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Background

In the era of semantic web, life science ontologies play an important role in tasks such as annotating

biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology

structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We

present an exploratory study where we examine structure and look for patterns in BioPortal, a

comprehensive publicly available repository of live science ontologies.

Methods

We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods

such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time

points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest

communities. We demonstrate evolution of identified communities over time and identify core ontologies

of the closest communities. We use BioPortal project and category data to measure community

coherence. We also validate identified communities with their mutual mentions in scientific literature.

Results

With comparing mapping data gathered at five different time points, we identified similar and closest

communities of overlapping ontologies, and demonstrated evolution of communities over time. Results

showed that anatomy and health ontologies tend to form more isolated communities compared to other

categories. We also showed that communities contain all or the majority of ontologies being used in

narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal

Version 4.
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17 Abstract 

18 Background

19 In the era of semantic web, life science ontologies play an important role in tasks such as 

20 annotating biological objects, linking relevant data pieces, and verifying data consistency. 

21 Understanding ontology structures and overlapping ontologies is essential for tasks such as 

22 ontology reuse and development.  We present an exploratory study where we examine structure 

23 and look for patterns in BioPortal, a comprehensive publicly available repository of live science 

24 ontologies.

25 Methods

26 We report an analysis of biomedical ontology mapping data over time. We apply graph theory 

27 methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at 

28 five different time points. We identify communities, i.e., sets of overlapping ontologies, and 

29 define similar and closest communities. We demonstrate evolution of identified communities 

30 over time and identify core ontologies of the closest communities. We use BioPortal project and 

31 category data to measure community coherence. We also validate identified communities with 

32 their mutual mentions in scientific literature.

33 Results

34 With comparing mapping data gathered at five different time points, we identified similar and 

35 closest communities of overlapping ontologies, and demonstrated evolution of communities over 

36 time. Results showed that anatomy and health ontologies tend to form more isolated 

37 communities compared to other categories. We also showed that communities contain all or the 
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38 majority of ontologies being used in narrower projects. In addition, we identified major changes 

39 in mapping data after migration to BioPortal Version 4. 

40 Introduction

41 Ontologies are used for tasks such as the standardization of terminology, the verification of data 

42 consistency, and the integration of heterogeneous databases. Ontologies have been actively 

43 applied to areas including, but not limited to Biology and Medicine (Whetzel et al., 2011), Crisis 

44 Management (Liu, Brewster & Shaw, 2013), Information Security (Vorobiev & Bekmamedova, 

45 2010), and Software Engineering (Happel & Seedorf, 2006). In this work, we focus on the area 

46 of life sciences, where ontologies are commonly used in tasks such as annotation of gene 

47 products and proteins in different databases (Magrane & Consortium, 2011; Flicek et al., 2013; 

48 The Gene Ontology Consortium, 2015), or structuring and searching data sources (Doms & 

49 Schroeder, 2005).

50 Life science ontology mappings identify existing concepts with similar meaning. These 

51 ontology mappings are useful in tasks like finding new annotations, supporting other data 

52 integration methods, combining related ontologies, or ontology reuse. When ontologists build 

53 new ontologies they often search for existing ontologies to avoid redundancy of concepts as 

54 recommended, for example, by the OBO Foundry principles (Smith et al., 2007). Identifying 

55 ontology mappings and understanding how ontologies relate is a critical step in integrating data 

56 and applications that use different ontologies (Ghazvinian, Noy & Musen, 2009).

57 In this paper we analyse and evaluate NCBO BioPortal (Whetzel et al., 2011) ontology 

58 mappings. BioPortal is a comprehensive publicly available repository of live science ontologies. 

59 It offers several functionalities, for example, browsing and searching for ontologies or defining 

60 ontology mappings. BioPortal ontologies are frequently being updated with newer versions. As a 
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61 result, ontologies may contain new concepts, relations or ontology mappings, or contain other 

62 modifications. In scientific community, these changes are often referred to as the evolution of 

63 ontologies (Kirsten et al., 2011; Hartung, Groß & Rahm, 2013). To help ontology engineers in 

64 understanding how ontologies overlap and evolve, we use concepts from graph theory to identify 

65 clusters of BioPortal ontologies (i.e., communities) that tend to overlap more often than others. 

66 Please note that in this paper we use the word community for a set of ontologies that tend to 

67 overlap. In contrast, the OBO (Open Biomedical Ontologies) project defines a community as a set of 

68 ontologies that work together and reduce mutual overlap. We also recognize hub ontologies, i.e., 

69 ontologies that connect many other ontologies/communities. Since BioPortal data often changes 

70 (e.g., new ontologies or versions of ontologies are uploaded or new mappings are defined), we 

71 analyse the mapping data at different time points. We propose an alignment of similar 

72 communities, define stable communities and perform a time transition analysis. Our work aims 

73 to answer questions like <In my area of interest, what ontologies already exist and how are they 

74 related to each other?= or <In my area of interest, which sub-areas are stable and which are not in 

75 terms of ontology development?=. Answering these questions can assist in tasks like ontology 

76 reuse and development. The results of the data gathered and analysed at five different time points 

77 are presented.

78 Related work

79 Related work can be categorized in the following (often overlapping) two groups: 1) analysis of 

80 ontology mappings and 2) evolution of ontologies. Below we introduce the most relevant papers 

81 from these groups.

82 Similar to our work, Ghazvinian et al. (Ghazvinian et al., 2009) performed analysis of 

83 BioPortal mappings. The goal of their work was to learn more about the characteristics of the 
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84 ontologies and the relationships between them. As a result, they produced graphs of subsets of 

85 biomedical ontologies. Although Ghazvinian9s work addresses a similar problem, our work uses 

86 a different approach (i.e., modularity analysis as described in the Methods section) to cluster 

87 ontologies in communities and identify hub ontologies. In addition, we also analyse transition 

88 between different time points, and identify stable and similar communities. As a result, we offer 

89 our work as a supplement to Ghazvinian9s findings about biomedical ontologies and their 

90 mappings.

91 Changes in ontologies have been previously studied and tools such as GOMMA (Kirsten et al., 

92 2011) have been developed.  The GOMMA framework provides a scalable and comprehensive 

93 infrastructure to analyse large life science ontologies and their evolution. Hartung et al. (Hartung, 

94 Groß & Rahm, 2013) investigates evaluation of ontology mappings for different versions of the 

95 same ontology. However, as far as we know, no previous work analysed evolution of 

96 overlapping communities of ontologies as we do in this paper.

97 This work is partly a result of our BioHackathon activities (Katayama et al., 2014) and prior 

98 work (Kocbek, Perret & Kim, 2012), where we produced a graph representation of BioPortal 

99 ontologies. In our later work (Kocbek et al., 2013) we performed initial analysis of differences 

100 between two graphs. There are several new contributions in this paper compared to the previous 

101 work. First, in the previous work, a preliminary investigation with a basic analysis of mapping 

102 data at only two time points was performed. Limited data did not allow detailed trend analysis. 

103 On the other hand, data gathered at five time points offers a comprehensive analysis of identified 

104 communities (e.g., identifying stable and similar communities), which is the focus of this paper. 

105 We also perform analysis of project and category data and discuss alignment with identified 
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106 communities. I addition, we try to validate generated clusters with information found in 

107 MEDLINE abstracts (Miller, Lacroix & Backus, 2000).

108 Data and methods

109 Data

110 To investigate the state and evolutionary change of biomedical ontologies, we need a 

111 comprehensive collection of ontologies. We have chosen to investigate BioPortal data since it is 

112 widely recognized as a comprehensive repository of biomedical ontologies. Parts of this and the 

113 next section summarize our previous paper with added information.

114 The data (Additional file 1) was gathered at the following five time points: October 2012, 

115 February 2013, August 2013, December 2013 and July 2014. Currently BioPortal contains more 

116 than 400 ontologies grouped into 41 categories (e.g., Health, Anatomy, Cell). To perform the 

117 analysis, the following data had to be collected through BioPortal RESTful web services for all 

118 time points:  the ontology9s full name (e.g., Gene Ontology), the ontology9s name abbreviation 

119 (e.g., GO), and the number of mappings from/to the ontology. Since the BioPortal RESTful 

120 interface changed after August 2013, we gathered the following additional data only for the first 

121 three versions of our visualizations: ontology statuses (e.g., production) and ontology versions 

122 (e.g., alpha). To analyse identified communities, we also collected number of projects and 

123 categories that community members belong to.  

124 Our analysis depends on mapping information in BioPortal. The BioPortal web page describes 

125 mappings as:

126 <Mappings are associations between two or more terms in different ontologies. This 

127 association typically, but not always, represents a degree of similarity between the terms. The 
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128 author of the mapping defines the semantics of a particular mapping. It is also usual for a 

129 mapping to be bi-directional, but again, this is not required. The mapping author defines 

130 directionality.=

131 We collected the number of all mappings between ontology pairs. The following three types of 

132 mappings are supported (please note that no information about mapping types was gathered for 

133 our current analysis):

134 - NCBO mappings are periodically calculated with a computer algorithm. The algorithm finds 

135 mappings for terms with close lexical match or mappings for terms with the same URI from 

136 different ontologies. The majority of the mappings is from this group.

137 - Unified Medical Language System (UMLS) mappings link terms with the same UMLS 

138 concept unique identifier (CUI) or terms from the UMLS MRMAP.RRF data.

139 - Mappings between ontology terms related by an OBO (Open Biological and Biomedical 

140 Ontologies) xref property.

141 Detecting communities and hub ontologies

142 In the next step, pre-processing of the data was performed. For all ontology versions prior 

143 December 2013, we removed the following: 1) ontologies with the retired or alpha status, 2) 

144 ontologies that contain the keyword test in their full name, and 3) restricted or private ontologies. 

145 From data gathered in December 2013 and July 2014 we removed summary ontologies (i.e., they 

146 contain the summaryOnly=true field). The filtered data was then processed with Gephi (Bastian, 

147 Heymann & Jacomy, 2009), an open source tool for graph analysis and visualization. Gephi was 

148 chosen because it9s free, platform independent, and several graph and node properties can be 

149 calculated. The input file format contained the following three fields:

150 1) fromOntology: the name of the source ontology,
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151 2) toOntology: the name of the target ontology

152 3) numberOfMappings: number of directed mappings between source and target ontology.

153

154 To identify communities of densely overlapped ontologies, we applied Gephi9s Modularity 

155 Analysis (also called Community Detection) to the data. Modularity Analysis (MA) is a measure 

156 of structure in graphs. Gephi implements Louvain method (Blondel et al., 2008) for MA, which 

157 is the fastest and most accurate method in terms of modularity score (Aynaud & Guillaume, 

158 2010). Graphs with a high MA score have sophisticated internal structure with separate 

159 communities of densely connected nodes inside the communities and sparse connection across 

160 communities. To separate communities as much as possible, we ran MA with different resolution 

161 parameter values (ranging from 0.8 to 1.2) until the highest MA score for each graph was 

162 calculated. The resolution parameter controls number of communities but it results in different 

163 MA score. The numbers of mappings between ontologies were used as weights in computing 

164 MA scores.

165 Next, we used the Gephi9s Betweenness Centrality (BC) metric (Freeman, 1977) to identify 

166 <hub= ontologies. BC is a measure of the frequency of occurrence of a particular node in all the 

167 shortest paths between any two nodes. A BC value is calculated for ach node where nodes with a 

168 higher BC value play an important role in connecting other ontologies and communities of 

169 ontologies. 

170 Validating the communities with MEDLINE

171 We used information from MEDLINE abstracts (Miller, Lacroix & Backus, 2000), to analyse 

172 how often ontologies from same/different communities found in our latest time point appear 
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173 together in scientific literature. The goal of this exercise was to validate the clusters with external 

174 information. 

175 We downloaded the 2016 version of MEDLINE in XML format and developed an algorithm to find 

176 pairs of ontology names in all abstracts published before August 2014 (our latest version of the graph is 

177 July 2014). Ontology names and abstracts were transformed to lower case characters before the 

178 comparison. Simple exact string matching was used to look for ontology names mentions. For example, 

179 in the following text <& we introduce GoPubMed, a web server which allows users to explore PubMed 

180 search results with the Gene Ontology&=, Gene Ontology would be identified. 

181

182 Aligning communities

183 Running the community detection algorithm at five time points provides us with different 

184 number of communities for each time point. Our previous research (Kocbek et al., 2013) showed 

185 that most communities at the time point t contain at least some ontologies from the previous time 

186 point t-1. The challenge is to align similar communities to compare graphs at multiple time 

187 points. With aligned communities we can identify communities that changed their size, new 

188 communities, or disappearing communities.

189 There are several ways to find similar communities in evolving graphs (Freeman, 1977; 

190 Hopcroft et al., 2004) and no method suits all problems. So, how do we decide when two 

191 identified communities are similar? For p`ractical reasons we wish to make this decision as 

192 simple as possible. Probably the simplest definition would be that two communities are more 

193 similar when they share the highest number of nodes compared to other pairs of communities. 

194 However, this simple method has a drawback. It has been proven that already small graph 

195 changes may affect MA score of Louvain algorithm (Aynaud & Guillaume, 2010). Since 
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196 BioPortal represents a dynamic repository, it is likely that some identified communities represent 

197 unstable communities.

198 Therefore, we wish to use a more stable method for identifying similar communities. We expect 

199 that ontologies with the highest BC scores play an important role in BioPortal as they will likely 

200 stay in the repository in the future.  We call these ontologies community core ontologies. In 

201 addition, we should consider ontologies that are not shared between two communities. Based on 

202 these issues, we first define several terms that are explained in the following paragraphs.

203 Let us imagine that we identified two groups of communities where group C1 contains 

204 communities identified at time point t1 and C2 contains communities identified at time point t2 

205 (t2 > t1). First, we define the importance score of ontology o as:

206

207 ýý =  
ýÿý,  ý1 +  ýÿý, ý2

2

208

209 where  and  represent BC scores for ontology o at time points t1 and t2 ýÿý,  ý1  ýÿý,  ý2
210 respectively.

211 Next, we define a similarity score SCcx,cy between two communities cx*C2 and cy*C1. The 

212 similarity score is based on a weighted version of the Dice coefficient (Dice, 1945)  and 

213 represents a value between 0 and 1. We calculate the similarity score as:

214

215 ÿÿýý, ýÿ =  

3ý * ÿýý3ý * ÿýý +  3ý * ýýý
216
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217 where O represents a set of overlapping ontologies, and N represents a set of non-overlapping 

218 ontologies found in cx or cy.

219 We also define the closest community to cx*C1 (i.e., CCcx) as the community cy*C2 with the 

220 highest similarity score when comparing to cy:

221

222 ÿÿýý = ýÿ ýÿý/ ýÿý{ÿÿýý, ýÿ}

223

224 Let us illustrate these definitions on an example where we identified five communities at two 

225 different time points. At the first time point we identified two communities and at the second 

226 time point we identified three communities. Ontologies in each community and their BC scores 

227 are presented in Table 1. Figure 1 illustrates the steps described below. 

228 To calculate similarity scores between pairs of communities, we first calculate importance of 

229 ontologies:

230

231 IA = (2+1)/2 = 3/2; IB  = (6 + 4)/2 = 5; IC = (3 + 4) = 7/2; ID = (0 + 2)/2 = 1;

232 IE = (4 + 1)/2 = 5/2; IF = (4 + 2)/2 = 3; IG = (0 + 2)/2 = 1, IH = (0 + 5)/2 = 5/2

233

234 Next, we calculate the similarity score values for pairs of communities as follows:

235

236 SCc3,c1 = IB/(IB + IA + IC + IF) = 10/26 j 0.39

237 SCc3,c2 = IF/(IF + IB + ID + IE +  IG ) = 0.24

238

239 SCc4,c1 = (IA + IC)/(IA + IC + IB) = 0.5

240 SCc4,c2 = 0/(IA + IC + ID + IE + IF + IG) = 0
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241

242 SCc5,c1 = 0/(IA + IB + IC + ID + IE + IH) = 0

243 SCc5,c2 = (ID + IE)/(ID + IE + IF + IG + IH) = 0.35

244

245 Based on these results, we summarize similar and same communities in Table 2. Similar 

246 communities are those whose similarity scores are higher than 0. Note that although c3 is similar 

247 to c1 and c2, c3 does not represent a closest community to any of the older communities c1 and 

248 c2, since c4 and c5 score higher similarity scores when compared to c2 and c3. Also note that our 

249 CC function is bi-directional, so we can also say that, for example, c1 is closest to c4.

250 Results and analysis

251 In the following sections we present statistics for identified (closest) communities and their 

252 main hub ontologies, present results of validation with MEDLINE abstracts, analyse transition 

253 (evolution) between different time points, analyse the coherence of communities, and present 

254 results of measuring effects of ontology sizes on community detection.

255 Statistics, identified communities and their hub ontologies

256 Table 3 shows statistics for all five versions of our graphs. The values in the first column are 

257 as follows:

258 - MAV represents Modularity Analysis values,

259 - #All is the number of all ontologies in the graph,

260 - #Map is the number of ontologies with at least one mapping (source or target),

261 - %Map is percentage of ontologies with at least one mapping (source or target),

262 - #NoMap is the number of ontologies with no mappings,
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263 - %NoMap is the percentage of ontologies with no mappings,

264 - #Com is the number of identified communities. The #Cx (0 < x < 8) values represent the 

265 number of ontologies in each identified community. The number of ontologies in each 

266 community orders communities.

267

268 The MA values in Table 3 are all below 0.5 with highest being the last two versions. Low MA 

269 values indicate that it is difficult to identify well-structured and independent communities 

270 between BioPortal ontologies. We can notice that the number of all ontologies rises over time, 

271 which is a result of new ontologies being added to the repository. The proportion of mapped 

272 ontologies indicates that the majority of new ontologies have no mappings. The number of 

273 identified communities changed over time from five identified communities in Oct12 to six or 

274 seven identified communities in later versions. Figure 2 illustrates a part of identified 

275 communities from the August 2013 data, where each colour represents different community, and 

276 each node represents an ontology. Node size correspond to ontology BC values. We present 

277 changes in these communities (e.g., ontologies switching their communities, i.e., changing the 

278 colour in the graph) in the Transition analysis section.

279 Table 4 shows ontologies with the highest BC values (i.e., main hub ontologies) for each 

280 community (communities are again ranked by their size). SNOMEDCT (Systematized 

281 Nomenclature of Medicine - Clinical Terms) is the ontology with the highest overall BC score 

282 (ignoring the communities) in each version, which makes it the most important hub ontology. 

283 There are several reasons for that. First, SNOMEDCT contains other ontologies (e.g. RCD) and 

284 extensive sub terminologies that we expect to find represented in other ontologies. Next, 

285 according to BioPortal9s webpage, SNOMEDCT is also the first most viewed ontology with 50% 
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286 more views than NDF (National Drug File), which is on the second place. Finally, SNOMEDCT 

287 has also been identified the most prominent hub ontology with Ghazvinian9s methods [13]. 

288 In the next section we align the communities and discuss their changes between consecutive 

289 graphs.

290 Validating the communities with MEDLINE

291 We found 3,020 ontology pairs (less than 3% of all possible pairs) that were mentioned 

292 together in at least one abstract. Figure 3 shows proportions of ontology pairs found in at least 2 

293 MEDLINE abstracts where each ontology is from either a different (red) or the same (blue) 

294 community. Although, the differences on Figure 3 are small (Y axis), we can notice that pairs 

295 where each ontology belongs to a different community tend to be found in lower number of 

296 abstracts (i.e., from 2 to 10 abstracts). On the other hand, ontology pairs that can be found 

297 together in large numbers of abstracts (e.g., 108, 152 or 164 abstracts) tend to belong to the same 

298 community.

299 These results imply that identified communities contain ontologies that appear more often 

300 together in the literature. However, since most ontologies pairs were not found in the abstracts, 

301 different methods should be explored (e.g., citations to ontologies, analysing full texts, similarity 

302 matching). This is an area for future investigations. 

303 Transition analysis

304 Figure 4 represents four heat maps for similarities between pairs of consecutive graph 

305 versions. Column and row names represent the main hub ontology for each identified 

306 community. Columns contain names for recent versions, while rows contain names for older 

307 versions. Different shades of green correspond to similarity scores where darker colours 
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308 represent higher numbers and lighter colours represent lower numbers. White colour corresponds 

309 to the similarity score of zero and shows communities with no similarity. The NoMap row 

310 represents ontologies that had no mappings in the previous version of the graph but are members 

311 of one of the communities in the newer version. The New row represents ontologies that did not 

312 exist in the previous version of the graph.

313 When observing heat maps on Figure 4, we can see how communities evolve over time. 

314 Observing single columns indicates how many older communities or their parts merge into a 

315 single newer community (e.g., Red and Blue communities in Figure 2 could merge into one 

316 community in the future). On the other hand, observing single rows indicates into how many new 

317 communities an older community splits (e.g., Red community in Figure 2 could become two 

318 communities in the future). 

319 For example, let us consider the heat map A (we can interpret B, C and D in the similar way). 

320 Row names represent hub ontologies for the old version (Oct12), while column names represent 

321 ontologies for the new version (Feb 13) of the graph. The third row shows that all ontologies 

322 from the UBERON community stayed in the same community, i.e., the community did not split. 

323 On the other hand, observing row 2 shows that although the majority of Oct12 NCIT ontologies 

324 stayed in the closest community in Feb13 (i.e., NCIT, column 2), some ontologies also migrated 

325 into the NIF (column 1), UBERON (column 3), RADLEX (column 4) and SNOMEDCT 

326 (column 5) communities. The third column illustrates merging of parts of three different 

327 communities (i.e., NCIT, UBERON and RADLEX) into the new UBERON community. The 

328 heat map A also shows that the new identified community (i.e., NCBITaxon, last column) mainly 

329 consists of ontologies from the old EP (row 1) community and some ontologies that had no 

330 mappings in Oct12 (row 6).
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331 With the heat maps we can find pairs of closest communities, which are identified with the 

332 most intensive shades of green in each column. For example, on the heat map A, the NIF column 

333 contains three coloured squares. However, the square in the EP row is the most intensive shade 

334 of green, which identifies the closest community to NIF. In Table 5 we align identified closest 

335 communities and their corresponding main hub ontologies in groups from G1 to G6. 

336 Figure 5 shows the proportion of ontologies that <stay= in each group of the closest 

337 communities between two consecutive versions of the graph. As we notice, we identified six 

338 groups of the closest communities, where five of them keep more than half of ontologies in the 

339 first three versions of the graph. In Dec13, G1 and G2 keep majority of ontologies, while G3, G4 

340 and G5 lose more than half of ontologies. In the latest version only G5 loses more than half 

341 ontologies, while other communities keep majority of their ontologies.

342 Table 5 and Figure 5 show that some closest communities keep the same core ontologies over 

343 several versions of graph (e.g., G2 and G3), while other closest communities contain different 

344 core ontologies for each version of the graph (G1 and G5). We could say that G2 group 

345 represents the most stable group over all versions of the graph. Figure 4 shows that more than 

346 90% of the G2 ontologies stayed in the closest community in Feb13 and Jul14, and 80% of G2 

347 ontologies stayed in the same community in Aug13 and Dec13. SNOMEDCT is G29s core 

348 ontology for all versions of the graph.

349 Figure 5 also shows that three groups of closest communities lost more than half of their 

350 ontologies in Dec13 with two G4 and G5 loosing more than 90% of their ontologies. When 

351 comparing these results with heat map C on Figure 1, we notice that the majority of these 

352 ontologies joined the largest community (the first column and the second and third rows). Closer 

353 analysis of mapping data showed that many new mappings have been added to BioPortal in 
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354 Dec13, which uses an updated version of BioPortal data, i.e., BioPortal 4. The latter was a major 

355 update of the portal that used largely updated data. Some of the mapping information is 

356 significantly different when comparing to older versions. For example, RADLEX had been core 

357 ontology in all the versions before December 2013. However, in the latest version this ontology 

358 has only a few mappings. Also, it is interesting that the latest two versions result in highest 

359 MAVs (Table 3), which indicates that ontologies might be clustered better compared to previous 

360 versions. It will be interesting to see if this affects stability in the future.

361 An interesting community is the NCBITaxon community, which appears the Feb13 and Dec13 

362 versions. We already learned that some taxonomy ontologies formed their own community in 

363 February 2013 (Kocbek et al., 2013). However, this community merged with the largest 

364 community in Aug13 (Figure 1). The community was identified again in Dec13, but then again 

365 merged in Jul14. 

366 Considering Figure 4 and the heat map D one can notice that communities in the last two 

367 versions keep most ontologies compared to previous versions. This indicates that the mapping 

368 data changed the least compared to previous data and BioPortal gained in stability.

369 Analysing community coherence

370 BioPortal groups ontologies into 41 categories such as Anatomy, Health, Ethology, and Gene 

371 Product. In addition, information about projects that use BioPortal ontologies is available.  We 

372 use these two types of information to discuss the coherence of identified communities in our 

373 methods. Figure 6 illustrates distribution of top 5 categories with highest number of members 

374 (Health, Anatomy, Gross Anatomy, Phenotype, Animal Gross Anatomy) for all 5 graph versions. 

375 The horizontal axis present closest communities and the vertical axis present ratio of community 

376 members belonging to each category. 
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377 Charts on Figure 6 show that all identified communities contain ontologies from different 

378 categories for all graph versions. However, we can notice that more than 90% of G5 ontologies 

379 in the Oct12 version belong to the Anatomy category and around 70% of G5 ontologies belong 

380 to the Gross Anatomy and Animal Gross Anatomy categories. In the future versions, G5 still 

381 contains the largest proportion of anatomy ontologies. Again, the Dec13 version shows major 

382 changes with large drop of anatomy ontologies in G5. We analysed mapping data for two 

383 ontologies that were in G5 in Aug13, i.e., Foundational Model of Anatomy (FMA) and Mosquito 

384 Gross Anatomy Ontology (TGMA). The former stayed in G5 also in Dec 13, while the latter 

385 switched to G1. We observed large increase of overlapping ontologies for both ontologies in 

386 Dec13. A large number of newly overlapping ontologies for TGMA belongs to other 

387 communities, which is probably the reason for its migration. 

388 Another distinct community is G2, where large proportion of ontologies belongs to the Health 

389 category. Almost 70% of Oct12 G2 ontologies are categorised as health ontologies and present 

390 the majority in G2 future graphs as well. Health ontologies are distributed through other 

391 identified communities in the future and present large portions of G4 and G6. Communities G1 

392 and G3 are more heterogeneous with a mixture of ontologies from all categories in all graph 

393 versions. 

394 We also investigated the BioPortal project data to analyse its alignment with identified 

395 communities. Each project has a list of ontologies that it uses and we investigated how these lists 

396 correspond to the identified communities for the Jul14 version. Project with the highest number 

397 of ontologies used 35 ontologies, while the majority of projects used a single ontology. We 

398 ignored the latter projects in our analysis since it was obvious that they will be aligned with a 

399 single community. Table 6 shows number or projects using ontologies from only 1, 2, 3, 4, 5 or 6 
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400 identified communities for 77 projects that use at least two ontologies. We can notice that most 

401 projects use ontologies from 2 or 3 identified communities. However, 12 projects use ontologies 

402 from the same community. In addition, some projects use the majority of ontologies from the 

403 same community. For example, G5, which contains most of anatomy ontologies as we discussed 

404 above, provides all ontologies for a database containing genomic and biological information on 

405 anopheline mosquitoes (i.e., the AnoBase project (Topalis et al., 2005)). G5 also contains 8 out 

406 of 10 ontologies for the Bgee database (Bastian et al., 2008), which compares expression patterns 

407 between animals. Bgee creates homology relationships between anatomical ontologies, and 

408 stores this information in a multi-species ontology. These examples show that our clusters 

409 contain all or the majority of ontologies being used in narrower projects. 

410 Analysing the effect of ontology sizes on community detection

411 An important factor that influences the number of mappings between two ontologies is the size 

412 (i.e., number of classes) of both ontologies. It is more likely that larger ontologies have higher 

413 number of mappings when compared to smaller ontologies.  Unfortunately, we did not collect 

414 ontology sizes for each time spot in our analysis and historical data is not available through 

415 BioPortal9s API. We downloaded old versions of ontologies at the time of writing this paper and 

416 tried to manually parse the ontologies with the OWL API to calculate their sizes. The OWL API 

417 is a Java API and reference implementation for creating, manipulating and serialising ontologies 

418 (Horridge & Bechhofer, 2011). However, due to issues such as missing ontology imports, 

419 parsing errors, and license restrictions, we were unable to calculate correct sizes for a large 

420 number of ontologies. Ignoring these ontologies would not produce comparable results with our 

421 previous analysis. To address this problem, we gathered mapping information and ontology sizes 

422 for November 2015 and produced two new graphs. In the first graph, we applied the same 
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423 community detection techniques as described in the previous sections, while in the second graph, 

424 we normalised number of mappings by ontology sizes. 

425 Table 7 shows results for two graphs using data gathered in November 2015 with two different 

426 sources for edge weights: a) number of mappings, and b) number of mappings normalised by 

427 ontology sizes. Both graphs result in 6 identified communities with the same hub ontologies. 

428 Between the two graphs, two communities are completely identical, while other three 

429 communities result in minor changes. Specifically, out of 437 ontologies, 12 ontologies (i.e., 

430 approx. 3%) change the communities. None of these ontologies were hub ontologies. These 

431 findings imply that ontology sizes do not play an important role in community detection for our 

432 data. However, we plan to investigate these findings in more depth in future graph versions.

433 Discussion and conclusion

434 In this paper we focused on investigating a comprehensive repository of biomedical ontologies 

435 (BioPortal) using graph theory concepts. We performed the exploratory study of BioPortal9s 

436 mapping data over different time points. As far as we know, this is the first attempt of this kind. 

437 With investigating mapping data gathered at five different time points using graph theory 

438 methods, we identified similar and closest communities of overlapping ontologies, and 

439 demonstrated evolution of communities over time. We also tried to validate communities 

440 through mentions of their ontology members in MEDLINE abstracts. 

441 The five communities identified in the first version of the graph changed their size. We 

442 showed how communities appear, disappear, split or merge over time. Based on similarity scores 

443 we determined closest communities between pairs of different graph versions. We then analysed 

444 the stability of these closest communities. We discussed how identified communities align with 
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445 BioPortal9s category and project information. We also identified core ontologies of the closest 

446 communities. 

447 When studying our conclusions, we should take into consideration some limitations of the 

448 work. First, the BioPortal repository can be publicly modified and no evaluation of the uploaded 

449 ontologies or mapping data is done. In addition, although we tried to identify them, there are 

450 probably some <test= ontologies left in our data. Therefore, we should expect some data noise. 

451 Our analysis also showed large differences in data between the Aug13 and Dec13 when 

452 BioPortal 4 was announced. Second, our method for identifying communities might favour larger 

453 ontologies since we do not consider ontology sizes when calculating edge weights. Although our 

454 analysis of data gathered in November 2015 implies that normalising edge numbers results in 

455 small changes in final graph, this remains an area for future investigation. Next, due to 

456 limitations of BioPortal9s web service API, we were not able to distinguish between different 

457 types of ontology mappings in older versions. For example, the MESH and RH-MESH 

458 ontologies have same concepts and only differ in syntactic translation, which has not been picked 

459 up by our methods. Finally, our observations highly depend on the Louvain method for 

460 community detection. We accept this method as a <ground truth= quality metrics of our clusters.  

461 The Louvain method was the only available method in Gephi and it is considered as the fastest 

462 and most accurate method in terms of modularity score (Aynaud & Guillaume, 2010).

463 In the future, we plan to address the above issues, especially distinguishing between different 

464 types of mappings and considering ontology sizes. We also plan to consider other graph 

465 centrality measures and methods for community detections. Finally, we plan to perform a deeper 

466 analysis of changes in the underlying ontologies to investigate how these affect the broader graph 

467 clustering patterns.
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555

556 Figures

557 Figure 1: Illustration of identified communities at two different time points tp1 and tp2. Ontologies (circles) 

558 that belong to the same community are coloured the same. 

559 Figure 2: Illustration of identified communities in a graph. Different colours represent communities, while 

560 nodes represent ontologies. Node labels are ontology abbreviations and node sizes correspond to BC values. 

561 Grey nodes are ontologies with no mappings. 

562 Figure 3: Proportion of ontology pairs found in different number of abstracts. The horizontal axis displays 

563 the number of abstracts, while the vertical axis displays the proportion of ontology pairs for each number of 

564 abstracts.

565 Figure 4: Similarities between graph pairs: A) Feb13 vs Oct12, B) Aug12 vs Feb13, C) Dec13 vs Aug 13, and 

566 D) Jul14 vs Dec13. Column and row names represent the main hub ontology for each identified community. 

567 Different shades of green correspond to similarity scores where darker colours represent higher numbers and 

568 lighter colours represent lower numbers. The NoMap row represents ontologies that had no mappings in the 

569 previous version of the graph but are members of one of the communities in the newer version. The New row 

570 represents ontologies that did not exist in the previous version of the graph.

571 Figure 5: Proportion of ontologies that stay in the same closest community between graph pairs.

572 Figure 6: Distribution of top 5 categories with highest number of members (Health, Anatomy, Gross 

573 Anatomy, Phenotype, Animal Gross Anatomy) for all 5 graph versions: Oct 12 (A), Feb13 (B), Aug13 (C), 

574 Dec13 (D), Jul14 (E).
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Table 1(on next page)

Table 1

An example illustrating identified communities at two different time points.
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1 Table 1: An example illustrating identified communities at two different time points.

tp1 (2 communities) tp2 (3 communities)

Com Ont BC Com Ont BC

c1 A 2 c3 B 6

B 4 F 2

C 3 c4 A 1

c2 D 0 C 4

E 1 c5 D 2

F 4 E 4

G 2 H 5

2

3
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Table 2(on next page)

Table 2

An example of similar and same communities.
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1 Table 2: Example of similar and same communities.

Community Similar to Closest to

c3 c1 and c2  /

c4 c1 c1

c5 c2 c2

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2715v1 | CC BY 4.0 Open Access | rec: 11 Jan 2017, publ: 11 Jan 2017



Table 3(on next page)

Table 3

Statistics for different versions of the graph. Abbreviations are as follows: MAV 3 modularity

analysis value, #All 3 number of all ontologies, #Map/#NoMap 3 number of ontologies with at

least one/no mappings, %Map/%NoMap 3 percentage of ontologies with at least one/no

mappings, #Com 3 number of communities, #Cx 3 community x.
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1 Table 3: Statistics for different versions of the graph. Abbreviations are as follows: MAV 3 modularity analysis value, 

2 #All 3 number of all ontologies, #Map/#NoMap 3 number of ontologies with at least one/no mappings, %Map/%NoMap 3 

3 percentage of ontologies with at least one/no mappings, #Com 3 number of communities, #Cx 3 community x. 

Oct12 Feb13 Aug13 Dec13 Jul14

MAV 0.346 0.339 0.343 0.435 0.402

#All 283 294 317 359 367

#Map 254 268 259 321 318

%Map 90% 91% 82% 89% 87%

#NoMap 29 26 58 38 49

%NoMap 10% 9% 18% 11% 13%

#Com 5 6 7 7 6

#C1 87 127 88 211 160

#C2 85 54 46 49 65

#C3 31 35 43 28 48

#C4 31 20 39 11 30

#C5 20 28 36 11 12

#C6 / 4 5 7 3

#C7 / / 2 4 /

4
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Table 4(on next page)

Table 4

Identified communities and their main hub ontologies for all versions of the graph. Please

note that the communities are not aligned. Abbreviations are as follows: Cardiac

Electrophysiology Ontology (EP), National Cancer Institute Thesaurus (NCIT), Uber Anatomy

Ontology (UBERON), Radiology Lexicon (RADLEX), Systematized Nomenclature of Medicine -

Clinical Terms (SNOMEDCT), Neuroscience Information Framework (NIF), National Center for

Biotechnology Information Organismal Classification (NCBITaxon), Eagle-I Research Resource

Ontology (ERO), Taxonomy for Rehabilitation of Knee Conditions (TRAK), National Drug File -

Reference Terminology (NDFRT), Software Ontology (SWO), Sage Bionetworks Synapse

Ontology (SYN), Semantic Web for Earth and Environment Technology Ontology (SWEET),

and Medical Subject Headings (MESH).
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1 Table 4: Identified communities and their main hub ontologies for all versions of the graph. Please note that the 

2 communities are not aligned. Abbreviations are as follows: Cardiac Electrophysiology Ontology (EP), National Cancer 

3 Institute Thesaurus (NCIT), Uber Anatomy Ontology (UBERON), Radiology Lexicon (RADLEX), Systematized 

4 Nomenclature of Medicine - Clinical Terms (SNOMEDCT), Neuroscience Information Framework (NIF),  National 

5 Center for Biotechnology Information Organismal Classification (NCBITaxon), Eagle-I Research Resource Ontology 

6 (ERO), Taxonomy for Rehabilitation of Knee Conditions (TRAK), National Drug File - Reference Terminology 

7 (NDFRT), Software Ontology (SWO), Sage Bionetworks Synapse Ontology (SYN),  Semantic Web for Earth and 

8 Environment Technology Ontology (SWEET), and Medical Subject Headings (MESH).

Oct12 Feb13 Aug13 Dec13 Jul14

1 EP NIF ERO NCIT SWEET

2 NCIT NCIT NCIT SNOMEDCT SNOMEDCT

3 UBERON UBERON RADLEX NIFSTD NIFSTD

4 RADLEX RADLEX SNOMEDCT BIOMODELS SYN

5 SNOMEDCT SNOMEDCT TRAK MESH MESH

6 / NCBITaxon NDFRT NCBITaxon SWO

7 / / HIMC-CPT SWO /

9
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Table 5(on next page)

Table 5

Aligned closest communities, and their main hub ontologies.
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1 Table 5: Aligned closest communities, and their main hub ontologies.

Oct12 Feb13 Aug13 Dec13 Jul14

G1 EP NIF ERO NCIT SWEET

G2 SNOMEDCT SNOMEDCT SNOMEDCT SNOMEDCT SNOMEDCT

G3 RADLEX RADLEX RADLEX NIFSTD NIFSTD

G4 NCIT NCIT NCIT MESH MESH

G5 UBERON UBERON TRAK BioModels SYN

G6 / / / SWO SWO

2
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Table 6(on next page)

Table 6

Number of connected ontologies in each graph version for two anatomy ontologies.
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1 Table 6: Number of connected ontologies in each graph version for two anatomy ontologies.

#Communities 1 2 3 4 5 6

#Projects 12 26 27 7 5 0

2
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Table 7(on next page)

Table 7

Comparison of community information for November 2015 with and without considering

ontology size.
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1 Table 7: Comparison of community information for November 2015 with and without considering ontology size.

Size MAV #Ontologies #Comm #C1 #C2 #C3 #C4 #C5 #C6

No 0.346 437 6 255 107 30 26 12 7

Yes 0.339 437 6 259 106 29 24 12 7

2
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Figure 1

Illustration of identified communities at two different time points tp1 and tp2.

Ontologies (circles) that belong to the same community are coloured the same.
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Figure 2

Illustration of identified communities in a graph

Different colours represent communities, while nodes represent ontologies. Node labels are

ontology abbreviations and node sizes correspond to BC values. Grey nodes are ontologies

with no mappings.
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Figure 3

Proportion of ontology pairs found in different number of abstracts.

The horizontal axis displays the number of abstracts, while the vertical axis displays the

proportion of ontology pairs for each number of abstracts.
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Figure 4

Similarities between graph pairs

A) Feb13 vs Oct12, B) Aug12 vs Feb13, C) Dec13 vs Aug 13, and D) Jul14 vs Dec13. Column

and row names represent the main hub ontology for each identified community. Different

shades of green correspond to similarity scores where darker colours represent higher

numbers and lighter colours represent lower numbers. The NoMap row represents ontologies

that had no mappings in the previous version of the graph but are members of one of the

communities in the newer version. The New row represents ontologies that did not exist in

the previous version of the graph.
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Figure 5

Proportion of ontologies that stay in the same closest community between graph pairs.
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Figure 6

Top 5 categories

Distribution of top 5 categories with highest number of members (Health, Anatomy, Gross

Anatomy, Phenotype, Animal Gross Anatomy) for all 5 graph versions: Oct 12 (A), Feb13 (B),

Aug13 (C), Dec13 (D), Jul14 (E).
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