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Abstract 
Containers are gaining popularity in life science research as they encompass all dependencies 
of provisioned tools and simplifies software installations for end users, as well as offering a form 
of isolation between processes. Scientific workflows are ideal to chain containers into data 
analysis pipelines to sustain reproducible science. In this manuscript we review the different 
approaches to use containers inside the workflow tools Nextflow, Galaxy, Pachyderm, Luigi, and 
SciPipe when deployed in cloud environments. A particular focus is placed on the workflow 
tool’s interaction with the Kubernetes container orchestration framework. 
 

Introduction 
Life science has become data-intensive, driven largely by the massive increase in throughput 
and resolution of molecular data generating technologies. Massively parallel sequencing (also 
known as next-generation sequencing or NGS) is where the largest increase has been seen in 
recent years, but other domains are also increasing dramatically, including proteomics, 
metabolomics, systems biology, and biological imaging ​[1–3]​. Consequently, the need for 
computational and storage resources continues to grow, but focus has also changed towards 
the downstream steps of biological experiments and the need to carry out efficient and 
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reproducible data analysis. While high-performance computing (HPC) and high-throughput 
computing (HTC) clusters remain the main e-infrastructure resource used in biological data 
analysis, cloud computing is emerging as an appealing alternative where in the 
infrastructure-as-a-service (IaaS) case, scientists are able to spawn virtual instances or 
infrastructure on demand to sustain their analysis, after which the resources are released ​[4,5]​. 
Another important advantage of cloud resources over HPC is that the scientists are not 
dependent on system administrators to install software, but this can be handled by themselves. 
However, software for biological analyses can be quite challenging to install due to sometimes 
complex dependencies. Virtual machines (VMs) offer the benefit of instantiating ready-made 
environments with data and software, including all dependencies for specific tasks or analyses, 
and constitute a big step towards computational reproducibility. VMs form the backbone in 
traditional cloud-based infrastructures, however, virtual machine images (VMIs) can easily 
become large and take considerable time to instantiate, transfer, or rebuild when software in the 
image needs to be updated. Such images can easily be shared between users and can be 
deposited and indexed by one of the available VMI catalogues ​[6]​. 
 
Containers 
Software container technology has emerged as a complement to virtual machines, offering a bit 
less isolation between processes and they are more lightweight and easy to share; the 
operating system kernel makes them much faster to launch and terminate ​[7]​. Containers 
encompass all dependencies of the provisioned tools and greatly simplifies software 
installations for end users. The most widely used containerization solution is Docker 
(​www.docker.com​), but Singularity ​[8]​, uDocker ​[9]​, and Shifter ​[10]​ are recent alternatives that 
prevent users to run containers with root privileges, addressing most commons security issues 
when deploying contains in a multi-tenant computing clusters such as on on high-performance 
computing (HPC) clusters. Docker containers are commonly shared via Docker Hub 
(​https://hub.docker.com​). There are also initiatives for standardizing containers in the life 
sciences such as BioContainers ​[11]​. Containers have seen an increasing uptake in the life 
sciences, both for delivering software tools and for facilitating data analysis in various ways 
[12–16]​. 
 
When running more than just a few containers, an orchestration system is needed to coordinate 
and manage their execution and handle issues related to e.g. load balancing, health checks and 
scaling. Kubernetes (​http://kubernetes.io​) has over the last couple of years rose to become the 
most popular container orchestration system, but Docker Swarm 
(​https://docs.docker.com/engine/swarm/​) and Mesos (​https://mesosphere.com/​) are other well 
known systems. A key objective for these systems is to allow the users to treat a cluster of 
compute nodes as a single deployment target, and handle the packaging of containers on 
compute nodes behind the scenes. 
 
 
Scientific Workflows 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27141v1 | CC BY 4.0 Open Access | rec: 24 Aug 2018, publ: 24 Aug 2018

http://f1000.com/work/citation?ids=2805075,3326591&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=4206176&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4027739&pre=&suf=&sa=0
http://www.docker.com/
http://f1000.com/work/citation?ids=3984908&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4662776&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5679659&pre=&suf=&sa=0
https://hub.docker.com/
http://f1000.com/work/citation?ids=4548213&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4526581,4662760,3047433,4812331,4028786&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://mesosphere.com/


While orchestration tools such as Kubernetes enable scientists to run a multitude of containers 
in a distributed environment (such as a virtual infrastructure on a cloud provider), the problem 
remains how to orchestrate the scheduling and dependencies between containers and being 
able to chain (define data dependencies between) them into an analysis pipeline. This is where 
scientific workflow management systems (WMSs) can be very useful; in fact it can be difficult to 
carry out more complex analyses without such a system. Traditionally in data-intensive 
bioinformatics, an important task for WMSs has been to support analyses consisting of several 
components by running a set of command-line tools in a sequential fashion, commonly on a 
computer cluster. The main benefits of using a WMS include: i) making automation of multi-step 
computations easier to create and more robust and easy to change ii) providing more 
transparency as to what the pipeline does through its more high-level workflow description and 
better reporting and visualization facilities, and iii) providing more reliable policies to handle 
transient or persistent error conditions and including strategies to recover partial computations. 
 
Using containerized components as the nodes in a scientific workflow has the advantage of 
adding isolation between processes and the complete encapsulation of tool dependencies 
within a container, and reduces the burden to administer the system where the workflow is 
scheduled to run. This means the system can be tested on a local computer and executed on a 
remote server and cluster without modification, using the exact same containers. Naturally, this 
opens up for execution on virtual infrastructures, even those provisioned on-demand with 
features such as autoscaling. Apart from greatly simplifying access to the needed distributed 
compute resources, a positive side-effect is that the entire analysis becomes portable and 
reproducible. 
 
Data ingestion and access to reference data constitute a key step when using cloud-based 
resources. When spawning a virtual infrastructure, data used in the analysis either needs to be 
available on storage connected to the compute nodes, or ingested into a locally provisioned file 
system. At the end of the analysis, resulting data needs to either be put into persistent storage 
on the cloud, or downloaded to local storage. However the overhead with this can also be 
turned around. If you have data residing on a storage connected to a cloud infrastructure, you 
are able to simply move the workflow and containers there and “bring compute to the data”. 
 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27141v1 | CC BY 4.0 Open Access | rec: 24 Aug 2018, publ: 24 Aug 2018



 
 

Figure 1:​ Overview of a containerized workflow with a workflow engine managing the dependency graph 
and scheduling the containers encompassing the tools to run. The tools pass data between each other by 
reading and writing to a shared storage system. 
 

 
 
Figure 2:​ Comparison between two approaches on how to run the workflow engine. It can either a) run in 
a on the user’s computer, or b) in a pod in the kubernetes cluster. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27141v1 | CC BY 4.0 Open Access | rec: 24 Aug 2018, publ: 24 Aug 2018



Workflow systems 
Due to their simplicity, containers are supported out of the box, by most workflow tools. However 
the approach for interacting with containers differs, especially when using virtual infrastructures 
on cloud resources. This section describes the approaches taken by a set of workflow 
management systems to work with containers in cloud environments. 
 
Nextflow 
Nextflow ​[17]​ is a workflow framework that aims to ease the implementation of scientific 
workflows in a portable and reproducible manner across heterogeneous computing platforms 
and to enable the smooth migration of these applications to the cloud. The framework is based 
on the dataflow paradigm, a functional/reactive programming model in which tasks are isolated 
by each other and are expected to be executed in a stateless manner. This paradigm simplifies 
the deployment of complex workflows in a distributed computing environment and matches the 
immutable execution model of containers. 

Nextflow provides built-in support for the most used container runtimes i.e. Docker, Singularity, 
Shifter and uDocker (though the last two are undocumented because still in experimental state). 
The usage of containers is defined in a declarative manner i.e. by specifying the container 
image that a workflow need to use for the task executions. Once annotated in this way, the 
Nextflow runtime takes care of transparently running each task in its own container instance, 
mounting the required input and output files as needed. This approach allows a user that needs 
to target the requirements of a specific execution platform to quickly switch from one 
containerisation technology to another with just a few changes in the workflow configuration file 
(eg. the same application can be deployed in a HPC cluster using Singularity or in the cloud with 
Docker). 

Great flexibility is given on container image configuration. Nextflow supports either 
image-per-workflow pattern (the same image for all executed tasks) and image-per-task pattern 
(each task uses a different container image). The container image used by a task can even be 
specified at runtime by a given input configuration. 

Nextflow allows the deployment of containerised workloads in a cloud-native manner using 
different strategies, briefly discussed in the following paragraphs.  

Cloud managed computing service​: in this approach workflow tasks are submitted to a cloud 
provider batch execution service. The containerisation and auto-scaling is delegated to the 
cloud service. The workflow inputs/outputs and intermediate result files need to be stored using 
the provider object storage service. Nextflow adapts the task definition, resource requests and 
container image to the cloud provider format, submitting the corresponding API requests and 
properly staging the task data. Currently Nextflow has built-in support for the AWS Batch service 
and additional support for similar services from other providers such as Azure Batch is planned.  
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Cloud unmanaged computing service​: when using this deployment strategy Nextflow takes care 
of the provisioning of a set of cloud VM instances in which it automatically sets up its own 
clustering engine for the distributed execution of the workflow. The VM instances only require 
the availability of a Docker runtime and the Java virtual machine. Workflow tasks exchange data 
via a shared file system or by using a cloud object storage service. The workflow execution is 
managed by Nextflow which also handles the cluster auto-scaling i.e. adds or removes VM 
instances on-demand to adapt the actual needs of a workload at any point in time and optimises 
the overall computing cost when applicable. At time of writing, this feature supports the use of 
the AWS EC2 cloud service.  

Cloud native clustering​: a recent Nextflow development is the built-in support for Kubernetes, a 
cloud-native clustering and containerisation orchestration technology. When deploying a 
workflow execution with this strategy, Nextflow executes a pod running the main workflow driver 
application which in turn orchestrates and submits the execution of workflow tasks as separate 
pods. Nextflow requires the use of a Kubernetes persistent volume supporting the 
read-write-many​ access mode to share the input and output data across tasks. The associated 
volume claim​ is automatically mounted in each pod launched by Nextflow. 

Nextflow provides a mature and flexible technology to support the deployment of containerised 
workloads across clusters and clouds in a portable manner. Future works will be focused on 
extending the support to cloud providers other than Amazon and the optimisation of workload 
deployment with the implementation of concepts such as data-affinity and co-location. 
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Figure 3:​ Nextflow workflow automated deployment and execution into a Kubernetes cluster. 
 
Galaxy 
Galaxy is a data-analysis workflow platform that has probably the most active development 
community in the field among workflow environments in Bioinformatics, enabling it to persist as 
an active project and continue to evolve since 2005, enabling reproducible research through 
active channels to share tools, workflows and datasets ​[18]​. Galaxy is currently used by tens of 
thousands of scientists across the globe ​[19]​. Besides offering a modern UI for end users, 
Galaxy is accessible through its REST API, or through the Bioblend Python binding (that talks to 
this REST API).  
 
For execution versatility, Galaxy has adapters to offload jobs in a wide variety of systems, from 
local docker containers to different batch systems. In Galaxy, there is a complete separation of 
concerns between Tools, Workflows and execution environments, meaning that a workflow 
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definition is not bound to a particular execution environment. Within the last 5 years Galaxy 
gained the ability to be launched on Amazon AWS through the CloudMan Launcher Galaxy 
sub-project ​[20]​. This setup follows a relative VM centric approach, which has natural limitations 
to scale in the number of tools included as they all need to be provisioned inside the VM used 
for the provisioned cluster. 
 
More recently, through efforts within the PhenoMeNal H2020 Project 
(​http://phenomenal-h2020.eu/​), Galaxy gained the ability to be deployed inside Kubernetes in an 
automated fashion through the use of Helm Charts. The galaxy-stable helm chart make use of 
community maintained Galaxy container images (docker-galaxy-stable), which are used on 
other container orchestrators, and include support for sftp access, database backend and even 
deployment/compatibility of HPCS systems like Condor or Slurm for hybrid cloud setups. The 
Kubernetes job runner, contributed to the Galaxy community as well by the PhenoMeNal H2020 
Project, allows Galaxy to offload jobs to Kubernetes, either when Galaxy runs inside the 
container orchestrator or from the outside (provided that shared file system is accessible to both 
the container orchestrator and Galaxy). The Kubernetes runner for Galaxy will take care of 
resource requirement settings, recovery of jobs in Kubernetes if there is a restart, 
auto-upgrading of resource utilization, Persistent Volume Claim mounting for Galaxy and in 
each job’s pod as well as adequate supplementary groups handling for NFS and other shared 
file systems. This integration requires the use of a shared file system, which needs to be 
mountable in Kubernetes in a read-write-many configuration, as both the main Galaxy pod and 
the various jobs pods need to mount it at the same time (through the PV/PVC abstraction). The 
Kubernetes runner for Galaxy adheres to the principles of failsafeness and redundancy 
commonly considered in cloud computing, providing ways to recover from jobs being lost by 
cluster nodes going down in the middle of an execution. 
 
The Kubernetes runner for Galaxy can benefit of explicit tool to containers mapping through 
Galaxy dynamic destinations, or take advantage of dynamic bioconda to containers mapping 
thanks to built-in functionality in Galaxy for this purpose. This means that if a Galaxy tool 
declares a Bioconda package as the dependency to be resolved, it will bring an automatically 
built container for that Bioconda package ​[21]​ from BioContainers ​[11]​. 
 
The Galaxy-Kubernetes integration, which includes all the aspects related to Kubernetes 
mentioned on the previous paragraphs, has been battle tested by the PhenoMeNal H2020 
Project, having its public instance received in the order of tenths of thousands jobs during the 
past 2 years, having tenths of deployment in the production environments and possibly various 
hundreds of deployments in the development setting. This integration has been tested locally on 
Minikube, on OpenStack deployments, on Google Cloud Platform (GCP) and Amazon Web 
Services (AWS). It is expected that in the next few years the Galaxy-Kubernetes integration is 
embraced in the areas of Proteomics and Transcriptomics. The CloudMan Galaxy launcher is 
considering to migrate to a more containerized deployment scheme based on the 
Galaxy-Kubernetes setup. 
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Pachyderm 
Pachyderm (​http://pachyderm.io/​) is a large-scale data processing tool built natively on top of 
Kubernetes. This platform offers: i) a data management system based on Git semantics and ii) a 
workflow system for creating distributed and reproducible pipelines based on application 
containers. In order to create workflows with Pachyderm, users simply need to supply a JSON 
pipeline specification including a Docker image, an entrypoint command to execute in the user 
containers and one or more data input(s). Afterwards, Pachyderm will ensure that the 
corresponding pods are created in Kubernetes, and will share the input data across them and 
collect the corresponding outputs. Thanks to using Kubernetes for container orchestration, 
Pachyderm is able to, among other things: i) optimise cluster resource utilisation, ii) run 
seamlessly on multiple cloud and on-premise environments, iii) self-heal pipeline jobs and 
related resources. 
 
This workflow tool provides an easy mechanism to distribute computations over a collection of 
containers. In other words, it promises what a framework like Apache Spark does, but replacing 
MapReduce syntax with legacy code. More specifically, Pachyderm is able to distribute 
workloads over collections of containers by partitioning the data into minimal data units of 
computation called “datums”. The contents of these datums are defined by glob patterns such 
as "/" or “/*”, which acknowledge Pachyderm how to process the input data: all together as a 
single datum, or in isolation (as separate datums). Users can define the number of pipeline 
workers to process these datums, which will be processed one at a time in isolation. When the 
datums have been successfully processed, pachd then gathers the results corresponding to 
each datum, combines them together, and versions the complete output of the pipeline. The 
scheduling of pipeline workers is determined by the resource utilisation status of the workers 
nodes and the resource requests that are made for each pipeline, making it able to efficiently 
distribute workloads. Recently, work to integrate and demonstrate Pachyderm in bioinformatics 
was published ​[22]​. 
 
Luigi 
Luigi (​https://github.com/spotify/luigi​) is an open-source Python module for defining and running 
batch-like workflows. The system is strongly oriented towards Big Data, and it comes as a 
convenience tool to pipe jobs from well-established analytics frameworks (e.g. Hadoop, Spark, 
Pig and Hive). Hence, instead of trying to substitute any of the available analytics systems, Luigi 
provides the means to plug together jobs from different frameworks in a single batch-oriented 
workflow. In doing so, Luigi seamlessly handles many boilerplate operations such as: 
dependency resolution, visualization, failure tolerance and atomic file system operations. 
 
The Kubernetes integration was developed by the PhenoMeNal consortium, and it is now part of 
the official Luigi project and thus being supported and maintained by the community. The 
integration enables to include pipeline processing steps as Kubernetes Jobs, which represent 
batch-like application containers that run until command completion. Hence, Luigi mainly uses 
Kubernetes as a cluster-resource manager where multiple parallel jobs can be run concurrently. 
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To this extent, it is important to point out that Luigi is not meant to be used as a substitute for 
parallel processing frameworks (such as Spark and Hadoop), as it has limited support for 
concurrent tasks. In fact, in our experience Luigi can handle up to ~300 parallel tasks before it 
starts to break down. A project to adapt Luigi for scientific applications in general and 
bioinformatics in particular resulted in a tool named SciLuigi ​[23]​. 
 
We benchmarked Luigi on Kubernetes by reproducing a large-scale metabolomics study 
(​https://www.ebi.ac.uk/metabolights/MTBLS233​). The analysis was carried out on a cloud-based 
Kubernetes cluster, provisioned via KubeNow and hosted by EMBL-EBI, showing good 
scalability up to 40 concurrent jobs ​[24]​. Workflow definition, and instructions to reproduce the 
experiment, are publically available on GitHub (​https://github.com/phnmnl/MTBLS233-Jupyter​). 
 
SciPipe 
SciPipe ​[25]​ currently supports container based workloads via Kubernetes, implemented 
through the official kubernetes Go client library ​[26]​. The Go client library enables transparent 
access to a Kubernetes cluster regardless of if the SciPipe workflow itself runs outside the 
cluster or inside it in a pod. When running inside the cluster, it automatically detects cluster 
settings. When not inside a cluster, the connection to a cluster can be configured by setting the 
appropriate environment variables. The Kubernetes integration in SciPipe is demonstrated 
through the implementation of a use case workflow consisting of a set of data preparation steps 
for mass-spectrometry data, using the OpenMS software suite ​[27]​. It contains a Go file (With 
the ​.go​ extension) with the workflow, and a Kubernetes job-spec file in YAML format (with the 
.yml​ extension) for starting SciPipe inside a Kubernetes cluster is together with the workflow 
[28]​. 
 
Singularity containers ​[8]​ can already today be used from SciPipe on a simple level, by 
configuring the appropriate shell commands when creating new processes through the 
shell-command process constructor (the ​scipipe.NewProc()​ function in SciPipe). Development 
of a more integrated support for Singularity containers is planned. 

Discussion 
The tools covered in this study have taken slightly different approaches to work with containers, 
with different implications. Most tools are designed to work with general command-line tools 
while also supporting containers, with the exception of Pachyderm that only supports containers 
as means of processing. 
 
Workflow tools either work with containers instead of command-line tools, using ‘docker run’, 
and then take advantage of an external scheduling system, such as a batch scheduler (e.g. 
SLURM). When deployed in cloud environments, Kubernetes is the most widely used 
orchestration framework by the tools, but Galaxy also supports Docker Swarm as well as 
provides a convenient mapping from the Conda package manager to containers. For 
Kubernetes, tools differ in the way the interact with its API; SciPipe and Pachyderm interact via 
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the Go API whereas Luigi, Nextflow and Galaxy communicate over REST API. While these APIs 
are not identical, the API designs are very similar in terms of data structures and in effect allow 
for the same level of control. In more detail, the structure of the JSON documents sent to the 
REST API, is closely matched by the hierarchic structure of the ‘spec’ structs in the Go API. The 
workflow tools also differ somewhat in what level of flexibility they allow for consuming the API 
features, where Luigi is the most versatile as it allows for passing a raw JSON string with full 
flexibility but also requires the most skills from workflow authors. 
 
Error management for containerized workflows are an important concept. Kubernetes is 
designed to restart pods that fail, which is not particularly useful is there is an error reported 
from the containerized tool. The cloud paradigm includes fault-tolerance, and the tools differ 
here in their strategies. Galaxy, Luigi, and SciPipe uses Kubernetes Jobs, which allows 
restarting the pods ​N​ times before reporting as failure. Nextflow offers the possibility to 
automatically tune the job, e.g. to increase the available memory for a job before reporting it as 
failed. 
 
How the workflow systems schedule containers on Kubernetes is one factor where they differ 
from each other. SciPipe keeps a lightweight thread (go-routine) alive for each created job, as 
the Go API call for creating jobs do block the calling go-routine until the job finishes or is 
stopped for other reasons. Nextflow implement an ​actor​-like model to handle job requests. They 
are submitted in a parallel manner to an internal jobs queue, then a separate thread submits a 
request to the Kubernetes cluster for each of them and periodically checking their status util the 
job completion is detected. Pachyderm makes direct use of Kubernetes scheduling and uses 
etcp for storing metadata for data versioning and status of all jobs. It is also the only system that 
uses the Kubernetes feature of “parallel jobs”. Luigi keeps a thread open and continuously polls 
the job status. Galaxy has 2 handlers iterating over all running jobs, it keeps no separate 
threads or processes per Kubernetes job. 
 
Handling many concurrent jobs can become a problem in Luigi/SciLuigi, where a separate 
Python process is started for each job and, which imposes a practical limit on the number of 
concurrent jobs; in the authors experience 64 is a rule of thumb for an upper limit. Going above 
this tends to result in HTTP timeouts since workers are talking to the central scheduler via HTTP 
calls over the network. 
 
So what are the main differences between the systems when running containers in cloud 
environments? Galaxy has a graphical user interface and might be more attractive for users with 
less expertise in programming/scripting. Nextflow is arguably the most versatile systems for 
working with containers being able to operator either on cloud and HPC batch schedulers. 
Pachyderm is build specifically for running on Kubernetes and has a data versioning file system 
built-in. Luigi/SciLuigi supports many data sources out of the box, including HDFS, S3, etc. and 
integrates seamlessly with Apache Hadoop and Spark. SciPipe implements an agile workflow 
programming API that smoothly integrates with the fast growing Go programming language 
ecosystem. 
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We’d like to end with a word of caution regarding the use of containers. While containers have 
many advantages from a technical perspective and alleviates many of the problems with 
dependency management, it also comes with implications as it makes it can make tools more 
opaque and discourage to access and inspect the inner workings of containers. This could 
potentially lead to misuse, and when wiring together containers in a scientific workflow proper 
care need to be taken that the observed output matches what would be expected from using the 
tool directly ​[29]​. Also for this reason we strongly suggest to follow community best practices 
[30]​. 
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