis was repeated for the data obtained from code108

characteristics and for the data obtained from team characteristics (tables 2 and 3). The analysis shows109

that the the null hypothesis can be rejected (p < 2×10−16) for each data set. Therefore, the distance110

between releases on the same strand (“branches”) is significantly different from the distance between111

releases across strands (“forks”).112

5/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

Table 2. Pairwise distances of branches vs. forks for the code dataset.

Welch Two Sample t-test

data: values by vars

t = -56.836, df = 704.91, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.7676998 -0.7164323

sample estimates:

mean in group Branches mean in group Forks

0.1690282 0.9110943

Table 3. Pairwise distances of branches vs. forks for the team dataset.

Welch Two Sample t-test

data: values by vars

t = -8.4289, df = 709.32, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.08226048 -0.05117884

sample estimates:

mean in group Branches mean in group Forks

0.3914378 0.4581575

4 DISCUSSION113

The estimated phylogenetic trees (figures 1 and 2) show all releases as a monophyletic clade, i.e., they all114

descend from a common ancestor. The most recent common ancestor of all releases is the KIT release115

dated June 2016. After that, the algorithm estimated that the most parsimonious tree, i.e., the simplest and116

therefore the most likely tree, is a tree where most KIT and TUB releases are grouped separately.117

The analysis of variance found that the distance between releases of different development strands is118

significantly larger than the distance inside development strands. This provides evidence for the hypothesis119

that the project could be said to be forked.120

Nyman and Lindman (2013) discuss the implications of forking from the point of view of project121

governance. They argue that forking affects open source project at three levels:122

• At the software level, a fork creates a redundancy, reduces the probability that a project might123

become obsolete, and hence increases the lifespan of a project.124

• At the community level, a fork allows to tackle multiple issues, using different technologies, and125

hence increases the sustainability of a project’s community of developers.126

• At the business level, forks provide a mechanism for quickly responding to changing needs in the127

user base.128

On the other hand, forking can result in competing products, i.e. competing for the participation of129

developers. Therefore, in order to take advantage of the possibilities offered by a fork, the governance of130

6/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

a forked project should focus on nurturing a community of practice (encompassing forked strands) and131

encouraging external participation Kogut and Metiu (2001).132

5 CONCLUSIONS133

A phylogenetic analysis of the development of the VE&MINT project found evidence that the development134

strands at the KIT and at the TUB are forked.135

The phylogenetic analysis is neither capable of discerning the reasons for the fork nor to make136

predictions about the fork’s outcome (Ortiz-Troncoso, 2018a). However, having obtained quantitative137

evidence that the project is forked could facilitate a discussion on the way the project should be steered,138

as well as on the validity of the method presented here.139

6 ACKNOWLEDGEMENTS140

I wish to thank Erhard Zorn of TUB for providing feedback on the first draft of this paper.141

REFERENCES142

D’Orazio, M. (2016). StatMatch: Statistical Matching.143

Kogut, B. and Metiu, A. (2001). Open-source software development and distributed innovation. Oxford144

Review of Economic Policy, 17(2):248–264.145

McDonald, J. H. (2014). Handbook of Biological Statistics. Sparky House Publishing.146

Nagappan, N., Murphy, B., and Basili, V. (2008). The influence of organizational structure on software147

quality. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages148

521–530. IEEE.149

Nyman, L. and Lindman, J. (2013). Code Forking, Governance, and Sustainability in Open Source150

Software. Technology Information Management, (January):7–12.151

Ortiz-Troncoso, A. (2018a). Evaluating phylogenetic methods for quantifying risks and opportunities152

presented by forks in open source software (master dissertation). Zenodo.153

Ortiz-Troncoso, A. (2018b). evorepo version 0.9.1.154

R Development Core Team (2008). R - A language and environment for statistical computing. Social155

Science, 3.156

Robles, G. and González-Barahona, J. M. (2012). A Comprehensive Study of Software Forks: Dates,157

Reasons and Outcomes.158

Saitou, N. and Nei, M. (1987). The neighbor-joining method : a new method for reconstructing phyloge-159

netic trees. Molecular and Biological Evolution, 4(4):406–425.160

VE&MINT (2016). Ve&mint. http://www.ve-und-mint.de/. Accessed: 2018-02-20.161

7/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27159v1 | CC BY 4.0 Open Access | rec: 29 Aug 2018, publ: 29 Aug 2018

http://www.ve-und-mint.de/

