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Background. Functional groups serve two important functions in ecology, they allow for simplification of

ecosystem models and can aid in understanding diversity. Despite their important applications, there has

not been a universally accepted method of how to define them. A common approach is to cluster species

on a set of traits, validated through visual confirmation of resulting groups based primarily on expert

opinion. The goal of this research is to determine a suitable procedure for creating and evaluating

functional groups that arise from clustering nominal traits.

Methods. To do so we produced a species by trait matrix of 22 traits from 116 fish species from Tasman

Bay and Golden Bay, New Zealand. Data collected from photographs and published literature were

predominantly nominal, and a small number of continuous traits were discretized. Some data were

missing, so the benefit of imputing data was assessed using four approaches on data with known missing

values. Hierarchical clustering is utilised to search for underlying data structure in the data that may

represent functional groups. Within this clustering paradigm there are a number of distance matrices and

linkage methods available, several combinations of which we test. The resulting clusters are evaluated

using internal metrics developed specifically for nominal clustering. This revealed the choice of number

of clusters, distance matrix and linkage method greatly affected the overall within- and between- cluster

variability. We visualise the clustering in two dimensions and the stability of clusters is assessed through

bootstrapping.

Results. Missing data imputation showed up to 90% accuracy using polytomous imputation, so was used

to impute the real missing data. A division of the species information into three functional groups was the

most separated, compact and stable result. Increasing the number of clusters increased the

inconsistency of group membership, and selection of the appropriate distance matrix and linkage method

improved the fit.

Discussion. We show that the commonly used methodologies used for the creation of functional groups

are fraught with subjectivity, ultimately causing significant variation in the composition of resulting

groups. Depending on the research goal dictates the appropriate strategy for selecting number of groups,

distance matrix and clustering algorithm combination.
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ABSTRACT12

Background. Functional groups serve two important functions in ecology, they allow for simplification of

ecosystem models and can aid in understanding diversity. Despite their important applications, there

has not been a universally accepted method of how to define them. A common approach is to cluster

species on a set of traits, validated through visual confirmation of resulting groups based primarily on

expert opinion. The goal of this research is to determine a suitable procedure for creating and evaluating

functional groups that arise from clustering nominal traits.
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Methods. To do so we produced a species by trait matrix of 22 traits from 116 fish species from Tasman

Bay and Golden Bay, New Zealand. Data collected from photographs and published literature were

predominantly nominal, and a small number of continuous traits were discretized. Some data were

missing, so the benefit of imputing data was assessed using four approaches on data with known missing

values. Hierarchical clustering is utilised to search for underlying data structure in the data that may

represent functional groups. Within this clustering paradigm there are a number of distance matrices and

linkage methods available, several combinations of which we test. The resulting clusters are evaluated

using internal metrics developed specifically for nominal clustering. This revealed the choice of number

of clusters, distance matrix and linkage method greatly affected the overall within- and between- cluster

variability. We visualise the clustering in two dimensions and the stability of clusters is assessed through

bootstrapping.
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Results. Missing data imputation showed up to 90% accuracy using polytomous imputation, so was

used to impute the real missing data. A division of the species information into three functional groups

was the most separated, compact and stable result. Increasing the number of clusters increased the

inconsistency of group membership, and selection of the appropriate distance matrix and linkage method

improved the fit.
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Discussion. We show that the commonly used methodologies used for the creation of functional groups

are fraught with subjectivity, ultimately causing significant variation in the composition of resulting groups.

Depending on the research goal dictates the appropriate strategy for selecting number of groups, distance

matrix and clustering algorithm combination.
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INTRODUCTION39

Marine ecosystems are large and complex, requiring simplification of their components in order to be40

studied and understood. One such simplification is the construction of functional species groups, which41

involves creating distinct sets of species according to a selection of their functional traits (Tilman, 2001).42

The groups are defined by the niche requirements of the species, rather than by their taxonomy (Root,43

1967), or their economic importance. In other words, a functional group comprises species with similar44

life history that respond to environmental fluctuations in a similar way within a given habitat. Defining45

functional groups “allows a context-specific simplification of the real world...” (pg. 5; Gitay and Noble,46

1997). This provides a basis from which food web analysis and relationships with other components of47
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the ecosystem can be derived (Gravel et al., 2016). There are two primary uses of functional groups:48

to simplify the numerous species contained in an ecosystem for modelling; and to assess the diversity49

of an ecosystem. It is a particularly important step in ecosystems modelling as it identifies the basic50

structures that become the inputs of the model, thus making the outputs more interpretable (Fulton et al.,51

2003). If functional groups are used in assessing the diversity of an ecosystem (in addition to or instead of52

species richness), the problem of functional redundancy can be avoided (Stuart-Smith et al., 2013), and53

the variation in the productivity of a given ecosystem can be more clearly observed (Tilman et al., 1997).54

Functional groups for ecosystem models typical have been established using expert knowledge of the55

system and its inhabitants (Baretta et al., 1995; Olivier and Planque, 2017), while groups representing56

functional diversity have been created using trait or diet data and statistical classification methods57

(Petchey and Gaston, 2002). Diet data are commonly used to create functional groups of fishes in marine58

ecosystems, because diet can demonstrate resource partitioning between species, which is a key indicator59

of interspecific competition (Colloca et al., 2010; Sala and Ballesteros, 1997). However, diet data are time60

consuming and expensive to collect, and this type of analysis only takes into account part of the species61

role in the ecosystem. Therefore diet data should be complemented with morphological traits (Reecht62

et al., 2013; Albouy et al., 2011), known habitat associations and/or other life history traits (Stewart et al.,63

2006; Gravel et al., 2016) to derive functional groups. The usefulness of these groupings depends on the64

ecosystem of interest and the intended use of the groupings. Such intentions could be used to identify65

specialists (Dehling et al., 2016; Clavel et al., 2013), habitat use (Franco et al., 2008; Elliott et al., 2007)66

or predict prey selection (Spitz et al., 2014).67

With such a wide array of applications there are inevitably many variations in approaches to deriving68

the groups. One approach is to record traits that reflect how species use the environment and its resources,69

and use those to cluster groups based on their similarities (Mindel et al., 2016). Selecting functional traits70

for classification is a crucial step in the grouping process as these ultimately determine how species group71

together (Bremner et al., 2006a). Functional groups can be defined by continuous traits, for example72

Albouy et al. (2011); Córdova-Tapia and Zambrano (2016) used continuous morphological measurements73

to infer a given species food source and its acquisition which were used to derive functional groups.74

These traits are time consuming and expensive to collect and measuring many traits for all members75

of species-rich ecosystems is impractical (Madin et al., 2016). The traits that will be most valuable in76

practice will be those available for most species (Costello et al., 2015). To create functional groups of77

benthic invertebrate communities categorical (nominal) traits are utilised to classify species (Bremner78

et al., 2006a). Using categorical rather than numerical features allows the data to measured without units,79

and as traits are rarely measured with a common methodology this may lead to more reliable, complete80

and comparable data (McGill et al., 2006).81

Functional groups defined from clustering using continuous data collected from species measurements82

(Albouy et al., 2011; Sibbing and Nagelkerke, 2000) can utilise traditional approaches to cluster analysis83

(e.g. Euclidean distances with Ward’s minimum variance clustering (Dumay et al., 2004)). Clustering84

categorical (nominal) traits can use the same hierarchical approach, but cannot cannot make use of most85

distance matrix algorithms. Instead, several alternative approaches to clustering nominal data have been86

suggested by Boriah et al. (2008) and Šulc and Řezankovà (2014) that can then be used with traditional87

linkage methods. An important consideration that should be made and is often missed in these type of88

analyses is that choice of both distance matrix and linkage method will ultimately alter the composition of89

the clusters (Clifford et al., 2011).90

While unsupervised learning (such as clustering) is a potentially powerful solution for finding func-91

tional groups, as yet there is no agreed method for assessing validity. Functional groups that arise from92

clustering are often evaluated visually and with expert understanding of the underlying ecology. The93

major concern with this approach is the inevitable influence of researcher bias on selecting an appropriate94

result (Handl et al., 2005). Even with dozens of cluster evaluation metrics available, they are rarely95

utilised as there is no single cluster evaluation index that can outperform others (Arbelaitz et al., 2013;96

Milligan and Cooper, 1985). There are two possible ways of evaluating the distribution of variables to97

clusters - internal and external (Šulc, 2016). External indices are used to evaluate supervised learning98

problems where the model solution is evaluated against the known solution. This allows the use of well99

known and understood metrics of clustering reliability such as accuracy, sensitivity and precision. Despite100

these methods requiring a prior known outcome, they are often used in the evaluation of new unsupervised101

learning approaches, even when by definition these methods have no known outcome. Instead internal102
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evaluation methods may be used to evaluate an unsupervised learning outcome (Arbelaitz et al., 2013).103

Internal indices have been developed to calculate the within- and between- cluster variability and select104

the optimal number of clusters (Boriah et al., 2008). The number of functional groups (clusters) selected105

will affect ecosystem model outcomes and running time (Fulton et al., 2003), and choosing too few will106

mean that the functionality is not well represented, while choosing too many will over-fit the problem107

(Mason et al., 2003).108

The aim of this research is to find a clustering method suitable for identifying functional groups of109

fish from nominal data. In this paper, we evaluate the utility of using hierarchical cluster analysis to110

find functional groups of fish from nominal traits. A good clustering result would find groups that are111

compact, well-separated, connected, and stable while still being ecologically relevant (Brock et al., 2008).112

Therefore, our focus is largely on evaluating results with internal cluster evaluation metrics, bootstrapping113

and visualisation.114

MATERIALS & METHODS115

Here we describe a step-by-step approach to derive functional groups from nominal traits by first creating116

a species by trait matrix (Part 1; Fonseca and Ganade, 2001) and classifying the groups via hierarchical117

cluster analysis (Part 2; Petchey and Gaston, 2002). Importantly, during the analysis stage we provide118

strategies for dealing with missing data, and selection of distance matrix and clustering algorithm. This is119

done by evaluating the compactness, separation and stability of group fits.120

Part 1: Creation of the trait matrix121

In this section we describe the steps used for creating a species · trait matrix as described by Fonseca and122

Ganade (2001). This methodology can be used for making a trait matrix for any group of species. Tasman123

Bay and Golden Bay (TBGB; co-ordinates: -41çE, -173çN) located on the north of New Zealand’s South124

Island is used as a case study and we focus on fish (Actinopterygii and Chondrichthyes). TBGB is one of125

many areas used for commercial fish catches in the New Zealand Exclusive Economic Zone (EEZ). This126

region is characterised by its relatively shallow water habitat that has large ocean currents that enter this127

system from the Tasman sea bring nutrient rich cold water that makes the area highly productive. Large128

sheltered areas mean that this area is home to a diverse range of species, from small reef bound species to129

large migrating pelagic species.130

(i) Select the functional group to be defined131

The type of functional group defined will be dependent on the ecosystem that is being modelled. Different132

ecosystems require different functions in order for their production to be exploited by its inhabitants133

(Fonseca and Ganade, 2001). For example, coral reef fishes need strong, sharp teeth in order to exploit134

polyps, while large pelagic species need to be fast moving in order to capture prey. Functional groups of135

species should be defined by how the species use their environment and its resources as ecosystem models136

attempt to model the entire process of an ecosystem spatially and temporally (Fulton et al., 2004). As we137

are modelling an open ecosystem, where species can enter and leave, it is important to try and capture138

some of the diversity of how species use an ecosystem daily, seasonally and yearly. The final groupings139

of species should exhibit similar responses to environmental conditions and have similar effects on the140

ecosystem processes (Fonseca and Ganade, 2001), though a good way to test these characteristics is yet to141

be found.142

(ii) Select species to include143

The species selected to include should represent the taxonomy, time and space that the functional groups144

are trying to capture (Fonseca and Ganade, 2001). That is, species that rarely occupy the area of interest,145

or species with greatly differeing biomasses should be included in the analysis. This is because including146

many species in functional groups better explains changes in the biodiversity of a given system (Naeem and147

Li, 1997). For this study, a comprehensive list of species of fishes from TBGB was made from the latest148

published account of trawl data (Stevenson and MacGibbon, 2015) and from published accounts of species149

known to inhabit TBGB (Roberts et al., 2015). While there are obvious functional differences between150

adults and juveniles of many species, that should be addressed and incorporated, such a delineation was151

beyond the scope of this project.152
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(iii) Select functions of interest153

To avoid functional redundancy more functions can be selected to increase the chances of species having154

unique roles within the ecosystem, while ensuring that species who display the same traits across a number155

of functions truly belong to the same functional group. We selected four different functions to represent156

how the species of interest utilise their environment: diet, morphology, habitat use and life history traits157

(Villéger et al., 2017b; Gravel et al., 2016; Costello et al., 2015). Diet determines a species influence158

on other organisms in the environment and its position in the food web (Costello et al., 2015). Habitat159

preference allow us to understand how the different species might aggregate in the environment and160

can provide information about the likely lifestyle of the species (Chan, 2001; Vadas Jr and Orth, 1997).161

Morphology traits are important in defining the range of food sources, behaviour, adaptation and habitat162

use available to a certain species (Sibbing and Nagelkerke, 2000). Life history primarily reflected the163

reproductive strategies of the species which may be indicative of their abundance and resilience in the164

environment (Villéger et al., 2017b).165

(iv) Trait selection166

Traits should reflect the functions of interest. A literature review was conducted that identified 94 potential167

traits that could be recorded from fish species. As cost and time are often significant motivators for168

conducting research, it was a goal of this study to record functional trait information only from published169

resources or from photographs, rather than collecting and measuring specimens. We identified 40 traits170

that could be recorded without measuring species directly (Table S1). For some cases, variables that171

previously required a specimen to be measured were able to be categorised into nominal variables. For172

example, caudal peduncle aspect ratio was recorded as caudal fin shape. Where information differed173

ontogenetically within species, the information for adult females was recorded. The final list of recorded174

traits is provided in Table 1.175

Morphology traits describe how species move around their environment and can potentially be used176

as an indicator of prey preferences (Albouy et al., 2011). Most of the traits recorded for morphology177

were determined from pictures of the species. Descriptions of the species fins were recorded either as178

their position on the body (pelvic), the shape of the fin (caudal) or the fin composition (soft ray or spines179

- dorsal). The shape of the caudal fin is important in determining the ability of a species to transition180

between vertical habitats (Bridge et al., 2016). The swimming mode of the species was recorded as either181

body caudal fin (BCF) locomotion or median paired fin (MPF) locomotion that is an indicator of the182

evasiveness of the food types targeted (Sfakiotakis et al., 1999; Webb, 1984b). The body form of the183

species was recorded as either fusiform, flat, cylindrical or compressed which is an indicator of how184

species acquire their food (Webb, 1984a). Eye position indicates the likely location of the species in185

the water column (Mindel et al., 2016). The spiny dorsal fin type may be an indicator of protection (i.e.186

from the number of spines - another recorded variable) but can also indicate the manoeuvrability of the187

species. The soft dorsal fin can help a fish to remain stable while swimming but is also able to generate188

thrust (Lauder and Drucker, 2004). Oral gape position can indicate feeding position in the water column189

(Albouy et al., 2011) and prey types that may be acquired (Zhao et al., 2014). Teeth shape indicate the190

type of prey consumed and the substrate on which a species may be feeding (Bellwood et al., 2014). Body191

length is an indicator of potential prey available and it correlates with size at maturity, fecundity, growth192

rate and longevity (Sibbing and Nagelkerke, 2000; Mindel et al., 2016). Physical protection was recorded193

as present or absent as an indicator of how difficult the species would be to use as prey (Reecht et al.,194

2013).195

The life history traits selected primarily reflect the reproductive strategies for each of the species.196

Parental care (care, no care) was included as it can indicate where a species chooses to breed as well as197

the size and amount of the offspring (Franco et al., 2008). The spawning season and location (river, bay,198

ocean) were also recorded as it indicates when species would be expected to be found together and their199

potential seasonal movements. Gregariousness or schooling type was defined as solitary, faculative or200

obligative which help to explain how species aggregate and how often. Fish that are obligative schoolers201

(highly gregarious) tend to be preferred prey of large and fast predators (Spitz et al., 2014). Mortality202

and maximum age are indicators of population turnover rates and longevity and may also be an indicator203

of population size (Palomares and Pauly, 1998). Age or length at maturity affects the resilience of a204

population, as species that mature younger are more resilient (Froese and Binohlan, 2000). Number of205

eggs or brood size is an indicator of fecundity (Clavel et al., 2013). Spawning frequency was recorded206

as singular (semalparous), batch or serial spawning and annual which can indicate stability of stocks207
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Table 1. Diet, habitat and morphology traits included in the analysis along with trait type, function,

categories, percent missing and references.

Variable Function Data type Categories Missing Reference/s

Diet Diet Nominal Omnivore; Invert feeder, Piscivore, Herbi-

vore, Gelatinous inverts

0% Villeger et al. (2017)

Trophic level Diet Continuous/

Discretized

Low (0-3); Medium (3-3.5); High (3.5-4);

Very high (4+)

0% FishBase (2016)

Common maximum

depth (m)

Habitat Continuous/

Discretized

Reef (0-20.1); Shallow (20.2-54.6); Ocean

(54.7-148.4); Deep (148.5+)

0% New

Maximum depth (m) Habitat Continuous/

Discretized

Reef (0-20.1); Shallow (20.2-54.6); Ocean

(54.7-148.4); Deep (148.5-403.4); Bathy

(403.4+)

0% New

Temperature prefer-

ence

Habitat Nominal Deep, Temperate, Subtropical, Tropical 0% FishBase (2016)

Vertical habitat Habitat Nominal Reef, Pelagic, Demersal, Benthopelagic,

Bathypelagic, Bathydemersal

0% FishBase (2016)

Horizontal habitat Habitat Nominal Coast, Neritic, Ocean 0% FishBase (2016)

Caudal fin shape Morphology Nominal Forked, Rounded, Truncated, Emarginate,

Heterocercal, Continuous, Lanceolate

0% Fishes of New

Zealand

Swimming mode Morphology Nominal Body caudal fin (BCF), Median paired fin

(MPF)

0% Villeger et al. (2017);

Sfakiotakis et al.

(1999)

Body form Morphology Nominal Compressed, Cylindrical, Eel, Flat,

Fusiform

0% Villeger et al. (2017);

Sfakiotakis et al.

(1999)

Eye position Morphology Nominal Mid, Side, Top 0% Mindel et al., (2016)

Oral gape position Morphology Nominal Subterminal, Terminal, Hyper-protusable,

Inferior, Snout projecting, Lower jaw pro-

jecting, Tubular

0% Gravel et al. (2016);

Sibbing & Nagelkerke

(2001)

Maximum length

(cm)

Morphology Continuous/

Discretized

Small (0-20.1); Medium (20.2-54.6); Large

(54.7-148.4); Very large (148.5+)

0% Gravel et al. (2016);

Sibbing & Nagelkerke

(2001)

Reproductive strategy Life history Nominal Oviviparous, Ovovparous, Viviparous 1.7% Franco et al. (2008);

Bremner et al. (2006)

Sexual differentiation Life history Nominal Gonochoristic, Hermaphrodite 1.7% Bremner et al. (2006)

Migration Life history Nominal Anadromous, Catadromous, Oceanic, None 12.1% Spitz et al. (2014)

Parental care Life history Nominal None, Paternal, Resource defence polygeny

(RDP), Sheltered

2.6% Gravel et al. (2016);

Franco et al. (2008)

Egg attachment Life history Nominal Pelagic, Benthic, Adhesive, None 7.8% Gravel et al. (2016);

Franco et al. (2008)

Reproduction location Life history Nominal Bay, Ocean, River 23.3% Franco et al. (2008)

Gregariousness/

Schooling type

Life history Nominal Faculative, Obligatory, Solitary 18.1% Spitz et al. (2014)

Population doubling Life history Nominal High, Medium, Low, Very low 12.1% FishBase (2016)

between years, where species that spawn more often tend to have more stable populations (Longhurst,208

2002). Fish that provide parental care or give birth to live young (viviparous) tend to give birth to fewer,209

larger offspring, often in more sheltered habitats such as estuaries.210

Habitat traits are important in defining how a species uses their environment. As we focused on a211

small ecosystem the habitat variables of a given species must match the available habitat of that ecosystem.212

We included the minimum and maximum known depth of the species as TBGB is a relatively shallow bay213

(max depth 200m). Knowing the vertical space that the species occupy informs us of potential intraspecific214

competition (Munday et al., 2001). We included the preferred temperature gradient (tropical, subtropical,215

temperate or deep) as temperature is an important indicator of how species use the ecosystem (Malavasi216

et al., 2004). Horizontal habitat (coastal, neritic or ocean) was used as another indicator of how species217

may group together in similar habitats.218

Diet traits allow us to understand a species position within a food web. Diet can be recorded in a219

number of ways, but for our purposes we sought a simple classification of diet. Therefore we have two220

diet variables only; diet category (omnivore; invertivore, piscivore, herbivore and gelatinous invertebrate221

feeders) and trophic level (obtained from FishBase for consistency).222

Data sources223

Functional traits of species were sourced primarily from FishBase - a global information system on fishes224

(Froese and Pauly, 2017) and from ‘The fishes of New Zealand’ - a comprehensive text with citations of225

all known fish species in New Zealand (Roberts et al., 2015). Additional trait data were obtained from a226

combination of published research and reports. When data was obtained from sources other than FishBase227

or Roberts et al. (2015) the source is referenced. To obtain traits from FishBase we utilised the R package228
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rfishbase (Boettiger et al., 2012).229

Part 2: Statistical analysis230

In this section we describe the steps taken to analyse and group the data. Our approach differs to traditional231

functional group analyses as we use categorical (nominal) data. In order to use nominal data we must232

ensure we have a complete dataset (no missing values) and our continuous variables must be discretized.233

These two steps are detailed in our data preparation stage, followed by a description of the distance234

matrices available for nominal data. We then describe some linkage options and finally detail the data235

evaluation stage. Our approach utilises the R package nomclust which is designed exclusively for236

clustering observations with nominal variables (Šulc and Řezankovà, 2015; Team, 2018).237

(v) Data preparation238

Only 22 of the 40 recorded traits had less than 25% missing data and were retained for analysis. 25% was239

selected as the cutoff as the accuracy of imputed datasets is seriously degraded above 20-25% for small240

datasets (Clavel et al., 2014). Distance matrix calculations require complete information, therefore we241

choose to impute the missing data in these 22 variables. Numerous methods exist for imputing data, and242

many of these have been examined for their precision in imputing continuous variables (Penone et al.,243

2014; Clavel et al., 2014). What is unknown is how well these packages perform for nominal variables.244

To find the most accurate imputation method for nominal data we used three different approaches (all245

implemented in R packages): random forests implemented in missForest (Stekhoven and Bühlmann,246

2012), multiple correspondence analysis (MCA) implemented in missMDA (Josse and Husson, 2016)247

and polytomous logistic regression implemented in MICE (van Buuren and Groothuis-Oudshoorn, 2011)248

(described in Data S1). We also selected a simple imputation method using the mode value for each249

variable to serve as a baseline. In the mode replacement method, all missing values are replaced with the250

same value that is most frequently occurring. This method was used to compare against other imputation251

methods that use more information to inform the imputation (Taugourdeau et al., 2014). To test the252

accuracy of the different imputation methods we first selected all 13 variables from the database with253

complete information (Table 1). For each method, we ran a simulation in which data were randomly254

deleted and imputed 100 times. The probability of the method correctly imputing values were tested255

over a range of proportions of missing data ranging from 0.05 to 0.45, increasing in steps of 0.05. The256

final accuracy was calculated as the number of incorrect imputations divided by the number of possible257

imputations.258

Four of the 22 trait variables were continuous and were discretized to turn them into categorical259

variables. It was a goal of the discretization process to maintain the underlying distribution of the data260

while creating similar number of categories in each variable (Teletchea et al., 2009). Each continuous261

variable was plotted on a histogram and bins were selected such that the distribution of the variable was262

maintained using four or five bins (Figure S1). The final categories for each continuous variable and their263

values are reported in Table 1. The final trait matrix consisted of m = 22 traits and n = 116 fish species.264

(vi) Distance matrices265

Hierarchical clustering methods utilise distance matrices to make groups. A distance matrix in this context266

is a measure of pairwise similarities or dissimilarities between species (rows) based on their trait values267

(columns). There are a wide range of distance matrices and clustering methods available to cluster nominal268

data, and the combinations selected will influence the resulting groups. Having nominal data prevents269

us from using some measures, such as Euclidean distances, as they assume an inherent ordering within270

variables. For binary data treating data (0 or 1) as continuous is a valid measure of difference, but for271

variables with more than two categories the various distances between values do not represent meaningful272

differences. Boriah et al. (2008) evaluate 14 alternative measures of calculating distance matrices for273

nominal data and here we evaluate five: simple matching (SM - as in Gower’s distance), Eskin, Lin,274

inverse frequency of occurrence (IOF), and Goodall’s, available in the R package nomclust which are275

described in Data S2. The other measures available are derivatives of these measures and were not shown276

to improve performance in preliminary analyses. Briefly, the five distance matrices are described. The SM277

distance, which is the simplest approach to creating a distance matrix, awarding 1 to observations that are278

the same and 0 if not. This is the approach used for Gower’s similarity measure of nominal data (Gower,279

1967). Eskin’s distance, which uses a SM criteria that gives more weight to mismatches on variables280

that have more categories (Eskin et al., 2002). The inverse occurrence frequency (IOF) distance has281
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the same approach as Eskin but gives less weight to mismatches on variables that have more categories282

(Sparck Jones, 1972). This uses the absolute frequencies of observed categories. Goodall’s distance,283

which when comparing two observations of a given variable, takes into account relative frequencies of284

categories (Goodall, 1966). A similarity value is assigned based on the normalised similarity between285

the two observations, where the similarity value is higher if a category occurs infrequently. This method286

takes into account that individuals attributes occur stochastically and independently in a population. Lin’s287

distance is an information theoretic definition of similarity based on relative frequencies (Lin, 1998).288

Matches are given higher weightings when they occur infrequently, and conversely mismatches are given289

higher weightings when they occur infrequently.290

(vii) Clustering methods291

As we do not know the number of functional groups in the ecosystem a priori, we used hierarchical

clustering to visualise group association given our chosen distance metric. Hierarchical clustering first

places all n objects in n separate single member clusters, and larger clusters are formed by sequentially

joining first individual observations and then groups of observations until at last all observations are in a

single group. The closeness of pairs of observations or groups of observations to another are determined by

a measure of distance calculated in the preceding step. In linkage, all pairwise inter-cluster dissimilarities

are calculated.The pair of clusters that are least dissimilar (that is, most similar) is identified and these

two clusters are fused. Once observations or clusters are joined to a group they remain as a part of that

cluster for the remainder of the analysis. There are a number of linkage methods that can be used for this

type of data and here we explore three methods available in the R package nomclust (Blashfield, 1976).

To describe the linkage methods we use the following notation: D(A,B) is the distance between clusters A

and B, which have sizes nA and nB respectively. In single linkage (minimising inter-cluster dissimilarity),

the dissimilarity between two clusters is the smallest of all pairwise distances between the observations in

the two clusters:

D(A,B) = min[d(x,y) : x * A, y * B] (1)

In complete linkage (maximises inter-cluster dissimilarity), the dissimilarity between two clusters is the

largest of all pairwise distances between the observations in the two clusters:

D(A,B) = max[d(x,y) : x * A, y * B] (2)

In average linkage, the dissimilarity between two clusters is the average of all pairwise distances between

observations in the two clusters:

D(A,B) =
1

nAnB
∑
x*A

∑
y*B

d(x,y) (3)

(viii) Selection of distance matrices, clustering methods and number of clusters292

Evaluating clustering outputs can occur in two ways; external, where the resulting clusters are compared

against known groupings (as in supervised learning), or internal evaluation, where some metric (there are

many) is used to evaluate cluster separation and compactness. Since in our case the true groupings are

unknown only internal evaluation is considered. To select the best distance matrix and clustering method

for our data we utilised internal evaluation measures available from nomclust (Šulc and Řezankovà,

2015). The within-cluster entropy coefficient (WCE) is a measure of compactness which evaluates the

variability of each cluster by calculating a measure of normalised entropy (the number of variables that

have the same categories from each of the variables evaluated) (Šulc, 2016). WCE is measured from 0 to

1, where a lower value indicates intra-cluster homogeneity. Due to the way that these values are calculated

they will generally always improve by adding clusters to the solution because the within cluster variability

decreases:

WCE(k) =
k

∑
g=1

ng

n×m

m

∑
c=1

(2
Kc

∑
u=1

(
ngcu

ng

ln
ngcu

ng

)) (4)

Where n is the total number of objects (species), m is the number of variables (traits), ng is the number293

of objects in the gth cluster (g = 1, . . . ,k) and ngcu is the number of objects in the gth cluster by the cth
294

variable with the uth category (u = 1, . . . ,Kc).295
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To select the number of groups we use the pseudo F coefficient based on the entropy (PSFE), a

measure of separation (Šulc, 2016). The PSFE is a measure of entropy of the between- and within-cluster

variability adjusted for the number of clusters and number of objects in the cluster where a higher value

indicates a better grouping:

PSFE(k) =
(n2 k)[nWCE(1)2nWCE(k)]

(k21)nWCE(k)
(5)

where n is the number of observations and k is the number of clusters, nWCE(1) is the variability in the296

whole dataset, and nWCE(k) the within-cluster variability in the k-cluster solution.297

Therefore, a more informative measure of performance is the degree of improvement with increasing298

number of clusters. Results from these measures are therefore presented as the difference between the kth299

cluster and the kth21. Equivalent measures of all the aforementioned evaluation techniques are available300

in nomclust using the Gini coefficient instead of entropy and are provided in Figure S2 as a reliability301

measure of our results.302

We use t-Distributed Stochastic Neighbour Embedding (t-SNE) (Van Der Maaten, 2014) to construct303

a two-dimensional scatter plot in which each point represents a species. t-SNE minimises the distance304

between two distributions, one that was derived from a similarity matrix, and one that is derived from305

embedding the same matrix. To do so, a principal components analysis (PCA) is constructed from a306

dissimilarity matrix which allows species with similar trait profiles to be mapped in two-dimensions.307

These graphs provide a visual demonstration of similar species by the closeness of their points, and we308

use these graphs to evaluate our final group clustering. After the number of clusters was selected, we309

evaluated a cluster-wise measure of cluster stability through a bootstrapping procedure available in the R310

package fpc (Hennig, 2013). The clusterboot function draws a sample of size N from the original311

data set, computes the clustering using partitioning around mediods (PAM), then calculates the maximum312

Jaccard coefficient between the most similar cluster in the bootstrapped data sets (Hennig, 2007). PAM is313

an agglomerative clustering approach that moves a pre-defined number of centres, here 3 and 9, around a314

group of data to find the total minimum distance between the centres and the observations (Brock et al.,315

2008). This is repeated 100 times and an average Jaccard coefficient is found for each of the clusters316

which is representative of cluster stability. The more stability in clusters the less deviation evident in317

the Jaccard coefficient and as such the results are plotted as error bars. Finally, the adjusted Rand index318

(Hubert and Arabie, 1985) is used to compare the partitioning of groups for the different combinations of319

distance matrix and cluster algorithm for 3, 5, 7 and 9 cluster groups. The index can take a minimum of 0320

(groups are completely random, may be negative if the index is less than the expected index), or 1 (each321

group contains the same observations).322

The results of these analyses are discussed in terms of connectedness, compactness, separation and323

stability. Compact groups are those which minimise the spread of observations within a cluster and are324

assessed with the WCE and visually with the t-SNE graphs. Separation refers to the between cluster325

distances, which ideally should be maximised and are assessed by the PSFE, and visually with the t-SNE326

graphs. A well connected cluster is one where an observations nearest neighbour is from its own cluster327

and is assessed solely by visualisation. Stability is assessed via the results of the bootstrapping procedure.328

RESULTS329

Imputing missing data330

Three imputation methods were compared with a baseline method of using the mode to replace the331

randomly deleted missing value. The polytomous regression from the package MICE clearly outperformed332

all other methods, imputing data correctly between 85 and 92% of the time (Figure 1). Both missForest333

and missMDA performed better than imputing the data from the mode, but across the range of proportions334

of missing data none were significantly better than the baseline. Over the range of missing data proportions335

as the amount of missing data increased, the variability in imputed accuracy decreased.336

Cluster evaluation337

The values of PSFE changed depending on the combination of number of clusters, distance matrix and338

linkage method selected (Figure 2). The single linkage method was clearly the poorest performer with339

all but one PSFE score below that of the other linkage methods. The PSFE values for the complete340
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Figure 1. Proportion of values imputed correctly (accuracy) and 95% confidence interval for different

imputation methods across varying amounts of missing data. The four imputation methods displayed are;

MICE (orange), missForest (blue), missMDA (grey) and mode (black). Bars are jittered for clarity.

linkage method tended to decrease with an increasing number of clusters, with all distance matrices341

showing that three is the optimal cluster number. In contrast, distance matrices under the average linkage342

method showed a variety of patterns (Figure 2). Only two distance matrices selected three as the optimal343

cluster size, two selected five and one (Eskin) showed eight clusters was optimal. The Goodall and Lin344

distance matrices appeared to have the highest PSFE scores across the range of cluster sizes using the345

average linkage method, and the values decreased as the number of clusters increased. Distance matrices346

calculated using Eskin produced the lowest PSFE scores for average and complete linkage methods.347

While there is no combination of distance matrix and linkage method that is uniformly superior to the348

others, three clusters seem to fit best under a variety of conditions, as shown by high PSFE scores. In349

addition, Goodall and Lin distance matrices appear to perform slightly better, particularly for the average350

linkage method.351

Similar to PSFE, the combination of distance matrix and linkage method selected impacted the overall352

WCE score (Figure 3). A lower value of WCE indicates more intra-cluster homogeneity. Using this metric,353

the within cluster variability continues to decrease across all numbers of clusters for all combinations354

of linkage method and distance matrix. Under average linkage, the Goodall and Lin distance matrices355

demonstrated the lowest scores across cluster numbers, indicating the lowest within cluster variance. For356

complete and single linkage there was no clear distance matrix that performed better. The WCE score will357

always decrease as the number of clusters increase, so is not robust to clustering complexity. We therefore358

examined the magnitude of improvement of the WCE score with increasing the numbers of cluster.359

Figure 4 presents the WCE and PSFE scores simultaneously. This figure attempts to extract some of360

the more complex relationships underlying the clustering results, but must be interpreted with the previous361

two figures (Figure 2 and 3). The height of the bars represents the difference of the WCE between the362

labelled cluster (x-axis) and the previous clustering. A higher value in this figure represents a higher363

decrease in within-cluster variability. The largest differences in WCE correspond to the highest PSFE364

score (Figure 4; red bars). Distance matrices calculated using Goodall and Lin show that a lower number365

of clusters is generally a better solution. Eskin now prefers a large number of clusters (8-10), while using366

the IOF and SM distance matrices it was found that 5-8 clusters is a better solution under the average367

linkage method. All distance matrices have the highest values for the three cluster solution under complete368

linkage.369
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Figure 2. Evaluation of the optimal number of clusters using the pseudo F coefficient based on the

entropy (PSFE). All five distance matrices (coloured lines) tested are displayed across three clustering

algorithms (facets).

Hierarchical clustering is usually presented as a dendogram, but due to the large number of species in370

the dataset we take advantage of dimensionality reduction techniques to plot the clusters in two dimensions.371

Well formed clusters are those that distinct from other clusters and are compact. Here we present the372

resulting clusters for a subset of distance matrices that have low WCE values for the cluster numbers with373

high PSFE scores. Only the average linkage method is shown here as complete returned similar results,374

and SM did not perform well on any metric.375

For clarity, we use t-SNE to plot the resulting groups in two dimensions (Figure 5). The most376

connected groups are apparent when using a Lin or Goodall distance matrix with average linkage method377

and three clusters. These clusters are relatively stable (Figure 6), but only one group (sharks - blue points)378

is well separated and compact (Figure 5: Lin-3, Goodall-3). Increasing from three clusters does not seem379

to increase the separation or compactness of groups. Instead, more small groups appear, scattered through380

other groups, suggesting a loss of connectedness. In comparison, Eskin does a good job compacting381

similar observations, and these groups appear more cohesive as the number of clusters increase. Similarly,382

IOF creates more connected groups as the number of clusters increase, but again, only one group is383

separated and compact. This is supported by the stability analysis which show that IOF and Eskin have384

more stable clusters when a larger number is selected than Lin or Goodall (Figure 6).385

Using the Rand index we compared distance matrix and linkage method combinations for three and386

nine clusters. This confirmed that Goodall and Lin were consistently producing similar results for three387

clusters with adjusted Rand index values of between 0.52 and 0.77. And IOF and Eskin produced similar388

results with nine clusters with values between 0.52 and 0.89 (with the exception of IOF and complete389

linkage).390

Generally, within this dataset three main groups form which correspond to: reef and demersal fish391

(including skates and rays), large pelagic and deep-sea fish, and sharks (Figure 5). The most obvious392

distinction in these graphs is the group of 10-15 observations that always separate from the other clusters,393

which correspond to the sharks. The four shark species that tend to not associate with the rest of the394

cartilaginous fishes are the skates and stingrays, which cluster closely to the flatfish. As the number395

of groups increases smaller groups tend to form, but these groups are highly unstable and are highly396

dependent on the distance matrix selected.397

DISCUSSION398

Clustering species based on their traits theoretically allows functional groups to form. This is particularly399

difficult to test, as it is unknown how many functional groups exist within a given ecosystem, nor which400

traits are needed to find the functional groups (Bremner et al., 2006b). Cluster analysis allows for the401

exploration of underlying data patterns when its presence and/or structure are unknown, but it lacks402
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Figure 3. Evaluation of the optimal number of clusters using the within-cluster entropy coefficient

(WCE). All five distance matrices (coloured lines) tested displayed across three clustering algorithms

(facets).

an agreed method of evaluation. Using nominal trait data, we explored how changing distance matrix,403

linkage method and number of clusters impacts the formation of functional groups of marine fish. We404

utilise internal evaluation metrics available in the package nomclust to assess connectedness, separation405

and compactness of the resulting groups (Handl et al., 2005), and we bootstrap the data to evaluate its406

stability (Hennig, 2013). Our methodology demonstrates that the separation, compactness, and stability407

of functional groups are dependent on the choice of distance metric, linkage method, and number of408

clusters. While this may have been an intuitive conclusion (Gitay and Noble, 1997), our analysis provides409

an indication of the level of variation that arises from these choices. This variation can be assessed by410

comparing the final clustering results to one-another, revealing that the most similar clustering achieved a411

Rand Index value of up to 0.89 (with 1 being a perfect match) and the most dissimilar clustering methods412

scoring negative values.413

Using 22 nominal traits representing diet, habitat, morphology and life history we explored the414

combinations of distance matrix and linkage method that would best capture the structure in our dataset.415

This combination revealed that there are probably three major groups of fish that exist in Tasman Bay416

and Golden Bay. While this may appear to be a very simplistic summary of a complex ecosystem, using417

these groupings in ecosystem models would help to increase efficiency in modelling time and output418

interpretation. However, if more detailed analysis is warranted, because there is good evidence that a419

greater number of functional groups exists in the system, or it is necessary to represent more diversity in420

an ecosystem, then a different combination of distance matrix and linkage method would be required. For421

this dataset a larger number of clusters is more accurately represented by Eskin distance metrics and the422

average linkage method.423

The separation of clusters in this analysis was evaluated by PSFE. Separation is a measure of distance424

between clusters, therefore can be used to select the number of clusters. PSFE indicated that when using425

the complete linkage method for all distance matrices investigated that three was the optimal number of426

clusters, while under the average linkage method there was more variability in the number of clusters427

selected, ranging from three to eight (Figure 2). The single linkage method tended to produce very low428

values of PSFE, indicating less separation and overall a poor fit. Compactness was assessed by the WCE429

which indicates the within-cluster homogeneity. Raw values of the WCE under the average linkage430

method revealed that Goodall and Lin tended to have the lowest values across different cluster sizes, thus431

had the most compact groups. Using the complete linkage method it was unclear which distance matrix432

was performing best. The single linkage produced higher WCE scores (more variance) across the range of433

distance measures, and in combination with the low PSFE scores was deemed a poor performer, therefore434

was not considered for further analysis. As expected, the WCE decreased (indicating lower variance435

within clusters) as the number of clusters increased, therefore this is not a good indicator of fit. Instead,436
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Figure 4. Evaluation of the optimal number of clusters using the difference between the kth cluster and

kth21 of the WCE scores. The red bar corresponds to the highest PSFE score for that combination of

distance matrix and linkage method indicating the optimal number of clusters. The black bar is the

second highest score and colour gradient lightens as the PSFE scores lower (indicating a poor fit). A-C:

WCE difference results for Eskin distance matrix with average, complete and single linkage; D-E: WCE

difference results for Goodall distance matrix with average, complete and single linkage; G-I: WCE

difference results for IOF distance matrix with average, complete and single linkage and J-L: WCE

difference results for Lin distance matrix with average, complete and single linkage.

we explored the the difference in WCE score across number of clusters (Figure 4). This revealed that in437

most cases the largest decrease in WCE (between cluster sizes) corresponded to the highest PSFE score.438

This approach allowed us to see more clearly which combination of distance matrix and linkage method439

was fitting our nominal data set best.440

We used bootstrapping to assess cluster stabilities, where observations were re-sampled with replace-441

ment and clustered repeatedly, with the Jaccard coefficient extracted after each clustering (Hennig, 2007).442

A stable cluster is more likely to remain unchanged in composition (contain the same observations after443

each bootstrap) during re-sampling. There was no clear pattern in stability between number of cluster or444

distance matrices, but generally three clusters were the most stable, and had the lowest variation (Figure445

6). This was expected as some species had more traits in common than others, making it more likely for446

them to always be placed in the same group (less likely to change groups during re-sampling).447

A good indication that true structure has been found in a dataset is when methods align in agreement448

of cluster assignment (Handl et al., 2005). Here Goodall and Lin agree across a number of measures for a449

low number of clusters (three), while Eskin and IOF demonstrate agreement when the number of clusters450

selected increases (more than 5). This indicates that the different distance matrices are able to identify451

different underlying data structures. The IOF or Eskin are better choices when increasing the number of452

clusters, as the groups created are more connected than for other distance matrices, while Goodall and453

Lin are better with fewer clusters as the connectivity and separation are better (Figure 4). Two different454

measures matching may be a good indication of fit, however, if the methodologies are developed from the455

same theory, then it would be expected that they would find the same result (Handl et al., 2005). With this456

in mind, our findings are again supported as the matching methods have different fundamental approaches457

(Data S2). Goodall and Eskin aim to weight values higher that match infrequently, while IOF and Lin458

give greater weight to values that match frequently, and lower weight to infrequent matches (Boriah et al.,459

2008). All of these measures have been shown previously to perform well on different datasets in different460
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Figure 5. Clustering results using the average linkage method for four distance matrices (columns) for

four different numbers of clusters (rows) displayed in two dimensions as the result of t-SNE. Colours

represent the different groups found with hierarchical clustering. A-D: t-SNE clustering for Eskin linkage

method with 3, 5, 7 and 9 clusters; E-H: t-SNE clustering for IOF linkage method with 3, 5, 7 and 9

clusters; I-L: t-SNE clustering for Goodall linkage method with 3, 5, 7 and 9 clusters and M-P: t-SNE

clustering for Lin linkage method with 3, 5, 7 and 9 clusters

conditions (Šulc, 2016), emphasising the need to test a range of methodologies when clustering ecological461

data.462

The three groups that emerged from the analysis were reef and demersal fish (including skates and463

rays), large pelagic and deep-sea fish and sharks. This finding contrasts with previous investigations where464

a greater number of functional groups were found from fewer species (Córdova-Tapia and Zambrano,465

2016; Reecht et al., 2013). Increasing the number of clusters may highlight different functional groups,466

but as discovered by Córdova-Tapia and Zambrano (2016) this tends to result in groups occupied by a few467

or single species. In a complex ecosystem such as this, we might expect to see much more separation468

between the species, particularly if the traits selected truly represented different functions. Instead, we469

find that across a range of distance matrices and linkage methods that just three groups continue to emerge.470

The first distinct group is the sharks. These separate out first, and remain separated as the numbers of471

clusters increase. The next two groups that commonly form roughly correspond to deep-sea and pelagic472

fish, then reef and demersal fish (with skates and rays). The lack of separation of the groups may suggest473

that we have not collected enough information about the species to robustly separate further groups. To474

get a true representation of the functioning of ecosystems it is important to collect large numbers of traits475

to predict functional groupings (Sibbing and Nagelkerke, 2000; Bremner et al., 2006b).476

Mason et al. (2003) highlights the method used to classify functional groups as one of the three major477

challenges of creating functional groups. While we attempted to resolve a number of issues with finding478

functional groups from traits, there are some significant limitations that require investigation. To test our479
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Figure 6. Mean and standard deviation of the bootstrapped (n=100) Jaccard distance measure from

PAM clustering for five nominal distance matrices across four cluster sizes.

methodology, we created a species by trait matrix with nominal trait data that could be extracted from the480

literature or photographs. While obtaining trait information from published sources and distinctive features481

from photographs can provide some information of how species use their environment, this strategy482

cannot compensate for the rich data that can be collected from measuring species directly (Sibbing and483

Nagelkerke, 2000). Inevitably, traits of both continuous and nominal types will be required and strategies484

for how to analyse them. The problem of how to handle mixed data is yet to be resolved, particularly485

as in many distance matrices nominal variables tend to have a higher influence on the similarity matrix486

than continuous variable because they produce higher contrasts (Mirkin, 2012). Future analyses should487

investigate using mixed (continuous and nominal) data to cluster functional groups.488

As yet, there is no agreement on the set of functional traits to use that will provide meaningful489

functional groups for fish, though various suggestions have been made (Sibbing and Nagelkerke, 2000;490

Villéger et al., 2017a; Gravel et al., 2016). While an exhaustive list of functional traits can be provided491

to assess their importance, a clustering model will try to include all of the variables provided, whether492

they are important or not and there is going to be missing data. Here, we have used a combination493

of dropping variables and imputing missing data. There is much support for imputing ecological data494

(Nakagawa and Freckleton, 2011), but usually only for small amounts (Clavel et al., 2014). An important495

aspect of functional group analysis that needs to be explored further is the impact of removing traits from496

the analysis. Ideally, sensitivity analyses would be conducted to investigate their overall impact. We497

treated our traits as nominal in order to equally weight all variables equally (Mason et al., 2003). This498

approach will inevitably cause the loss of some information, as some traits were ordinal and some traits499

contain more information than others. Using nominal data may limit the explanatory value of the trait by500

excluding detailed information that continuous data can provide (Schleuter et al., 2010), as we have done501

by discretizing some traits. Moving forward, it is likely that more traits are needed, and an assessment of502

their importance to predicting group associations. One solution may be to use bi-clustering that is able to503

perform dimensionality reduction by clustering traits, while simultaneously clustering species (Fernández504

and Pledger, 2016).505

CONCLUSIONS506

Our results demonstrate that the best clustering solution for our data is three clusters using the Goodall507

or Lin distance matrix with the average linkage method. If a larger number of clusters is the preferred508

outcome, then the Eskin distance matrix with average linkage method should be used. While this result is509

appropriate for this particular dataset, the results may of course change for different data. It is not correct510

14/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27148v1 | CC BY 4.0 Open Access | rec: 28 Aug 2018, publ: 28 Aug 2018



to assume that any combination of distance matrix and linkage method will be informative, nor that the511

combination used by a previous study is a good fit for your data. Instead, data exploration and evaluation512

analyses, such as those explored in this paper, must be employed. Not exploring the available options may513

lead to not finding a data structure when there is one, or randomly finding a structure among the noise514

when no clusters truly exist (Handl et al., 2005). This is because clustering algorithms are biased towards515

the properties on which they are built. Robust detection of genuine underlying structure requires that516

multiple algorithms find the same solution.517

Deriving functional groups is an important process in developing our understanding of ecosystems. The518

goal of creating functional groups is to classify the species found in a given ecosystem into representative519

groups each of which contains species which have a similar way of responding to changes in their520

environment (Gitay and Noble, 1997). Functional group composition will affect the overall model521

outcomes and predictions of ecosystem models (Fulton et al., 2001), while the number of groups derived522

help us to understand functional diversity (Petchey and Gaston, 2002). Functional groups can be derived523

from expert knowledge, or from diet or trait based analyses, however these approaches incur significant524

costs, consume a lot of time and require invasive sampling of specimens (Albouy et al., 2011; Sibbing525

and Nagelkerke, 2000). We explored how individual species might cluster together based on information526

gathered about their diet, life history, morphology or habitat use, collected from published literature527

or observed from photographs of specimens. It was our aim to understand if meaningful groupings of528

teleost fish species can be made from known or easy to gather information. During this process, it quickly529

became apparent that there is no straightforward answer to how a functional group should be identified,530

and that there was not one most appropriate distance matrix or linkage method that could be applied to all531

situations. We therefore encourage future investigations to explore different distance matrices and linkage532

methods as they are easy to implement in statistical packages such as R (Ihaka and Gentleman, 1996).533
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