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The Bertalanffy-Pütter growth model describes mass m at age t by means of the

differential equation dm/dt = pçma2qçmb. The special case using the Bertalanffy exponent-

pair a=2/3 and b=1 is most common (it corresponds to the von Bertalanffy growth function

VBGF for length in fishery literature). For data fitting using general exponents, five model

parameters need to be optimized, the pair a<b of non-negative exponents, the non-

negative constants p and q, and a positive initial value m0 for the differential equation. For

the case b=1 it is known that for most fish data any exponent a<1 could be used to model

growth without affecting the fit to the data significantly (when the other parameters p, q,

m0 were optimized). Thereby, data fitting used the method of least squares, minimizing the

sum of squared errors (SSE). It was conjectured that the optimization of both exponents

would result in a significantly better fit of the optimal growth function to the data and

thereby reduce SSE. This conjecture was tested for a data set for the mass-growth of

Walleye (Sander vitreus), a fish from Lake Erie, USA. Compared to the Bertalanffy

exponent-pair the optimal exponent-pair achieved a reduction of SSE by 10%. However,

when the optimization of additional parameters was penalized, using the Akaike

information criterion (AIC), then the optimal exponent-pair model had a higher (worse) AIC,

when compared to the Bertalanffy exponent-pair. Thereby SSE and AIC are different ways

to compare models. SSE is used, when predictive power is needed alone, and AIC is used,

when simplicity of the model and explanatory power are needed.
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18 Optimal exponent-pairs for the Bertalanffy-Pütter growth model
19 Abstract. The Bertalanffy-Pütter growth model describes mass m at age t by means of the differential 

20 equation dm/dt = p÷maýq÷mb. The special case using the Bertalanffy exponent-pair a = 2/3 and b = 1 is 
21 most common (it corresponds to the von Bertalanffy growth function VBGF for length in fishery 
22 literature). For data fitting using general exponents, five model parameters need to be optimized, the pair 
23 a < b of non-negative exponents, the non-negative constants p and q, and a positive initial value m0 for the 
24 differential equation. For the case b = 1 it is known that for most fish data any exponent a < 1 could be 
25 used to model growth without affecting the fit to the data significantly (when the other parameters p, q, m0 
26 were optimized). Thereby, data fitting used the method of least squares, minimizing the sum of squared 
27 errors (SSE). It was conjectured that the optimization of both exponents would result in a significantly 
28 better fit of the optimal growth function to the data and thereby reduce SSE. This conjecture was tested 
29 for a data set for the mass-growth of Walleye (Sander vitreus), a fish from Lake Erie, USA. Compared to 
30 the Bertalanffy exponent-pair the optimal exponent-pair achieved a reduction of SSE by 10%. However, 
31 when the optimization of additional parameters was penalized, using the Akaike information criterion 
32 (AIC), then the optimal exponent-pair model had a higher (worse) AIC, when compared to the Bertalanffy 
33 exponent-pair. Thereby SSE and AIC are different ways to compare models. SSE is used, when predictive 
34 power is needed alone, and AIC is used, when simplicity of the model and explanatory power are needed.

35 Subjects Computational Biology, Aquaculture (Fisheries and Fish Science), Mathematical Biology, 
36 Computational Science

37 Keywords Bertalanffy-Pütter differential equation, Akaike information criterion (AIC), Region of near-
38 optimality

39 INTRODUCTION

40 Size-at-age (length or mass) is an important metric about animals (Google search: ca. 286,000 

41 results), in particular for fisheries management (Ogle & Iserman, 2017). Consequently, various 

42 models for size-at-age have been proposed. This paper investigates a general class of growth 

43 models, defined from the Bertalanffy (1957) and Pütter (1920) differential equation (1): 

44 (1)
ýÿ(ý)ýý = ý ; ÿ(ý)ÿ 2 ÿ ; ÿ(ý)ÿ

45 Equation (1) describes body mass (weight) m(t) > 0 as a function of age t, using five model 

46 parameters: a, b, p, q, m0. Thereby, m0> 0 is an initial value, i.e. m(0) = m0. The exponent-pair a 

47 < b (8metabolic scaling exponents9) is assumed to be non-negative and also the constants p and q 

48 are non-negative. Several 8named models9 are special instances of (1): To describe mass-at-age, 

49 Bertalanffy (1957) suggested the exponent-pair a = 2/3 and b = 1, West, Brown & Enquist 

50 (2001) proposed a = 3/4, b = 1, other authors considered a = 1, b = 2 (logistic growth of 
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51 Verhulst, 1838), Richards (1959) recommended a = 1 while retaining b > 1 as a free parameter, 

52 and the generalized Bertalanffy growth model assumes b = 1, using a < 1 as parameter. There are 

53 also models of type (1) for length-at-age, notably VBGF, the von Bertalanffy growth function 

54 with exponent-pair a = 0, b = 1 (bounded exponential growth) which is widely used in fishery 

55 literature (Google search for 8VBGF, fish9: ca. 15,000 results). VBGF is equivalent to the model 

56 with the Bertalanffy exponent-pair (a = 2/3, b = 1) for mass-growth (Bertalanffy, 1957).

57 In the case of equal exponents, equation (1) is replaced by the differential equation (2). Its right 

58 hand side is the limit of the right hand side of (1), assuming b approaches a. As the special case a 

59 = 1 of equation (2) defines the Gompertz (1832) model, with respect to equation (2) the paper 

60 refers to the class of Gompertz models. 

61 (2)
ýÿ(ý)ýý = ý ; ÿ(ý)ÿ 2 ÿ ; ln(ÿ(ý)) ; ÿ(ý)ÿ

62 In general, the solutions of (1) and (2) are non-elementary functions, namely hypergeometric 

63 functions and exponential integrals, respectively (Ohnishi, Yamakawa & Akamine, 2014; 

64 Marusic & Bajzer, 1993). The solutions of the more special 8named models9 are elementary. 

65 Parameter values for equations (1), (2) were obtained by identifying a growth function (i.e. a 

66 concrete solution of the differential equations) with the best fit to the data. Experience has shown 

67 that no single of the above-mentioned 8named models9 was exactly correct for all species (c.f. 

68 Killen, Atkinson & Glazier, 2010 for fish; White, 2010 for mammals). Renner-Martin et al. 

69 (2018) explored the situation for the generalized Bertalanffy model (b = 1) and found that for 

70 most species of fish any exponent 0 f a < 1 could be used to model growth without affecting the 

71 fit to the data significantly (when the other parameters p, q, m0 were optimized). They explained 

72 this by data quality, as for wild-caught fish and also for wildlife data there is always the problem 
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73 of 8haphazard9 sampling, which may result in unreliable growth parameter estimates (Wilson et 

74 al., 2015). 

75 The present paper asks, if the high variability for fish data is still observed in two dimensions, 

76 when both exponents (a, b) of (1) are optimized. In view of the computational complexity of 

77 optimizing the Bertalanffy-Pütter-model, the paper identifies optimal exponents for one fish 

78 data-set only.

79 MATERIALS AND METHODS

80 Data

81 The paper used 8FSAdata WalleyeErie29from Ogle (2018) about Walleye (Sander vitreus) from 

82 Lake Erie, USA. A sub-sample (20,166 data-points) about male fish was retrieved. The data were 

83 insofar exceptional, as they informed about mass (in gram) and age (in years from otholits) of 

84 wild-caught fish, while most growth data for fish are length-at-age. Data were retrieved using 

85 MS Excel. Also a preliminary analysis was conducted in Excel (pivoting to identify average 

86 weights for the age classes). Figure 1 plots the data and the average weights. 

87 There were few data about young fish (14 of age 0) and likewise few about older fish (22 with 

88 age 16-20 years), and none about fish with age 21-29 (maximal observed age reported in 

89 FishBase: Froese & Pauly, 2018). This may indicate gear bias (where small or large fish were not 

90 adequately sampled). In order to obtain more balanced class-sizes, smaller classes were merged; 

91 the outcome is Table 1, reporting of each class the average mass at the average age. Thus, 13 

92 classes representing larger samples were evaluated instead of originally 20 age classes. The 

93 subsequent computations, i.e. search of optimal parameters for equations (1) and (2), used 

94 Mathematica 11.3. 
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95 At first it may appear troubling to take more than 20,000 data points and then aggregate them to 

96 merely 13 mass-at-age classes. However, for data fitting it was the distance between the model 

97 curve and the average of each class that mattered. The distances between the average and the 

98 other class data could not be improved by a growth model. 

99 General approach to data fitting

100 As Shi et al. (2014) observed, already for the generalized Bertalanffy model (i.e. b = 1, a, p, q, 

101 m0 are optimized) data fitting was impeded by numerical instability. Clearly, with more 

102 parameters to optimize the problem of convergence becomes more demanding and also powerful 

103 methods slow down. In order to avoid running into numerical instability by the use of too many 

104 parameters, the paper considered exponents lying on a grid. For each grid-point (exponent-pair a, 

105 b) model parameters (p, q, m0) were identified that minimized the following function: 

106 (3)  for growth functions with exponents a, bÿÿýýýý(ÿ,ÿ) = minÿ0,ý,ÿ (ÿÿý)
107 Thereby, the paper used the most common approach to data fitting, the method of least squares, 

108 which assesses the fit to the data by means of the sum of squared errors (SSE). However, even 

109 for simple models (meaning: certain values for the exponents are assumed and three parameters 

110 are optimized, e.g. p, q, m0) literature reported that optimization failed to converge for certain 

111 data sets (Apostolidis & Stergiou, 2013). One of the reasons was the use of parametrizations that 

112 require bounded growth functions (e.g. Cailliet et al., 2006), whereas not all data may support 

113 bounded growth. Another reason was the observation that even for simple models the problem of 

114 data fitting may overtask straightforward optimization routines. In view of such difficulties with 

115 the convergence of optimization the paper did not add more complex model assumptions to (1) 

116 and (2), such as heteroscedastic growth that assumes a larger variance for a higher mass, or 
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117 models that need additional parameters to distinguish different growth phases (Manabe et al., 

118 2018). There are also various improvements of regression models, such as mixed-effect models 

119 to identify explanatory factors for growth (Strathe et al., 2010). However, such models require 

120 highly controlled experiments, whereas the present data are about wild-caught fish. Further, the 

121 purpose of optimization was the identification of a suitable growth curve for the considered 

122 species and not the identification of a growth curve that would minimize errors in relation to a 

123 given population. Therefore, no mass for class size were used for the computation of SSE. For 

124 the same reason, the observed variances of the age-classes were not used to assess the likelihood 

125 of each data point. (This means that the variance of the assumed normal distribution of errors 

126 was another implicit model parameter.) Further, optimization was not simplified by adding 

127 assumptions about parameter values, e.g. eliminating two parameters from optimization by using 

128 a literature value for the initial condition m0 (rather than optimizing it) and using a literature 

129 value for the asymptotic mass (defined below). In this case SSEopt(a, b) could have been 

130 computed very fast from the optimization of one parameter, only, but at the cost of weakening 

131 the link to the data. 

132 The use of grid-points helped to identify failures of optimization by a visual inspection (e.g. a 

133 grid-point with exceptionally high SSEopt, when compared to neighboring grid-points). In order 

134 to do not miss the optimum, different approaches to data-fitting were used to identify and correct 

135 miscalculations. Thereby, computation time was an issue. For instance, commercially available 

136 software packages for fisheries management use powerful numerical methods to determine the 

137 model parameters even for the simple models (Mildenberger et al., 2017). These methods aim at 

138 optimizing one given model, where computing time is not an issue. The present paper aimed at 

139 optimizing a large number of models simultaneously in order to explore the function SSEopt; i.e. 
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140 each grid point defined a model (defined from the exponent pair a, b) for which optimal 

141 parameters were identified. While for each grid-point SSEopt could be obtained fast, optimizing 

142 over the whole grid was time consuming. For example, covering the region 0 f a f 1, a < b f 3 

143 by a grid with neighboring points at distance 0.01 would define 25,250 grid points. For this grid, 

144 assuming six optimizations per minute would require 70 hours computing time. 

145 Optimization proceeded in three stages. First, SSEopt was computed on a coarse grid (step-size 

146 0.1) to sketch the shape of SSEopt and locate a region of near-optimal exponents. This used 

147 methods of optimization that were fast, but not necessarily accurate. In the second stage, the 

148 computations were repeated with a finer grid (step-size 0.01) and using more accurate methods 

149 of optimization. These computations allowed to identify candidates for the optimum. In the final 

150 stage a search for the global optimum was performed, starting with these candidate points. The 

151 specific methods of optimization used in each step are explained below (c.f. the survey of 

152 Cedersund et al., 2015).

153 In order to speed up computations all approaches solved the differential equations (1) and (2) 

154 numerically (Leader, 2004). Using the analytic solutions of the differential equations (these are 

155 available in Mathematica) would make data fitting time consuming even for a given exponent 

156 pair. As the numerical methods used by Mathematica 11.3 work with high precision, this did not 

157 compromise the accuracy of optimization.

158 Starting values for data fitting

159 For most iterative methods of optimization, reasonable starting values for the parameters are 

160 needed to ensure convergence of optimization. For instance, the starting value for the initial 

161 value m0 was the first data point of Table 1. 
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162 For the other parameters, practitioners use various rules of thumb for this purpose (Carvalho & 

163 Santoro, 2007), which utilize general considerations about the possible shape of the growth 

164 functions. For, the typical solutions of (1) and (2) are increasing, bounded and sigmoidal. 

165 (However, there are also non-sigmoidal solutions, e.g. a = 0, and unbounded solutions, e.g. q = 0 

166 and p > 0.) Initially the rate of growth increases, until the inception point is reached. 

167 Subsequently it decreases to zero in the limit, when the asymptotic mass mmax is reached; there 

168 the right-hand side of (1) and (2), respectively, vanishes:

169 (4) ÿÿÿý= (
ýÿ) 1ÿ 2 ÿ for ÿ< ÿ, eq. (1)

170 To obtain a starting value q0 for the parameter q, it was assumed that the asymptotic mass would 

171 exceed the maximal observed mass by 20%, i.e. the equation 1.2mmax was solved for q, referring 

172 to equation (4). This resulted in q0 = p0/(1.2÷mmax)b3a, where p0was the starting value for p. 

173 In order to obtain a starting value for p, equation (1) was evaluated approximately at t = 0, using 

174 for the right-hand side the above-mentioned starting value for m0 for m and q0 for q. An 

175 approximate value for the derivative, m´(0),was obtained from the derivative at t = 0 of the 

176 quadratic interpolation polynomial (Burden& Faires, 1993) through the first three points listed in 

177 Table 1. This polynomial was an approximation for the growth function in the neighborhood of t 

178 = 0. Solving (1) for p = p0 resulted in the following equation: 

179 (5) ý0= ÿ´(0) ; 1.2ÿ ; ÿ ÿÿÿý
1.2

ÿ ; ÿ ÿÿÿý ; ÿÿ0 2 1.2ÿ ; ÿ ÿÿÿý ; ÿÿ0
180 These formulas defined starting values for m0, p and q. The formulas were problematic for 

181 exponents close to the diagonal, as the function p0 tends to infinity in the limit aþb. Therefore, 

182 for exponents b = a + 0.01, in case that optimization using these starting values did not converge 

183 Simulated Annealing (see below) was used. 
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184 Preparatory screening

185 SSEopt was computed for a coarse grid (distance 0.1 between adjacent points), using two general 

186 purpose methods for global optimization in parallel, simulated annealing and the Nelder-Mead 

187 amoeba method. Both methods are available for the Mathematica function NMinimize. 

188 Simulated annealing was used, as it was expected to produce reasonable results. It used random 

189 numbers as starting values (using multiple starting values) and then altered them by random 

190 fluctuations, accepting parameters with lower values of SSE, but also accepting with a certain 

191 probability (that became lower in subsequent iteration steps) parameters with a higher SSE to 

192 escape from suboptimal local extrema (Vidal, 1993). In order to ensure replicability, the default 

193 random seed 0 was used. Therefore, if SSE was optimized repeatedly for the same grid-point, the 

194 outcome remained the same. 

195 The amoeba method was used, because it is fast. Given the exponent-pair a, b, the method first 

196 evaluates four corners of a tetrahedron (simplex) in parameter space (dimensions m0, p, q) and 

197 successively applies reflections (moving the point with highest SSE through the opposite side of 

198 the tetrahedron to a point with perhaps lower SSE) and shrinking (zooming in to a local 

199 minimum point).

200 In order to avoid obviously meaningless parameter values, constraints were added to ensure a 

201 biologically reasonable initial value m0 > 10 and positive parameters p > q. 

202 Semi-automated optimization

203 In order to employ also methods developed specifically for the least squares method, an 

204 alternative approach using the Mathematica function NonlinearModelFit was used. It implements 

205 the most common methods for nonlinear regression. 
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206 The optimization loop assumed a fixed value for a, whereas b proceeded from b = a to b = 2 with 

207 step size 0.01. Further, for each exponent a = n÷0.01 the hitherto obtained values of SSEopt(a, b) 

208 were plotted. If the plot showed a U-shape, then a minimum of SSE could be identified on the 

209 line a = n÷0.01, b > a; otherwise (human intervention) more values of b were added to the loop 

210 until a U-shape could be recognized. (This approach assumed that then for still larger exponents 

211 b the fit could only become worse. This assumption was corroborated by the initial screening.) 

212 The optimization started at a = 0, b = 0.01 with initial values for m0, p and q explained above. 

213 For the subsequent computations, where a was kept fixed and b moved, the iterative optimization 

214 at the next b, namely at b + 0.01, started with the optimal parameters from the previous 

215 optimization (for b). 

216 However, in order to ensure convergence (and an empirically meaningful outcome), SSE was 

217 minimized subject to certain constraints (m0 > 10 and q > 0), whence many common methods 

218 from regression analysis (e.g. Levenberg-Marquardt algorithm) were not applicable. Instead, an 

219 interior point method was used. These methods (e.g. barrier methods initially developed in the 

220 1960s) became popular in 1984, when an interior point method (Karmakar, 1984) solved linear 

221 optimization problems in polynomial time; Forsgen, Gill & Wright (2002) refer to the 8interior 

222 point revolution9. This setting was also advantageous for the present problem. 

223 Custom-made simulated annealing

224 Based on this preparatory work, the SSEopt(a, b)could be evaluated for almost all grid points. In 

225 order to improve the estimates of SSE at the best fitting grid points and to move from there to the 

226 optimal exponent-pair (no longer a grid-point), the authors used Simulated Annealing. However, 

227 rather than using the general purpose method employed by Mathematica, the authors developed a 
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228 custom-made approach. The main difference was the use of a (sort of) geometric Brownian 

229 motion. (For each step, rather than adding a small random number to the parameters, they were 

230 multiplied by a random number, whence positive values were retained.) The optimization used a 

231 loop with 500,000 steps: It started with the parameter values obtained from the preparatory 

232 optimization steps. 

233 RESULTS

234 Table 2 illustrates the results by means of the optimal parameters for three exponent-pairs, 

235 Bertalanffy, logistic, and the optimal pair (of Gompertz-type). As Figure 2 visualizes, all 

236 exponent-pair provided a reasonable fit. The optimization aimed at improvements of SSEopt = 

237 23,709 for the Bertalanffy-pair, which was obtained in the initial round of optimizations. 

238 At first SSEopt was evaluated at grid-points with exponent-pairs 0 f a f 1 and a < b f 1.5, for 

239 growth functions (1) and with exponent-pairs 0 f a = b f 1 of (2). The exponent-pairs were grid-

240 points at distance 0.1 between successive grid-points. For each grid point the better of the 

241 outcomes from Simulated Annealing and from the amoeba method was used; SSEopt(0.7, 0.7) = 

242 21,310 was optimal. However, the initial optimization became problematic for b > 1.2 and did 

243 not allow to decide, if optimization would require a search in the problematic region. Further, it 

244 could not be decided, if the optimum would be located on or above the diagonal. 

245 The systematic search (semi-automated data fitting) was confined to equation (1). It used a fine 

246 grid (distance 0.01 between successive exponent-pairs), aiming at identifying for each exponent 

247 a with 0 f a f 1 an exponent b > a with minimal SSE. (It was sufficient to screen exponents b f 

248 2.) The improved accuracy of this search was demonstrated for the Bertalanffy exponent-pair; 

249 lower SSEopt(0.67,1) = 23,534.6.
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250 Figure 3 plots the outcome from the optimization at 14,282 grid points. The black dots indicate, 

251 for each exponent a, for which exponent b the value of SSE was minimal. Thereby, SSEopt(0.67, 

252 0.7) = 21,287.1 was the least observed optimized SSE for equation (1). This demonstrates that 

253 optimization showed the following pattern: For a = 0 the minimum SSE was reached close to b = 

254 2. For the following values there was a distinct U-shape to be observed till a = 0.67. Finally, the 

255 optimum was attained close to the diagonal a = b (dots moving upwards), but the optimum value 

256 was increasing compared to the previous ones.

257 This pattern supported the hypothesis that the optimal SSE would be attained within the search 

258 region or at a diagonal point a = b on its boundary. However, the computations did not allow to 

259 decide, whether the global minimum of SSE was attained for b > a, i.e. for equation (1), or for b 

260 = a, i.e. equation (2). Further, optimization proceeded smoothly till a = 0.7, but for larger 

261 exponents optimization became increasingly more difficult and fewer results could be accepted. 

262 In particular, grid points near the diagonal were problematic. 

263 These issues were tackled in the final step using a global optimization. It started with the near-

264 optimal parameters found previously. For equation (1), starting from a = 0.68 and b = 0.69, the 

265 least SSEopt(0.666703,0.705181) = 21,287.5 was achieved. However, for equation (2), i.e. on the 

266 diagonal a = b, a slightly better outcome SSEopt(0.686028, 0.686028) = 21,286.4 was obtained 

267 (parameters in Table 2).

268 The custom-made method of Simulated Annealing of this paper improved insofar upon the same 

269 method as implemented by Mathematica (which was used in the initial step), as it was more 

270 accurate. Further, despite the high number of computing steps its performance was more reliable 

271 (no unexpected computer crashes).
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272 Summarizing, during the three optimization steps the fit achieved by the Bertalanffy exponent-

273 pair (a = 2/3, b = 1 with SSEopt = 23,709) could be substantially improved. The first round of 

274 optimization identified a better exponent-pair (a = b = 0.7 with SSEopt = 21,310). The second 

275 round of optimizations, using more accurate computations, found a still better exponent pair (a = 

276 0.67, b = 0.7 with SSEopt = 21,287.1). The final round of optimization converged to the minimal 

277 SSEopt = 21,286.4 at a = b = 0.686028. Thus, by using different exponent-pairs and also by using 

278 more accurate optimization methods, SSEopt could be reduced by 10% from the initial estimate 

279 using the Bertalanffy pair. 

280 DISCUSSION

281 The problem of the paper asks, if the 10% reduction of SSEopt achieved by optimization the two 

282 exponents (in addition to the other parameters) was enough to reduce variability considerably. 

283 Thereby variability was defined with respect to the Akaike9 (1974) information criterion AIC and 

284 the Akaike weight (Renner-Martin et al., 2018); higher variability meant an acceptable Akaike 

285 weight (2.5%or higher) for more models (i.e. more grid-point exponents). Specifically, the paper 

286 used an index AICc for small sample sizes (Burnham & Anderson, 2002; Motulsky & 

287 Christopoulos, 2003); for a discussion of alternative information measures c.f. Dziak et al. 

288 (2017). AICc was defined from the least sum of squared errors for the model, SSE(model), from 

289 the number N = 13 of data-points (size of Table 1 rather than the number of fish), and from the 

290 number K of optimized parameters: 

291 (6) ýýÿý(model) = ý÷ln(ÿÿý(model)ý )+ 2 ; ÿ+
2 ; ÿ ; (ÿ+ 1)ý 2 ÿ 2 1

292 (7) , where ô = AIC(model) 3 AIC(best fitting model) > 0ýÿýÿ(model) =
ÿ 2 &/2

1 + ÿ 2 &/2
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293 The Akaike weight prob compares a model with the best fitting model (least AICc): Its Akaike 

294 weight prob(model) is the probability that this model is true (assuming that one of the two 

295 models is true); the maximal Akaike weight is 50%. (This interpretation is based on the 

296 assumption of normally distributed errors. As the data were average values of large samples, this 

297 assumption was justified.)

298 Technically, the application of the above criteria required that several distinctions were made: 

299 First, the differential equations (1) and (2) that set the general framework for this study need to 

300 be distinguished from the different growth models that may or may not assume specific values 

301 for the exponent-pair. Thereby, each grid point defined a concrete model of type (1) with an 

302 assumed exponent-pair (a, b); e.g. logistic model with (a, b) = (1, 2). The (other) model 

303 parameters (m0, p, q) were optimized (data fitting). However, the third round of optimization in 

304 addition sought for optimal exponents, referring to the general Bertalanffy-Pütter model and the 

305 general Gompertz model, respectively. Second, SSE and AIC are different ways to compare 

306 models, whereby SSE is used, when the focus is on the predictive power. The results pertain to 

307 the optimization of SSE alone. AIC is used, when both the simplicity of the model and its 

308 explanatory power are needed. Thereby, the AIC of models with assumed exponent-pairs was 

309 computed with K = 4 (as implicitly also SSE was optimized: shape parameter of the assumed 

310 normal distribution of the residuals). The AIC of the general Bertalanffy-Pütter model and the 

311 general Gompertz model was computed with K = 6 and K = 5, respectively, as also the exponents 

312 were optimized. Consequently, the best fitting model (least SSE) could have a higher (worse) 

313 AIC than other models. Third, for this paper the Akaike weights were interpreted in two ways. If 

314 the AIC was computed with the correct number of parameters, the Akaike weights were 

315 probabilities about the truth of a model. However, the paper used the Akaike weights also with 
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316 an incorrect number of parameters, assuming K = 4 for all models; i.e. also the models with 

317 optimal exponents were treated as if these exponents were given in advance. For this application, 

318 the Akaike weight was merely a measure of the good fit (low SSE) that was comparable across 

319 different data-sets, but not a probability of truth.

320 Keeping these caveats in mind, the answer to the initial question about variability was negative, 

321 as shown by Figure 4 (all Akaike weights computed with K = 4): Amongst models defined by 

322 exponent pairs with b = 1, the comparison with the best-fitting model did affect the Akaike 

323 weights only slightly. For instance, for the Bertalanffy pair the Akaike weight was reduced from 

324 36% (comparison with the optimal exponent a, assuming b = 1) to 34% (comparison with the 

325 best-fitting exponent-pair). For lower Akaike-weights the reduction was even smaller, whence 

326 the Akaike-weights could not be pushed below the 2.5% threshold. 

327 Figure 5 illustrates, how the variability extended into two dimensions. The green area represents 

328 exponent-pairs, whose AIC was below the AIC of the best-fitting model. (Thereby, AIC for given 

329 exponent-pairs was computed with K = 4, while the AIC for best fitting Gompertz-type model 

330 was computed with K = 5, whence there was a penalty.) The red area represents additional 

331 exponent-pairs, whose fit was deemed as acceptable in the meaning above (Akaike weight of 

332 2.5% or higher, using K = 4 also for the best fitting model). 

333 The following examples illustrate these concepts. In Figure 2, the best fit was achieved by the 

334 optimal exponent-pair, followed by the Bertalanffy-pair, while logistic growth was worst. 

335 However, owing to the penalty in the definition of AIC for using more parameters, the 

336 Bertalanffy exponent-pair was in the green region of Figure 5. Therefore, when choosing 

337 between the Bertalanffy and the best fitting exponent-pair, the AIC-criterion would recommend 

338 to select the former one. By contrast, the logistic exponent-pair was outside the red or green 
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339 regions of Figure 5, whence this fit was deemed as not acceptable. Summarizing, when 

340 comparing these exponent pairs, the Bertalanffy-pair would be selected; the logistic pair would 

341 be refuted due to its poor fit; and the optimal pair would be refuted, as the 10% reduction of SSE 

342 did not justify the optimization of an additional parameter. 

343 Figure 6 indicates that equation (1) may indeed result in overfit due to the optimization of too 

344 many parameters. Using model (2) together with the optimal exponent, it plots the region of the 

345 8other parameters9 (m0, p, q), where SSE was bounded by 107 (ca. 500 times the least SSE). 

346 Despite this large SSE, the region was extremely thin, suggesting some relation between the 

347 parameters. 

348 CONCLUSION

349 The paper conducted a case study about the variability of the Bertalanffy-Pütter exponent-pairs 

350 (a, b) for fish. It was based on mass-at-age data of Walleye. For the case b = 1 it is known that 

351 for most fish-data any exponent 0 f a < 1 could be used to model growth without affecting the fit 

352 to the data significantly (when the other parameters p, q, m0 were optimized). In two dimension it 

353 was no longer true that any exponent-pair could provide an acceptable fit. For instance, the 

354 logistic growth function provided a reasonable fit to the data, if only a visual inspection was 

355 used, but in quantitative terms (Akaike weight), its fit was not acceptable in comparison to the 

356 optimal model. However, the paper showed that variability extended insofar into two 

357 dimensions, as it identified a large region of exponents with acceptable fit, including the 

358 Bertalanffy exponent-pair (a = 2/3, b = 1). Summarizing, the paper did not find a reason, why 

359 fishery management should deviate from its established practice to describe growth in term of 

360 the Bertalanffy models (VBGF for length, the Bertalanffy exponent-pair for mass). 
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361 However, a closer look at the structure of the set of optimal parameters indicated the potential for 

362 further research into the Bertalanffy-Pütter model, as for the best fitting parameters there seemed 

363 to exist additional relations suggesting that optimization might be further constrained by some 

364 functional relationship between the parameters (a, b, m0, p, and q). Thus, the authors conjecture 

365 that a subclass of the Bertalanffy-Pütter model using fewer parameters may provide the same fit 

366 and therefore suffice for the modeling of growth. There remains the problem to find such a 

367 subclass that in addition is empirically meaningful. 
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438 Table and Figure Captions

439 Table 1. Average weight-at-age (rounded) for male Walleye, based on ca. 20,000 age-weight data points (rounded to 
440 one decimal for the ease of presentation; the computations of the paper used data rounded to three decimals).

441 Table 2. Optimal parameters for selected models.

442 Figure 1. Weight-at-age and average weight (red dots) of male Walleye from Lake Erie.

443 Figure 2. Comparison with the data of the growth curve using the Bertalanffy exponent-pair (red), the logistic 
444 exponent pair (blue) and of the best fitting growth curve (black); parameter values as in Table 2.

445 Figure 3. Contour plot of the optimal SSE on a grid of exponent-pairs with distance 0.01 between adjacent points 
446 and for each exponent a, plot of the exponent-pair with smallest SSE (black dots). 

447 Figure 4. Plot of the Akaike weights for exponent-pairs with b = 1, using the least AIC amongst generalized 
448 Bertalanffy-models (red) and the least AIC amongst all considered models (blue); all AICs using K = 4.

449 Figure 5. Plot of the grid points a < b with AIC below AIC of the best fitting model (green; the AIC of the best fitting 
450 model was higher due to the penalty for an additional parameter) and with acceptable fit (red). The Bertalanffy 
451 and the logistic exponent-pairs are displayed in yellow. 

452 Figure 6. Plot of part of the region of exponents m0, p, q for model (2) with the optimal exponent a = 0.686028, 
453 where SSE does not exceed 107. 

454
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Table 1(on next page)

Average weight-at-age (rounded) for male Walleye, based on ca. 20,000 age-weight

data points (rounded to one decimal for the ease of presentation; the computations of

the paper used data rounded to three decimals)
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1 Table 1

2 Average weight-at-age (rounded) for male Walleye, based on ca. 20,000 age-weight data points (rounded to one 

3 decimal for the ease of presentation; the computations of the paper used data rounded to three decimals)

4

Age (years) Weight (gram) Class size Comment

0 192.1 14

1 423.7 4009

2 761.8 5181

3 1018.0 3870

4 1221.6 2262

5 1442.8 1519

6 1644.5 1471

7 1802.0 690

8 1880.7 446

9.5 1895.3 430 classes 9+10

11 1982.6 105

12.4 2140.4 104 classes 12+13

15.3 2228.5 65 classes 14-20

5
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Table 2(on next page)

Optimal parameters for selected models

* 1st and 3rd refer to the initial and final rounds of optimization
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1 Table 2

2 Optimal parameters for selected models

3

Model Comment* a b m0 p q SSE

Bertalanffy 1st (a, b given) 2/3 1 203.8 11.2 0.86 23,709

logistic 1st (a, b given) 1 2 301.716 0.528051 0.000253611 72,283

optimal 3rd (a optimized) 0.686028 = a 175.67 21.3148 2.76054 21,286

4 * 1st and 3rd refer to the initial and final rounds of optimization

5
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Figure 1

Weight-at-age and average weight (red dots) of male Walleye from Lake Erie
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Figure 2

Comparison with the data of the growth curve using the Bertalanffy exponent-pair (red),

the logistic exponent pair (blue) and of the best fitting growth curve (black); parameter

values as in Table2.
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Figure 3

Contour plot of the optimal SSE on a grid of exponent-pairs with distance 0.01 between

adjacent points and for each exponent a, plot of the exponent-pair with smallest SSE

(black dots).
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Figure 4

Plot of the Akaike weights for exponent-pairs with b = 1, using the least AIC amongst

generalized Bertalanffy-models (red) and the least AIC amongst all considered models

(blue); all AICs using K = 4
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Figure 5

Plot of the grid points a < b with AIC below AIC of the best fitting model (green; the AIC

of the best fitting model was higher due to the penalty for an additional parameter) and

with acceptable fit (red). The Bertalanffy and the logistic exponent-pairs
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Figure 6

Plot of part of the region of exponents m_0 p, q for model (2) with the optimal exponent

a = 0.686028, where SSE does not exceed 10^7.
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