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Abstract MAP-Elites is an evolutionary computation technique that has proven
valuable for exploring and illuminating the genotype-phenotype space of a com-
putational problem. In MAP-Elites, a population is structured based on phenotypic
traits of prospective solutions; each cell represents a distinct combination of traits
and maintains only the most fit organism found with those traits. The resulting map
of trait combinations allows the user to develop a better understanding of how each
trait relates to fitness and how traits interact. While MAP-Elites has not been demon-
strated to be competitive for identifying the optimal Pareto front, the insights it
provides do allow users to better understand the underlying problem. In particular,
MAP-Elites has provided insight into the underlying structure of problem repre-
sentations, such as the value of connection cost or modularity to evolving neural
networks. Here, we extend the use of MAP-Elites to examine genetic program-
ming representations, using aspects of program architecture as traits to explore. We
demonstrate that MAP-Elites can generate programs with a much wider range of
architectures than other evolutionary algorithms do (even those that are highly suc-
cessful at maintaining diversity), which is not surprising as this is the purpose of
MAP-Elites. Ultimately, we propose that MAP-Elites is a useful tool for under-
standing why genetic programming representations succeed or fail and we suggest
that it should be used to choose selection techniques and tune parameters.
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1 Introduction

When programmers write code, they ideally want to structure it to be fast to imple-
ment, easy to extend, and clear for others to understand. Of course, these properties
aren’t usually compatible: program architectures that are fastest to write are usually
not simple to extend or understand. We face a similar problem when we evolve pro-
grams with genetic programming (GP); the solutions that evolve most easily are typ-
ically a tangled mess. They are not useful as building blocks for solving more com-
plex problems (i.e., they are not evolvable), and they are challenging to tease apart
what is going on. Because program architecture is so important for evolvability and
decomposability, substantial effort goes into developing genetic programming sys-
tems that promote the evolution of programs with more evolvable architectures. For
example, modularity is an important principle of software design and is also known
to be an important component of evolvability (Kirschner and Gerhart, 1998), which
has led many to design genetic programming systems with the goal of promoting
the evolution of modular code (Koza, 1994; Walker and Miller, 2008; Spector et al.,
2011).

Indeed, within the GP community, we have an abundance of ways to represent
programs that we expect will be evolvable or interpretable, each with its own unique
set of available programmatic elements and ways of organizing, interpreting, and
mutating programs. Given the diversity of GP representations, understanding how
to choose the most appropriate representation or configuration of a representation
for a particular problem is an open issue in the field (O’Neill et al., 2010). Making
headway on this issue requires expanding the existing toolkit of formal analyses
for GP representations. While many different high-level properties of code can be
considered, for the rest of this chapter we will focus on code evolvability.

In particular, it would be helpful to have a way to get insight into the range of
program architectures that a given representation is capable of evolving. Doing so
will help us disentangle issues related to the representation itself from issues with
the way the rest of an evolutionary algorithm is set up (selection for evolvability
is notoriously challenging to facilitate). Moreover, having access to examples of
programs with different architectures is critical to setting up experiments that will
tell us when these architectures are useful and how they interact with other features
of a given representation. Ultimately, a tool for exploring program architectures
would aid us in drawing generalizable insights that may be useful for others in the
field.

The issue of wanting access to programs with a range of different architectures
is an instance of a common problem. Often in evolutionary computation, we would
like to evolve good solutions that are diverse with respect to a set of phenotypic
traits (Pugh et al., 2015). For example, we might want to provide a variety of op-
tions to stakeholders making a decision (Chikumbo et al., 2012). Alternatively, we
might want to provide a robot with alternative locomotion strategies to use if it gets
damaged (Cully et al., 2015). MAP-Elites has been demonstrated to be an effective
technique for evolving a diverse set of solutions to a problem (Mouret and Clune,
2015).
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In MAP-Elites, the user selects some number of phenotypic axes that they ex-
pect will be relevant to solving the problem but might not be directly correlated
with fitness. Each axis is then discretized into some pre-determined number of bins,
resulting in a multi-dimensional grid where a location in the grid corresponds to
a distinct combination of phenotypic traits. When a new solution is generated, its
phenotype is assessed, and it is placed into a bin corresponding to that phenotype. If
that bin is empty or occupied by a lower-fitness individual, the new solution replaces
it. Otherwise, it is discarded.

Thus far, MAP-Elites had been used to evolve robot arms (Cully and Demiris,
2018), robot gaits (Cully et al., 2015), soft-bodied robots (Mouret and Clune, 2015),
and neural networks for a computer vision task (Mouret and Clune, 2015). Interest-
ingly, in this last task, the phenotypic axes (connection cost and modularity) related
to the morphology of the neural networks themselves. Using these axes, MAP-Elites
not only found a range of good solutions, but provided insight into the topology of
the underlying fitness landscape as it relates to these two traits. The heat map pro-
duced by MAP-Elites shows which types of networks are capable of succeeding at
the task and what constraints network traits place on each other. Here, we attempt
to do the same for GP. Are there multiple programmatic paths to solving a prob-
lem? Can we identify inherent trade-offs between different traits (e.g., modularity,
instruction composition, etc.) in evolving programs? We see MAP-Elites as a tool
that can be used to answer these questions by illuminating interactions between dif-
ferent aspects of a GP representation when applied to a problem. This increased
understanding can help in building an intuition for what types of programs might be
most appropriate for a given problem, which can be used to inform representation
choice, population initialization, or mutation operators.

In this chapter, we demonstrate the use of MAP-Elites to explore a simple linear
GP representation. By selecting phenotypic axes for MAP-Elites that correspond
to program architecture and instruction composition, we can show how relevant
different features of our GP representation are to the evolutionary process across a
variety of problems. We compare the forms of programs evolved under MAP-Elites,
lexicase selection, tournament selection, and random drift, demonstrating that MAP-
Elites produces more varied solutions. Further, we discuss additional program traits
that could be used as phenotypic axes in MAP-Elites that appear promising, but we
have not yet explored in this work.

2 Methods

2.1 Computational Substrate

For this study, we evolve linear genetic programs where each program is a linear
sequence of instructions, and each instruction has up to three arguments that may
modify its behavior. Most notably, our linear genetic programming (LGP) computa-
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tional substrate supports subroutines, allowing programs with modular architectures
to evolve.

Making efficient use of modular subroutines has long been thought to be impor-
tant to facilitating the evolution of genetic programs that solve complex problems.
Indeed, incorporating modules into GP has been extensively explored, and their ben-
efits have been well documented (e.g., (Koza, 1994, 1992; Angeline and Pollack,
1992; Keijzer et al., 2005; Walker and Miller, 2008; Roberts et al., 2001; Spector,
1996; Spector et al., 2011)). We designed our LGP representation to facilitate the
evolution of modular and reusable code while minimally affecting the way in which
traditional linear genetic programs are organized (i.e., linear sequences of instruc-
tions). We include a number of instructions in the language that automatically create
programming structures like loops and subroutines, and we enable these features
through the concept of “scopes”, which are functionally similar to “environments”
in Push (Spector, 2001; Spector and McPhee, 2018).

2.1.1 Virtual CPU Hardware

Our linear genetic programs are executed in the context of a virtual CPU with the
following components:

• Instruction Pointer: A marker to indicate the position in the genome currently
being executed. Many instructions will influence how the instruction pointer (IP)
moves through the genome.

• Registers: Each virtual CPU has 16 registers. Programs can store a single
floating-point value in each register. Registers are initialized with numbers cor-
responding to their ID (e.g., register 0 is initialized to the value 0.0, register 1 is
initialized to the value 1.0, and so on).

• Stacks: Each virtual CPU has 16 stacks. Programs can push floating point num-
bers onto these stacks and pop them off later.

• Inputs: Each virtual CPU can accept an arbitrary number of input values. These
values do not need to be in any particular order, but each value needs to be as-
sociated with a unique numerical label that the program can use to access it. For
the purposes of this paper, we always use sequential integers starting at 0.

• Outputs: Outputs function the same way as inputs. The only difference between
inputs and outputs is the way instructions interact with them; whereas instruc-
tions can read from inputs but not write to them, instructions can write to outputs
but not read from them.

• Scopes: Each virtual CPU has 16 scopes (plus the global scope), described in the
next section.
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2.1.2 Scopes

In software development, the scope of a variable specifies the region of code in
which that element may be used. In a sense, a scope is like a programmatic mem-
brane, capable of encapsulating all manner of programmatic elements, such as vari-
ables, functions, et cetera, and allowing regions to be looped through or skipped
entirely. Our LGP representation gives evolving programs control over instruction-
and memory-scoping, allowing programs to easily manage flow control and variable
lifetime.

In our LGP representation, scopes provide the backbone on top of which all of
the other modularity-promoting features, such as loops and functions, are built. All
instructions in a program exist within a scope, be it the default outermost scope
or one of the 16 other available scopes (making 17 possible scopes) that can be
accessed via various instructions. These 16 inner scopes have a hierarchy to them,
such that higher-numbered scopes are always nested inside lower-numbered scopes.

At the beginning of the program, all instructions before the first change of scope
are in the outermost scope. After a scope-changing instruction occurs in the genome,
subsequent instructions are added to the new scope until another scope-changing
instruction is encountered, and so on. These scopes are ordered numerically. Higher-
numbered scopes are always nested inside lower-numbered scopes. Scopes can be
exited with the break instruction or by any instruction that moves control to a
lower-numbered scope.

Scopes are also the foundation of program modules (functions). The define
instruction allows the program to put instructions into a scope and associate the
contents of that scope with one of 16 possible function names. Later, if that function
is called (using the call instruction), the program enters the scope in which that
function was defined and executes the instructions within that scope in sequence,
including any internal (nested) scopes.

Similarly, scopes are the foundation of loops. Two kinds of loops exist in the in-
struction set used here: while loops and countdown loops. Loops of both types have
a corresponding scope, which contains the sequence of instructions that make up
the body of the loop. Both types of loops repeat their body (i.e., the contents of their
associated scope) until the value in an argument-specified register is 0. Countdown
loops automatically decrement this register by one on every iteration. When any in-
struction is encountered that would cause the program to leave the current scope,
the current iteration is ended and the next one begins.

2.1.3 Instructions

In this work, evolving programs can contain the following library of 26 different
instructions. For each, instruction arguments are limited to 16 values (0 through 15)
and are used to specify any of the following: registers, scopes, functions, inputs, or
outputs. Arguments for each instruction and their types are shown in the parentheses

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27154v1 | CC BY 4.0 Open Access | rec: 28 Aug 2018, publ: 28 Aug 2018



6 Emily Dolson and Alexander Lalejini and Charles Ofria

after each instruction name.

• Inc (Register A): Increment the value in register A by 1.
• Dec (Register A): Decrement the value in register A by 1.
• Not (Register A): If Register A equals 0.0, set to 1.0. Otherwise set to 0.0.
• SetReg (Register A, Value B): Store numerical value of B into register A.
• Add (Register A, Register B, Register C): Add the value in register A to the value

register B and store the result in register C.
• Sub (Register A, Register B, Register C): Subtract the value in register B from

the value in register A and store the result in register C.
• Mult (Register A, Register B, Register C): Multiply the value in register A by

the value in register B and store the result in register C.
• Div (Register A, Register B, Register C): Divide the value in register A by the

value in register B and store the result in register C.
• Mod (Register A, Register B, Register C): Calculate the value in register A mod-

ded by the value in register B and store the result in register C.
• TestEqu (Register A, Register B, Register C): Store the value 1.0 in register C

if the value in register A is equal to value in register B. Otherwise store the value
0.0 in register C.

• TestNEqu (Register A, Register B, Register C): Store the value 0.0 in register C
if the value in register A is equal to value in register B. Otherwise store the value
1.0 in register C.

• TestLess (Register A, Register B, Register C): Store the value 1.0 in register
C if the value register A is less than the value in register B. Otherwise store the
value 0.0 in register C.

• If (Register A, Scope B): If the value in register A is not 0.0, continue to scope
B, otherwise skip scope B.

• While (Register A, Scope B): Repeat the contents of scope B until the value in
register A is equal to 0.

• Countdown (Register A, Scope B): Repeat the contents of scope B, decrement-
ing the value in register A each time, until the value in register A is 0.

• Break (Scope A): Break out of scope A.
• Scope (Scope A): Enter scope A.
• Define (Function A, Scope B): Define this position as the starting point of

function A, with its contents defined by scope B. The function body is skipped
after being defined; when called, the function automatically returns when scope
B is exited.

• Call (Function A): Call function A (must have already been defined).
• Push (Register A, Stack B): Push the value in register A onto stack B.
• Pop (Stack A, Register B): Pop the top value off of stack A and store it in register

B.
• Input (Input A, Register B): Store the value in input A in register B.
• Output (Register A, Output B): Write the value in register A to output B.
• CopyVal (Register A, Register B): Copy the value in register A into register B.
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• ScopeReg (Register A): Backup the value in register A. When the current scope
is exited, it will be restored.

• Dereference(Register A, Register B): Store the value of the register specified
by the value of register A in register B.

2.2 Evolution

2.2.1 Selection operators

MAP-Elites
The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm is de-
signed to illuminate search spaces and has been demonstrated as an effective tech-
nique for evolving a diverse set of solutions to a problem (Mouret and Clune, 2015).
In MAP-Elites, a population is structured based on a set of chosen phenotypic traits.
Each chosen trait defines an axis on a grid of cells where each cell represents a
distinct combination of the chosen traits. Cells maintains only the most fit (elite)
solution discovered with that cell’s associated combination of traits. A MAP-Elites
grid is initialized by randomly generating solutions and placing them into their ap-
propriate cell in the grid (based on the random solution’s traits). After initialization,
occupied cells are randomly selected to reproduce. When a solution is selected for
reproduction, we generate a mutated offspring and determine where that offspring
belongs in the grid. If the cell is unoccupied, the new solution is placed in that cell;
otherwise, we compare the new solution’s fitness to that of the current occupant,
keeping the fitter of the two. Over time, this process produces a grid of solutions
that span the range of traits we used to define our grid axes.

Tournament selection
To understand whether it’s valuable to use MAP-Elites to explore the range of poten-
tial program architectures (rather than simply looking at the architectures evolved
under the selection scheme that is already being used), we need to compare it to a
more standard approach to selection. Here, tournament selection with a tournament
size of two will serve as that control. Any time we need to generate an offspring
program using tournament selection, we select two random programs from the pop-
ulation and allow the fitter one to reproduce. We intentionally selected the lowest
possible tournament size to minimize the strength of selection, facilitating as much
diversification as possible.

Lexicase selection
Tournament selection is known to be bad at maintaining diversity in a population.
Lexicase selection (Spector, 2012) is known to maintain phenotypic diversity, al-
though little is known about the diversity of program architectures within these pop-
ulations. To better understand whether our proposed use of MAP-Elites is more
effective at exploring the range of possible program architectures than simply main-
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taining a diverse population, we compare it to the results of using standard lexicase
selection.

In lexicase selection, all of the test cases for a problem are randomly re-ordered
each time another program is being selected to reproduce. We then go through the
test cases in order and, for each test case, remove all but the top performing pro-
grams from the set of candidates for selection. When there is only one program
remaining, we allow it to reproduce. In case of a tie we choose randomly.

Random drift
What types of program architectures arise in the absence of selection pressure (i.e.,
from purely random drift)? We additionally compare the range of evolved pro-
gram architectures produced by MAP-Elites with those produced under random drift
where we select programs to reproduce at random. Although we do not expect any of
these programs to actually solve any of our test problems, they will provide insight
into large scale statistical trends that we might expect in the absence of selection.

2.2.2 Mutation operators

In this work, we propagated programs asexually and applied consistent rates of mu-
tations to offspring across all treatments. We used four different operators to intro-
duce mutations on reproduction: instruction substitutions, argument substitutions,
point insertions, and point deletions (Brameier and Banzhaf, 2007). Instruction sub-
stitutions, in which one instruction was randomly replaced with another instruction,
had a 0.005 chance of occurring at each site in the genome. Argument substitutions,
in which one argument to an instruction was randomly replaced with another, had a
0.005 chance of occurring for each argument in the genome. In point insertions, a
random instruction was added after a given site, increasing the length of the genome.
Conversely, point deletions removed the instruction at a given site, decreasing the
length of the genome. Point insertions and deletions both had a 0.005 chance of
happening at every site in the genome.

2.3 Experimental Design

Is MAP-Elites an effective technique for exploring how different aspects of evolving
program architectures interact to affect performance in GP? In this work, we evolve
linear genetic programs with MAP-Elites to solve four simple programming syn-
thesis problems, selecting phenotypic axes that correspond to program architecture
and instruction composition. For each problem, we compare the types of programs
evolved with MAP-Elites and with lexicase and tournament selection; additionally,
we compare the types of programs evolved with MAP-Elites to programs produced
via random drift.
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2.3.1 MAP-Elites Phenotype Axes

As a proof-of-concept, we have selected two phenotypic axes that we expected to
promote a useful exploration of the features of our linear GP representation. In Sec-
tion 4, we discuss additional axes that may also prove to be generally useful for
exploring GP representations.

Program Composition
A representation’s instruction set has a huge impact on what programs are able to do.
However, predicting the importance of an instruction a priori can be challenging.
MAP-Elites can help in understanding instructions’ importance in various contexts.
Theoretically, a wide variety of phenotypic traits related to instructions could be
used. For example, for any individual instruction, the number of times it is used
could be an axis.

For the purposes of getting a high-level understanding of the range of programs
that can evolve, however, we have chosen to use the overall diversity of instructions
in a program as an axis. Here, we quantify the diversity of instructions in a pro-
gram using Shannon entropy. This measurement provides high-level information
about the genotype as whole. Importantly, it cannot be easily altered through small
numbers of neutral mutations, meaning it should be informative about practical dif-
ferences between genomes. We discretize this value into 20 bins between 0 and the
maximum possible entropy for a program.

Module Use
Our representation is centered around modules in the form of scopes. As we attempt
to understand whether this programming paradigm is useful to evolution, it is crit-
ical to understand the extent to which scopes are used. Thus, we chose the number
of scopes used by a program as our second phenotypic axis. Importantly, we only
counted scopes that were actually used; when a program is run, it must execute at
least one instruction in a given scope to get credit for using that scope. This, how-
ever, does not guarantee that scopes are used meaningfully, only that they are used.
Since this measurement is already an integer value, we used 17 bins along this axis
so that each bin corresponds to a different possible number of scopes.

2.3.2 Test Problems

All problems except the logic problem were defined by a set of test cases in which
programs were given specified input data and were scored on how close their output
was to the correct output. For MAP-Elites and tournament selection, we calculated
fitness as the sum of scores on these test cases.

• Logic: Programs receive two integers in binary form and must output the re-
sults of doing bitwise logic operations on them. We reward 10 2-input (with the
exception of ECHO, which is 1-input) logic operations: ECHO, NOT, NAND,
OR-NOT, AND, OR, AND-NOT, NOR, XOR, and EQUALS. To facilitate the
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evolution of these computations, we added a Nand instruction to the instruction
set, which converts inputs to integers and then performs a bitwise not-and op-
eration, structured in the same way as the Add instruction. Every unique logic
operation that a program outputs the solution to over the course of its execution
increases that program’s score by 1. Once a program has solved all of the logic
problems, it gets bonus points for the speed with which it solved them. Specif-
ically, the bonus is equal to the total number of allowed instruction executions
minus the number of instructions the program actually executed before perform-
ing all 10 logic tasks. For lexicase selection, each logic operation was treated as
a different test case.

• Squares: Programs receive an integer as input and must output its square. Be-
cause this problem is known to be easy, we evaluated programs on just 11 test
cases.

• Sum: Programs receive a list of five integers as input that they must add together
and output their total. Programs were evaluated on a set of 200 test cases.

• Smallest: Programs receive a list of four integers as input and must output the
smallest one (from (Helmuth and Spector, 2015)). Programs were evaluated on a
set of 200 test cases.

2.3.3 Experimental Parameters

We ran 30 replicates per condition for 50,000 generations. In conditions where tour-
nament selection, lexicase selection, or random drift is used to determine which
programs reproduce, we maintained a population size of 1,000 programs. The max-
imum population size in MAP-Elites, however, depends on the number and resolu-
tion of phenotypic trait axes used to define the MAP-Elites grid. Thus, in conditions
that use MAP-Elites, the maximum population size is 340. However, in our MAP-
Elites conditions, we define a single generation to be equal to 1,000 reproduction
events, which ensures that all conditions experience the same total number of repro-
duction events.

We initialized the population by generating random programs of random lengths.
Programs could not be less than 1 instruction long or greater than 1024 instructions
long. Each program was evaluated by executing its instructions in sequence until an
upper limit was hit (128 instruction executions for the squares and logic problems;
512 instruction executions for the sum and smallest problems).

2.3.4 Data Analysis

To quantify the different ranges of program architectures explored by our different
selection operators we look at the population in the final generations of all of our
replicates and filter out all programs that do not fully solve the problem (i.e., those
that do not score perfectly on all test cases or, in the context of the logic problem,
do not perform all of the logic operations). However, in the random drift condition,
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we do not filter any programs from the final population, as it is unreasonable to ex-
pect that they would have solved the problems. We then look at the distribution of
values for each of our phenotypic axes and compare them across selection schemes
using a Kolmogorov-Smirnov test to tell us whether MAP-Elites produces a signif-
icantly different distribution of program architectures than other selection schemes.
To correct for the number of Kolomogorov-Smirnov tests we perform (one for each
alternative selection operator that we compare MAP-Elites to, for both scope count
and instruction entropy), we use a Bonferonni correction. All data analysis was per-
formed using the R Statistical Computing Platform (R Core Team, 2017), and all
data visualization was done using the ggplot2 package (Wickham, 2009). We used
the implementation of the Kolmogorov-Smirnov test in the dgof package, as it is
able to properly handle discrete variables, such as scope count (Arnold and Emer-
son, 2011).

2.3.5 Code availability

All code used to generate and analyze the data presented here is open source and
publicly available (Lalejini and Dolson, 2018). This code makes heavy use of the
Empirical library, which is also open source and publicly available (Ofria et al.,
2018)

3 Results and Discussion

The distributions of scope count and instruction entropy values for programs evolved
using MAP-Elites were dramatically different from those of programs evolved using
other selection schemes (Kolomogorov-Smirnov test, p < 0.0001). As is qualita-
tively evident in Figure 1 and Figure 2, the range of each of the metrics in programs
evolved with MAP-Elites is much wider than the range for programs evolved under
other selection methods (with the exception in some cases of random drift, which
was not subject to the requirement that programs actually solve the problem). While
this result is not surprising, it provides confirmation that using MAP-Elites as a
tool for exploring GP representations provides information we would not otherwise
obtain.

The distribution of metrics evolved under MAP-Elites can suggest the presence
of constraints. For example, there generally seems to be some cut-off instruction
entropy below which solutions are hard (or impossible) to find. The location of this
cut-off varies by problem. This result makes intuitive sense; to achieve the mini-
mum possible instruction entropy, 0, a program would have to consist of a single
type of instruction. Any successful solution in this experiment would minimally
need to include both the Input instruction and the Output instructions, as well
as some instructions that perform actual calculations. Thus, no successful program
could possibly have an instruction entropy of 0. The same logic applies to other low
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values of instruction entropy. The lack of other empty spots in the distributions of
instruction entropy and scope count generated by MAP-Elites indicates that there
are not other constraints on these aspects of program architecture; in essence, MAP-
Elites has provided an existence proof for programs with these various properties.
Note that if we had tried to make the same inference based on one of the other se-
lection operators, we may have been mislead. Of course, even MAP-Elites is not
guaranteed to find all possible successful program structures. It just comes closer to
doing so.
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Fig. 1 Distribution (as density plot) of instruction entropy metric across all perfect solutions from
the final generation of all replicates for each selection scheme.

Are there interactions between our two phenotypic traits? We can illuminate pos-
sible interactions between phenotypic traits by making heat maps showing the num-
ber of solutions found with each distinct combination of traits across all replicates
of a condition. To compare the interactions discovered by MAP-Elites to the inter-
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Fig. 2 Distribution (as density plot) of scope count metric across all perfect solutions from the
final generation of all replicates for each selection scheme.

actions we might have inferred from looking at the programs generated by other
selection schemes, we made a set of heat maps for each selection operator on each
problem (see Figure 3). The fact that the heat maps for MAP-Elites are almost com-
pletely filled in (with the exception of bins at low instruction entropy) suggests that
there are no substantial interactions between instruction entropy and scope count.
Note that this is counter to the conclusion we would draw by looking at the results
of any of the other selection operators, all of which would seem to suggest that
programs with high scope count and low instruction entropy are hard to find. Since
random drift displays the same pattern, this is likely some sort of statistical arti-
fact of the types of programs that are most likely to be assembled by chance. Using
MAP-Elites to explore the space of program representations allows us to distinguish
this artifact from an actual constraint. For an example of using this technique to un-
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cover actual constraints in program architectures, see (Lalejini and Ofria, 2018).
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Fig. 3 Heat maps showing the number of perfect solutions from the final generation across all
replicates for each problem and selection scheme falling into each phenotypic bin.

4 Conclusion

We have demonstrated the use of MAP-Elites as a tool for exploring simple linear
GP representations. By selecting phenotypic axes for MAP-Elites that correspond to
aspects of program architecture, we can build an intuition for how relevant different
features of a GP representation are to the evolutionary process across a variety of
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problems. These types of analyses are important as the GP community continues to
develop and characterize increasingly expressive representations.

In this work, we limited our selection of MAP-Elites phenotypic axes to instruc-
tion entropy and module use; however, there are many possible informative axes.
Further, MAP-Elites is not limited to just two axes. We could select any number of
traits with which to define axes, allowing us to explore how many different aspects
of a GP representation interact in the context of a given problem. There are a wide
range of possible metrics that we could use in this context.

In genetic programming, it makes sense to evaluate the composition of instruc-
tions (or operations in the context of tree or graph-based GP) in the genome. We
can either evaluate the composition of all instructions in the genome, or only those
instructions that are actually executed. Such analyses can be performed using the
following metrics:

• Total number of instructions in the program (length)
• Total number of unique instruction types in the program
• Entropy of instructions (as used in this paper)
• The number of times a given instruction type was used
• The entropy of numbers of times that instruction types were used
• The average effective dependence distance of instructions (Brameier and Banzhaf,

2007)

We might also care about more abstract attributes of program architecture. For
example, there are many quantities related to modularity that it may be informative
to measure, particularly in light of the fact that modularity is thought to promote
evolvability. The simplest of these is to measure the modularity of the program using
metrics such as the physical and functional modularity metrics described in (Misevic
et al., 2006). In cases where modules are easy to identify, we can probe further with
the following metrics:

• Total number of modules in the program
• Total number of times any module is used
• Total number of unique modules that are used (equivalent to scope count in this

paper)
• Entropy of time spent in each module

For representations with a concept of memory positions, it may be useful to mea-
sure the way the program makes use of them:

• Number of effective memory locations (Brameier and Banzhaf, 2007)
• Entropy of memory locations used
• The number of times a given individual memory location was referenced/accessed
• Modularity of memory used

There are also a wide range of potentially useful metrics that will depend on the
specifics of the genetic programming representation being used. For example, trees
and graph-based programs (e.g., Cartesian genetic programming) can be assessed
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with metrics that describe their topology. Representations that have linear genomes,
on the other hand, can likely borrow a variety of useful metrics from biology.

We have demonstrated that using MAP-Elites with phenotypic axes based on
program architecture can illuminate constraints on program architecture that we
would have been unaware of simply from examining the programs generated by
traditional selection operators. Understanding these constraints can help us under-
stand why certain genetic programming representations are more or less successful
under certain circumstances, an important goal for the long-term advancement of
the field (O’Neill et al., 2010). Thus, we expect that the approach presented here
will be a useful addition to the toolkit we use to study genetic programming.
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