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ABSTRACT

The antibacterial agent Triclosan (TCS) is an ubiquitous environmental contaminant due to its
widespread use. Sensitivity to TCS varies substantially among eu- and pro-karyotic species
and its risk for the marine environment remains to be better elucidated. In particular, the
effects that TCS causes on marine microbial communities are largely unknown. In this study
we therefore used 16S amplicon rDNA sequencing to investigate TCS effects on the bacterial
composition in marine periphyton communities that developed under long-term exposure to
different TCS concentrations. Exposure to TCS resulted in clear changes in bacterial
composition already at concentrations of 1 to 3.16 nM. We conclude that TCS affects the
structure of the bacterial part of periphyton communities at concentrations that actually occur
in the marine environment. Sensitive taxa, whose abundance decreased significantly with
increasing TCS concentrations, include the Rhodobiaceae and Rhodobacteraceae families of
Alphaproteobacteria, and unidentified members of the Candidate division OD1. Tolerant
taxa, whose abundance increased significantly with higher TCS concentrations, include the
families Erythrobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteroidetes),
Bdellovibrionaceae (Deltaproteobacteria), several families of Gammaproteobacteria, and
members of the Candidate phylum BD1-5. Our results demonstrate the variability of TCS
sensitivity among bacteria, and the importance of extending the ecotoxicological assessment

of antimicrobial chemicals, such as TCS, to non-cultivable bacteria and natural communities.

Keywords: amplicon sequencing, metabarcoding, rRNA, marine toxicity tests, microbial

toxicology, ecological risk assessment
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INTRODUCTION

Triclosan (TCS, 5-chloro-2-(2,4-dichloro-phenoxy)-phenol, CAS 3380-34-5) is an
antibacterial agent commonly used in personal care products (PCP), household cleaning
products, textiles, and plastics. The annual usage of TCS in Europe and USA has been
estimated at 300 tons in 2005 (Halden and Paull 2005), increasing to 450 tons in 2010 (SCCS
2010). Approximately 85% of the TCS production is used in PCPs (SCCS 2010), and the
compound is therefore discharged continuously into the aquatic environment. TCS has
become an ubiquitous pollutant, occurring in all environmental compartments (Bedoux et al.
2012). As reviewed by Bedoux and colleagues (2012), TCS concentrations of up to 0.024,
0.047 and 0.1 nM have been reported for coastal waters in Europe, USA, and China,
respectively. Furthermore, 0.036 nM was detected in the coastal waters outside Singapore
(Bayen et al. 2013), 0.55 nM was measured at the Swedish west coast (Remberger et al.
2002), and a concentration as high as 1.1 nM was detected in Cadiz Bay in Spain (Pintado-
Herrera et al. 2014). Given this widespread occurrence, von der Ohe (2012) identified the
compound as a priority pollutant in freshwater ecosystems, and Maruya et al. (2015) labeled
TCS a contaminant of emerging concern for the marine environment, based on sediment core
data in which TCS concentrations increased from the early 1970s to 2007. The environmental
risk of TCS has been assessed with conflicting results. A probabilistic risk assessment by
Capdevielle et al. (2008) concluded that the risks from TCS at environmental concentrations
were negligible, whereas several other studies indicated clear environmental hazards and risks
(Brausch and Rand 2011; 2009; Reiss et al. 2002; Wilson et al. 2003; von der Ohe et al.
2012). In a recent global assessment Guo and Iwata (2017) calculated ratios of exposure and
hazard (risk quotients) between 0.49 — 9.5 for the aquatic environment, differing between
countries. It should be pointed out, that those assessments largely fail to assess risks to the

marine environment, due to a lack of adequate data, in particular for marine bacteria.
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The mechanism of action of TCS in bacteria has been identified as the inhibition of type 11
fatty acid synthesis through binding to the enoyl-acyl carrier protein (enoyl-ACP) reductase
(McMurry et al. 1998). Different bacterial species have different conformations of the TCS
binding site in the enoyl-ACP reductase which affects the affinity to TCS and thereby TCS
sensitivity (Pidugu et al. 2004). Johnson et al. (2009) also report a broad range of bacterial
sensitivities to TCS, ranging from 100 nM to 300 pM. Although the inhibition of fatty acid
synthesis is a well-described mechanism of action, Escalada et al. (2005) concluded that the
toxicity of TCS to bacteria cannot be explained solely by this mechanism. Studies have also
shown that TCS induces cell membrane destabilization (Villalain et al. 2001), inhibits
enzymes in the glycolysis pathway, and uncouples the membrane potential in mitochondria
(Newton et al. 2005; Phan and Marquis 2006). The toxicity to different prokaryotic species is
thus far from trivial to predict. Basing the hazard estimation of TCS on only a few selected
species will likely result in highly biased results that might not be representative of natural

bacterial communities.

Previous studies have investigated the effect of TCS on freshwater or estuarine bacterial
communities (Drury et al. 2013; Johnson et al. 2009; Lawrence et al. 2009; Lubarsky et al.
2012; Nietch et al. 2013; Proia et al. 2011; Proia et al. 2013; Ricart et al. 2010). Studies of
TCS effects on marine bacterial communities are, however, scarce. Johansson et al. (2014)
studied effects of TCS on bacterial carbon utilization in marine periphyton communities, in
which TCS did not inhibit the carbon utilization and did also not cause changes in bacterial
functional diversity at concentrations of up to 10 uM. Eriksson et al. (2015) also studied
effects of TCS on carbon utilization in marine periphyton using flow-through microcosms in

which TCS did not cause effects at concentrations of up to 1 uM. These studies, however,
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focused mainly on gross parameters of bacterial function. They do not provide insights into
the impact of TCS on microbial diversity. The present study was implemented to provide such
information, in order to improve the mechanistic basis for the risk assessment of TCS in

marine ecosystems.

Amplicon sequencing, also known as metabarcoding, enables the analysis of bacterial
communities by analyzing amplicons of marker regions, such as 16S rRNA genes. In contrast
to the cultivation of individual strains or metabolic assays such as bacterial carbon utilization,
metabarcoding provides an integrative view of a community, including its structure and its
individual members (for example Tan et al. 2015). Today, modern sequencing platforms offer
massive sequencing depth, which has tremendously increased the sensitivity of amplicon
sequencing and allows to detect less and less abundant taxa. Consequently, amplicon
sequencing can identify changes in the composition of a bacterial community that would be
undetectable with traditional methods such as of microscopy, various molecular fingerprinting
techniques (e.g. Terminal Restriction Fragment Length Polymorphism and Denaturing
Gradient Gel Electrophoresis), or metabolic assays. There are several examples where
metabarcoding has been used to pin-point effects in microbial communities caused by

exposure to toxicants (e.g. Chariton et al. 2014; Eriksson et al. 2009; Pascault et al. 2014).

In this study we used 16S rDNA amplicon sequencing to investigate the ecotoxicological
effects of TCS on marine periphyton communities that were established under selection
pressure from different concentrations of TCS in a flow-through microcosm experiment. Our
results show that community structure and the abundance of specific taxa are significantly
affected already at a TCS concentration as low as 3.16 nM. Particularly sensitive taxa include

the Candidate division OD1 and the Alphaproteobacterial families Rhodobacteraceae and
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Rhodobiaceae. We also identify several highly tolerant taxa, in particular the
Gammaproteobacterial families Alteromonadaceae, Oceanospirillaceae, and Thiotrichaceae,
and the Flavobacterial family Flavobacteriaceae. Taken together, these results demonstrate
that 16S rRNA amplicon sequencing is an effective tool for detecting effects from toxicants in

complex bacterial communities.

MATERIAL AND METHODS
Flow-through microcosm experiment

A flow-through experiment was performed at the Sven Lovén Centre for Marine Sciences,
Kristineberg on the west coast of Sweden from the 26% of September until the 14 of October
2012. The setup of the microcosm system, the operation and implementation of the triclosan
(TCS, 5-chloro-2-(2,4-dichloro-phenoxy)-phenol, CAS-No. 3380-34-5) exposure and the
periphyton colonization, as well as the details about the chemical analyses of TCS, the
responses of various endpoints (photosynthesis, pigment content, and carbon utilization), are
reported in Eriksson et al. (2015). In short, seawater, with its indigenous microbiota, was
continuously pumped into 20 L glass aquaria from 1.5 meters depth in the Gullmar fjord. To
prevent larger organisms from entering the microcosms, the seawater was filtered through a
nylon net with a 1 mm mesh. Periphyton communities colonized and grew on 10.8 cm? (1.4 *
7.7 cm) glass slides mounted vertically in polyethylene holders. Prior to periphyton
establishment, the discs were boiled for 10 min in concentrated nitric acid, rinsed in de-
ionised water, and rinsed again in 70% ethanol. The seawater flow rate in the microcosms was
220 mL min'! giving a mean residence time of approximately 90 min. TCS solutions made in
de-ionized water were also pumped into the system creating constant TCS nominal exposures
of 0, 0.316, 1, 3.16, 10, 31.6, 100, 316, and 1000 nM. The same amount of de-ionized water

without TCS was pumped into the control microcosms. The nominal TCS concentrations were

6
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close to the analysed TCS concentrations (Eriksson et al. 2015). Hence, nominal
concentrations are presented in the following. The exposure concentrations and the number of

replicates per treatment are shown in Table 1.

Periphyton sampling and DNA extraction

Periphyton biofilms were scraped off with a scalpel from 17 glass slides (183 cm?) per
microcosm into filter-sterilized water from the respective microcosm. The biofilm material
was pelleted by centrifugation at 15000 g for 8 minutes, snap-frozen in liquid nitrogen, and
stored at -80 °C. DNA extraction was performed using the FastDNA spin kit for soil (MP
Biomedicals, Santa Ana, USA) due to the high extraction yield obtained with this kit (Corcoll
et al. 2017). DNA extraction was done following the protocol of the manufacturer. Extracted
DNA was quantified by fluorescence with the PicoGreen assay (Quant-iT PicoGreen,
Invitrogen). The integrity of the extracted DNA was assessed with a 2200 TapeStation
instrument (Agilent Technologies, Santa Clara, USA), and contamination by proteins and
carbohydrates was quantified as 260/280 nm and 260/230 nm absorbance ratios, respectively,

using a NanoDrop 2000 instrument (Thermo Scientific, Wilmington, USA).

PCR, library preparation, and sequencing

Amplicon 16S rDNA sequences were obtained through a two-step PCR approach as
previously described (Sinclair et al. 2015) with some modifications. In short, each sample was
first amplified in duplicates using primers targeting the variable 16S regions V3 and V4,
equipped with parts of the Thruplex Illumina sequencing adapter. The forward primer:
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNN-

CCTACGGGNGGCWGCAG and reverse primer: AGACGTGTGCTCTTCCGATCT-
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GACTACHVGGGTATCTAATCC (Andersson et al. 2010) were used. Duplicates were
pooled after purification using the Agencourt AMPure XP system (Beckman Coulter) as
recommended by the manufacturer. The pooled duplicates were used as templates in a second
PCR step using primers equipped with a 7-base index in the Illumina sequencing adapters for

multiplexing. The forward primer

AATGATACGGCGACCACCGAGATCTACAC-[i5 index]-

ACACTCTTTCCCTACACGACG and reverse primer

CAAGCAGAAGACGGCATACGAGAT-[i7 index]-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT) were used to obtain amplicons with
complete Thruplex adapters for lllumina sequencing. After sample purification using the
Agencourt AMPure XP kit, and quantification by fluorescence with the PicoGreen assay
(Quant-iT PicoGReen, Invitrogen), samples were pooled in equimolar amounts. The pooled
samples were sequenced at the SciLifeLab SNP/SEQ next generation sequencing facility
(Stockholm, Sweden) using IHlumina MiSeq with a 2x300 bp chemistry following the

protocols of the manufacturer.

Bioinformatics and statistics

The raw sequence data were analyzed with a pipeline for de-multiplexing and sequence-pair
assembly implemented in Python (Sinclair et al. 2015). PANDAseq (Masella et al. 2012) was
used to assemble the overlapping paired ends (using default settings). Quality filtering
removed any sequences with missing primers or unassigned base pairs (Sinclair et al. 2015).
Sequences were then clustered into operational taxonomic units (OTUs) based on a 3%
dissimilarity clustering with UPARSE, and singleton OTUs were removed (Edgar 2013).

Taxonomic annotation was performed using CREST (Lanzen et al. 2012) and the SilvaMod
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database provided by the online resource SILVA (Quast et al. 2012). The raw sequence data
were deposited at NCBI under the BioProject accession number PRINA320539, and with the
SRA Experiment accession numbers SRX1744264 - SRX1744266, SRX1744269 -

SRX1744273 and SRX1744275 - SRX1744279.

The Bray-Curtis distance, richness, and evenness were estimated using data rarified to the
lowest sequencing depth (n=11,988). Differentially abundant OTUs were identified using the
DESeq2 R package. Two types of analyses were implemented: i) pair-wise analysis between
the untreated controls and the samples that were exposed to 3.16, 31.6, and 316 nM TCS, and
i) regression analysis between OTU counts and TCS concentration. The resulting p values
were adjusted for multiple testing according to Benjamini-Hochbergs false discovery rate
(FDR). OTUs with an FDR of less than 0.05 were considered statistically significant. Venn
diagrams were used to describe the overlap of the significantly different OTUs between
concentrations. Overrepresented taxa among the significant OTUs (FDR<0.05) were tested
using Fishers’ exact test at the phylum, class, order, and family levels. All analyses were

performed in the statistical language R version 3.4 (R Development Core Team 2008).

RESULTS AND DISCUSSION

Results from next-generation sequencing

Sequencing using the Illumina platform resulted in 313,855 16S reads, with an average of
24,143 reads per microcosm (Table 1). The sequence reads from all microcosms were
clustered into 1,789 OTUs, with an average of 892 OTUs per sample. The number of OTUs
from each treatment is presented in Table 1. Taxonomic annotation of the OTUs revealed a

high diversity with 31 prokaryote phyla present in all microcosms (Supplementary Table 1).
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The phyla Proteobacteria and Bacteroidetes dominated the communities and constituted 51%
and 29% of the OTUs, respectively. These phyla also contained the highest richness with 654

and 449 OTUs, respectively (Supplementary Table 1).

TCS effects on community composition

TCS exposure clearly changed the OTU distribution of exposed biofilms. The Bray-Curtis
dissimilarity between control and exposed communities increased monotonously with
increasing TCS concentrations (Fig. 1A). Significant increases in the Bray-Curtis dissimilarity
were already observed after an exposure to 1 and 3.16 nM TCS (average difference of 0.21
between the treatments and controls, p=0.0279, Welch test). This patterns is confirmed in the
Principal Component Analysis (PCA) (Fig. 1B). Moreover, both the OTU richness and
evenness of the communities were significantly reduced at 31.6 and 316 nM (Supplementary

Figures 1 and 2).

The relative abundance of a total of 164 OTUs was significantly affected (FDR<0.05) by an
exposure to 3.16 nM, 31.6 nM or 316 nM TCS (Supplementary Table 3). The number of
significantly affected OTUs increased with TCS concentration (Fig. 2A). 10 of the 12 OTUs
whose abundance was significantly changed by an exposure to 3.16 nM TCS were also
significantly affected at higher exposure levels (Fig. 2B). The abundance of 88 OTUs was
significantly affected at both 31.6 nM and 316 nM, but 29 and 53 OTUs showed such
difference only in the 31.6 nM and 316 nM treatments, respectively, giving these treatments a
distinct community profile. The number of OTUs with a significant increased abundance in
the treatments compared to the controls were 2, 46, and 70 for 3.16 nM, 31.6 nM, and 316

nM, respectively. The corresponding numbers for OTUs with significant decreased abundance
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in these treatments compared to the controls were 10, 91, and 91, respectively. We also
performed regression analysis to identify OTUs whose abundance correlated with TCS
exposure. In total 171 OTUs were found to be significantly correlating with TCS exposure
(FDR<0.05), of which 83 increased and 88 decreased with increasing TCS concentration

(Supplementary Table 2).

Members of the Candidate division OD1 are sensitive to triclosan

TCS effects were visible already at the phylum level, where OTUs of the Candidate division
OD1 decreased substantially at a concentration as low as 1 nM (Fig. 3). Fishers’ exact test
confirmed that the phylum Candidate division OD1 is indeed particularly sensitive, with the
abundance of 28% of its taxa showing a significant negative correlation with TCS
concentrations (p=4.0x10®, Table 2). Also in the pairwise comparison between the exposed
and the control communities, the Candidate division OD1 was identified as being sensitive,
with the abundance of 4.9%, 28%, and 22% of its taxa being significantly reduced after
exposure to 3.16 nM (p=0.029, Table 3), 31.6 nM (p=7.4x107), and 316 nM (p= 0.0027)
TCS, respectively. The Candidate division OD1, also called Parcubacteria, is a diverse group
of bacteria, suggested to constitute a superphylum (Solden et al. 2016). Its members have
small genomes and reduced metabolic capabilities, lacking genes for the biosynthesis of
cofactors, nucleotides, amino acids and fatty acids. Furthermore, Parcubacteria have been
suggested to be symbiotic, commensal, or parasitic organisms (Nelson and Stegen 2015). For
example, the bacterium Candidatus Sonnebornia yantaiens was found to be endosymbiotic in
the algae Chlorella, which in turn was endosymbiontic in the ciliate Paramecium bursaria
(Gong et al. 2014). As periphyton biofilms also harbor a high diversity of eukaryotic
organisms, it might be an excellent habitat for such lifestyles. In addition to the TCS-

sensitivity demonstrated in this study, Paracubacteria are also sensitive to oil contamination in
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soil (Liao et al. 2015). Conceivably, the streamlined genomes and the reduced metabolic
capabilities of these organisms makes them unable to handle the metabolic challenges that
toxic exposure might present. It is also possible that their symbiotic or commensal
interactions are disturbed when their hosts are exposed to toxic compounds, or that the hosts

are eliminated by the exposure.

Proteobacteria can be highly sensitive as well as tolerant to triclosan

In the dominant phyla Proteobacteria approximately the same number of taxa were positively
and negatively correlated to TCS concentrations (7.8% and 9.2% respectively, Table 2).
However, clear patterns in differential TCS sensitivity became evident at lower taxonomic
levels, where 19% of the OTUs belonging to Alphaproteobacteria were negatively correlated
with TCS exposure (p=1.1x10"*2, Table 2). Further down in the alphaproteobacterial
taxonomy, 57% and 60% of the OTUs belonging to the order Rhodobacterales and the family
Rhodobacteraceae, respectively, were negatively correlated to TCS exposure (p=9.6x102*
and p=8.4x10"%, respectively, Table 2). The abundance of 8.3% of the OTUs from the family
Rhodobacteraceae was significantly reduced, already at a TCS concentration of 3.16 nM,
(1.8x10*, Table 3). The family Rhodobacteraceae harbors the genus Roseobacter, whose
members may constitute up to 25% of the bacterial community in marine coastal
environments (Wagner-Dobler and Biebl 2006), and who have been shown to be important
members of marine biofilms (Doghri et al. 2015; Michael et al. 2016; Sanli et al. 2015).
Members of Roseobacter can use a large number of metabolic pathways, including
anoxygenic phototrophy, denitrification, methylotrophy, and sulfur oxidation (Luo and Moran
2014). The genus Roseobacter has thus been indicated as an important contributor to the
cycling of nutrients in coastal marine environments. Other TCS-sensitive

Alphaproteobacteria include the order Rhizobiales and the family Rhodobiaceae. A full 57%
12

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27125v1 | CC BY 4.0 Open Access | rec: 17 Aug 2018, publ: 17 Aug 2018




293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

of the taxa in the family Rhodobiaceae was negatively correlated with TCS exposure
(p=0.00051, Table 2), and the same percentage was underrepresented at 3.16 nM TCS
(p=3.72x10%, Table 3). Rhizobiales are known for their nitrogen fixation in symbiosis with

legume plants and have been detected in the marine biofilms before (Sanli et al. 2015).

Alphaproteobacteria also comprise TCS-tolerant taxa. Of the OTUs in the order
Sphingomonadales and the family Erythrobacteraceae, 28% and 44%, respectively, were
positively correlated with TCS exposure (p=0.0028 and 0.0011, respectively, Table 2).
Bacterial groups in the family Erythrobacteraceae, such as Erythrobacter, are non-motile,
obligate aerobes and are frequently found in coastal environments. They are facultative
photoheterotrophs and perform anoxygenic photosynthesis (KobliZek et al. 2003). Yurkov et
al. (1996) observed that some Erythrobacter displayed resistance to the reactive oxygen
species (ROS)-generating compound tellurite, and TCS is well known for its ROS-mediated
toxic effects in various organisms (e.g. Li et al. 2018; Pan et al. 2018). It might therefore be
hypothesized that TCS exposure selects for Erythrobacteraceae because of their superior
ability to handle TCS-induced oxidative stress. Our analysis shows that at least for
Alphaproteobacteria, the class level is too high to analyze differential TCS sensitivity, as the
families of Rhodobacteraceae and Rhodobiaceae were sensitive but the family

Erythrobacteraceae was tolerant.

Several Gammaproteobacteria were favored by TCS as 13% of its OTUs were positively
correlated with TCS exposure (p=3.8x10®, Table 2) and 7.4% and 15% of its OTUs showed
significantly higher abundances at 31.6 nM and 316 nM, respectively, compared to unexposed

controls (Supplementary Table 2). However, the gammaproteobacterial families
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Alteromonadaceae, Oceanospirillaceae, and Thiotrichaceae were particularly tolerant, as
15%, 58%, and 36%, respectively, of their corresponding OTUs increased with increasing
TCS concentrations (p=0.069, 1.5x107" and 0.0026, Table 2). These results were confirmed in
the pairwise comparisons. At 31.6 nM, the abundance of 46% and 40% of the OTUs in
Oceanospirillaceae and Thiotrichaceae were significantly increased (Supplementary Figure
3), and at 316 nM the abundance of 61%, 36%, and 22% of the OTUs in Alteromonadaceae,
Oceanospirillaceae, and Thiotrichaceae were significantly increased. These taxonomic
groups were favored only at higher concentrations of TCS (Supplementary Table 2,
Supplementary Figure 3). Although Pseudomonas aeruginosa belongs to Pseudomonadales,
i.e. a different gammaproteobacterial order, it is worth noting that P. aeruginosa is
intrinsically resistant to TCS. This resistance is believed to originate from efflux pumps, but
Zhu et al. (2010) showed that P. aeruginosa carries a TCS-resistant enoyl-ACP reductase
isoenzyme, encoded by the fabV gene, which results in a 2000-fold increase of the Minimum
Inhibitory Concentration (MIC) of TCS. It is, however, currently not known to what extent
other Gammaproteobacteria also carry a TCS-resistant fabV gene. As reviewed by Carey and
McNamara (2015), other enoyl-ACP reductase isoenzymes, encoded by the fabK and fabL
genes, can also result in TCS resistance. Furthermore, a combination of resistance
mechanisms was induced in the biofilm-forming Gammaproteobacteria Salmonella enterica
serovar Typhimurium upon TCS exposure, including upregulation of the genes fabl, micF,
acrAB, bcsA, and besE. This resulted in increased production of TCS target sites, reduced
influx, increased efflux, and increased production of exopolysaccharides (Tabak et al. 2007).
Whether these resistance mechanisms are used by periphyton-inhabiting

Gammaproteobacteria remains to be clarified.
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341  Deltaproteobacteria were less abundant than Alphaproteobacteria and Gammaproteobacteria
342  (Table 2). Similar to the pattern observed in Alphaproteobacteria, approximately the same
343  number of taxa in Deltaproteobacteria was positively and negatively correlated with TCS
344  exposure. The deltaproteobacterial family Bdellovibrionaceae was clearly favored by TCS,
345  where 25% of its OTUs displayed a significant positive correlation to TCS exposure

346  (p=0.029, Table 2). Still, a significant over-representation of taxa only occurred at the highest
347  exposure of 316 nM (Supplementary Figure 3). Bdellovibrionaceae predates on other bacteria
348  and was previously thought not to occur in marine waters. However, Kandel et al. (2014)

349  found this family in saline (20 ppt) aquaculture systems, and even showed that

350  Bdellovibrionaceae was more abundant in biofilms than in the planktonic phase. Our results
351 thus confirm that Bdellovibrionaceae are indeed present in naturally occurring marine

352  biofilms. It actually seems reasonable to assume that predatory bacteria like

353  Bdellovibrionaceae should thrive in biofilms due to the high bacterial density in this habitat.
354  This taxon has unique membrane lipid structures (Muller et al. 2011), but whether this

355  characteristic renders them tolerant to the inhibition of fatty acid synthesis from TCS remains

356  to be clarified.
357

358  Triclosan also affects Bacteroidetes, Candidate division BD1-5, Verrucomicrobia, and

359  Actinobacteria

360  Other examples of bacterial groups clearly favored by TCS were found within the phyla

361 Bacteroidetes. The order of Flavobacteriales and the family Flavobacteriaceae were both

362  significantly overrepresented, having a positive correlation with TCS exposure (p=1.0x10°
363  and p=4.2x10%, respectively, Table 2). This, however, was only observed at concentrations of
364 316 nM and higher, but not at lower concentrations. Many periphytic bacteria are known to
365 degrade alginate and other carbohydrates produced by algae (Klindworth et al. 2014; Zozaya-
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Valdes et al. 2015). Interestingly, Klindworth et al. (2014) noted that Flavobacteriaceae
species were the major algal polymer degraders in a diatom bloom, whereas the
Rhodobacteraceae species exhibited less specialized substrate spectra. If TCS indeed causes
mortality in diatom-dominated biofilms, as suggested by the TCS-tolerance pattern of
periphytic algae (Eriksson et al. 2015), the fact that Flavobacteriaceae are being favored and
Rhodobacteraceae are being reduced by TCS exposure could be explained by the different

substrate spectra of those two groups.

The phylum Candidate division BD1-5 responded in a similar pattern as Flavobacteria, with
20% of their OTUs increasing significantly with TCS concentration (p=0.0016, Table 2) and
only the highest exposure of 316 nM giving a significant over-representation compared to
controls. Wrighton et al. (2012) assembled genomes of the Candidate divisions BD1-5 and
OD1 from an acetate-amended aquifer and concluded that these organisms have small
genomes, are strictly anaerobic, and drive pathways for anoxic carbon, hydrogen, and sulfur
cycling similar to those in Archaea. In terms of sensitivity to TCS, however, the Candidate
divisions BD1-5 and OD1 are not similar, since OD1 was clearly TCS sensitive whereas
BD1-5 was tolerant. Hence, small genomes and reduced metabolic capabilities do not seem to
determine TCS sensitivity per se. The Candidate divisions OD1 and BD1-5 might occupy
different ecological niches, and/or have different ecological interactions that are affected by

TCS exposure.

A non-monotonous concentration-response pattern, with significant over-representation at
3.16 nM but not at higher exposure levels, was observed for some taxa, for example the

family Rubritaleaceae in Verrucomicrobia (Table 3) and the class Acidimicrobiia and the
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order Acidimicrobiales in Actinobacteria (Supplementary Figure 4). It is possible that
ecological interactions changed at intermediate TCS concentrations, favoring these taxa. For
example, Verrucomicrobia can be symbionts with ciliates (Vannini et al. 2003) and algae
(Ferrero et al. 2012), and Actinobacteria can be closely associated with marine sponges
(Seipke et al. 2012) and marine macroalgae (Hollants et al. 2013), habitats that are similar to
periphyton biofilms. If eukaryotic species symbiontic to Verrucomicrobia, or associated with
Actinobacteria, were favored at intermediate TCS concentrations, these bacterial taxa might

increase as well.

TCS effects on bacterial communities in marine and freshwater ecosystems

The effects of TCS on the composition of natural bacterial communities have been
investigated for both freshwater and marine communities. In the freshwater environment, gel-
based methods for separating DNA amplicons and FISH have been used, and TCS
concentrations of 10 nM (Johnson et al. 2009), 70 nM (Lubarsky et al. 2012), 35 nM
(Lawrence et al. 2009), and 6.2 nM (Lawrence et al. 2015) have been shown to change the
composition of freshwater communities. In addition, Drury et al. (2013) used 16S amplicon
sequencing to study effects of TCS on freshwater sediment communities in artificial streams.
These authors found the taxa Sphingobacteria, Betaproteobacteria, Deltaproteobacteria, and
Bacteroidia to be TCS sensitive, whereas Anaerolineae and Cyanobacteria were identified as
being resistant. In our study with marine biofilms we similarly found some Sphingobacteria
and some Deltaproteobacteria to be TCS sensitive (Table 2), whereas the class

Betaproteobacteria was not identified as being TCS sensitive.
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In marine biofilms, Dobretsov et al. (2007) used T-RFLP and fluorescent in situ hybridization
(FISH) and found that the overall bacterial density and community composition of 16S in a
marine biofilm was affected at a high TCS concentration of 1000 nM, but that the taxa
Alphaproteobacteria and Gammaproteobacteria were affected already at 10 nM. In the
present study, we identified Alphaproteobacterial taxa at lower taxonomic levels to be TCS-
sensitive (Table 2 and Table 3). However, in contradiction to Dobretsov et al. (2007), we
found Gammaproteobacterial taxa to be tolerant to TCS (Table 2). The concentrations in
which TCS effects were observed in the current study (1 nM - 3.16 nM) are lower than those
of the studies on freshwater communities cited above. It should be underlined that these
changes consisted of changes in the relative OTU composition at lower taxonomic levels.
Such changes could be missed if techniques are used that are recording effects at high
taxonomic levels or if community-level parameters such as bacterial productivity are used.
For example, Eriksson et al. (2015) used Biolog Ecoplates to study TCS effects on bacterial
carbon utilization using the same samples from which also the material for the amplicon
sequencing efforts of the current study was sourced, and no clear effects of TCS were
detected. This is most likely a consequence of the functional redundancy of the carbon
utilization of the different taxa, due to which subtle shifts in community composition go

unnoticed.

Furthermore, it is important to note that we employed an experimental system with a flow-
through setting that continuously brings in new bacteria from the environment. This implies
that communities were exposed to TCS during the entire lifecycle of the biofilm, including the
colonization phase. TCS effects on the early life stages of a biofilm will then be amplified
during the course of its succession. It is therefore likely that the experimental design, in

combination with amplicon sequencing, facilitated the identification of significant TCS
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effects at comparatively low effect levels and concentrations. In particular, the employed
experimental strategy allowed us to identify bacterial species, in an ecologically realistic

setting, as either particularly TCS-sensitive or —tolerant.

Conclusions

We identified clear changes in community composition at 10 nM TCS, but effects on specific
taxa were seen already at 1-3.16 nM. Our results show that Candidate division OD1 and
Alphaproteobacteria (primarily Rhodobacteraceae and Rhodobiaceae) are particularly
sensitive to TCS while Gammaproteobacteria (primarily Alteromonadaceae,
Oceanospirillaceae, and Thiotrichaceae), Flavobacteria (primarily Flavobacteriaceae), the
Candidate division BD1-5, the deltaproteobacterial family Bdellovibrionaceae, and the
alphaproteobacterial family Erythrobacteraceae are more tolerant to TCS exposure. The
results show that TCS affects marine microbial communities at low nanomolar
concentrations, which are actually found in the marine environment (Pintado-Herrera et al.
2014; Remberger et al. 2002). Environmental risk assessments of TCS, such as the recent
evaluation published by Guo and Iwata (2017), therefore urgently need to be amended by
adequately considering the toxicity of triclosan to environmental bacteria and their natural

communities.

Supplementary data

The Supplementary data are available on the Wiley Online Library at DOI: 10.1002/etc.xxxx
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653  Figure captions

654  Fig. 1. Effects of triclosan on the species composition of marine biofilms. (A) Bray-Curtis
655  similarity of the 16S OTU composition plotted against TCS concentration. (B) Principal

656  Components Analysis based on Bray-Curtis similarity indices. All concentrations in nM.

657

658  Fig. 2. Number of 16S OTUs affected by triclosan exposure. (A) Number of OTUs with
659  significantly different relative abundances, in comparison to unexposed control communities.
660  (B) Number of co-occurring OTUs with significantly different relative abundances, in

661  comparison to unexposed control communities.

662

663  Fig. 3. Average relative abundance of the six most abundant bacterial phyla in relation to
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Table 1. Read and OTU count statistics for 16S amplicons from exposed and unexposed microcosms.

Exposure Number of Average (n > 1) or total (n=1) Average (n > 1) or total (n=1)

concentration (nM) replicates (n) read count per sample (standard ~ OTU count per sample
deviation) (standard deviation)

0 4 15,514 (4525) 844 (63)

0.316 1 13,919 789

1 1 22,658 1262

3.16 3 24,286 (15888) 1102 (402)

10 1 45,545 1141

31.6 2 40,628 (1826) 685 (70)

316 2 19,926 (284) 727 (29)

Table 2. Overrepresentation of taxa positively or negatively correlated with TCS concentration.

Taxonomic group Number  Significant Percent significant p-value
(Phyla) of OTUs increased (+) increased / decreased
(Class) intaxa®  ordecreased taxa (%)
(Order) (-) taxa
(Family)
Bacteroidetes 450 7.1/53 0.11/0.90
Flavobacteria 172 + 15/4.1 1.8x10%/0.94
Flavobacteriales 167 + 16/4.2 1.0x10%/0.93
Flavobacteriaceae 97 + 22141 4.2x10%/0.89
Candidate division BD1-5 40 + 20/5 0.0016/0.75
Candidate division OD1 47 - 2.11/28 0.94/4.0x10°®
Proteobacteria 654 +/- 78192 0.0049/0.00040
Alphaproteobacteria 222 - 45/19 0.85/1.1x10?2
Rhizobiales 7 0/12 1/0.16
Rhodobiaceae 7 - 0/57 1/0.00051
Rhodobacterales 53 - 5.7 I57 0.61/9.6x1024
Rhodobacteraceae 50 - 4/60 0.80/8.4 x10%
Sphingomonadales 18 + 28/0 0.0028 /1
Erythrobacteraceae 9 + 4410 0.0011/1
Deltaproteobacteria 145 55/6.9 0.62/0.47
Bdellovibrionales 59 85/85 0.26 /034
Bdellovibrionaceae 12 + 25/0 0.029/1
Gammaproteobacteria 237 + 13/21 3.8x10%/1
Alteromonadales 63 11/0 0.069 /1
Alteromonadaceae 40 + 15/0 0.025/1
Oceanospirillales 34 + 35/0 1.5x107/ 1
Oceanospirillaceae 19 + 58/0 7.8x1019/1
Thiotrichales 21 + 19/9.1 0.030/0.52
Thiotrichaceae 11 + 36/0 0.0026 /1

8The number of OTUs of lower taxonomic levels are included in the number of OTUs of higher
taxonomic levels. The OTUs for which lower taxonomic levels couldn’t be assigned is included for
higher taxonomic levels.
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Table 3. Overrepresentation of taxa that are differentially abundant at 3.16 nM TCS compared to

controls.
Taxonomic group Number of  Significant Percent significant p-value
(Phyla) OTUs in increased (+) or increased / decreased
(Class) taxa ? decreased (-) taxa taxa (%)
(Order)
(Family)
Actinobacteria 46 2210 0.055/1
Acidimicrobiia 25 + 40/0 0.030/1
Acidimicrobiales 25 + 40/0 0.030/1
Candidate division OD1 41 - 0/4.9 1/0.029
Proteobacteria 599 - 0/15 1/0.0027
Alphaproteobacteria 204 - 0/3.9 1/5.7x10°
Rhizobiales 32 - 0/13 1/3.51x10°
Rhodobiaceae 7 - 0/57 1/3.72x108
Rhodobacterales 51 - 0/7.8 1/0.00023
48 - 0/8.3 1/1.8x10*
Rhodobacteraceae
Verrucomicrobia 95 11/0 011/1
Verrucomicrobiae 64 16/0 0.076/1
Verrucomicrobiales 61 16/0 0.073/1
Rubritaleaceae 26 + 3.8/0 0.031/1

2The number of OTUs of lower taxonomic levels are included in the number of OTUs of higher taxonomic
levels. The OTUs for which lower taxonomic levels couldn’t be assigned is included for higher taxonomic
levels.
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Fig. 1. Effects of triclosan on the species composition of marine biofilms. (A) Bray-Curtis
similarity of the 16S OTU composition plotted against TCS concentration. (B) Principal
Components Analysis based on Bray-Curtis similarity indices. All concentrations in nM.
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Fig. 2. Number of 16S OTUs affected by triclosan exposure. (A) Number of OTUs with
significantly different relative abundances, in comparison to unexposed control communities.
(B) Number of co-occurring OTUs with significantly different relative abundances, in
comparison to unexposed control communities.
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Fig. 3. Average relative abundance of the six most abundant bacterial phyla in relation to
triclosan exposure.
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SUPPLEMENTARY MATERIAL

Supplementary Table 1. Total 16S OTU abundance and richness of the detected phyla from all microcosms.

Phyla Abundance  OTU richness

Proteobacteria 166098 654
Bacteroidetes 90767 450
Planctomycetes 20652 248
Candidate division OD1 12620 47
Verrucomicrobia 8533 100
Cyanobacteria 3312 46
Candidate division BD1-5 2979 40
Actinobacteria 2633 52
Candidate division SR1 2412 14
Chlamydiae 1225 40
Firmicutes 879 10
Chloroflexi 588 19
Lentisphaerae 241 11
Deinococcus-Thermus 192 4
Acidobacteria 167 11
Fusobacteria 94 2
Candidate division TM7 68 7
Gemmatimonadetes 47 5
Fibrobacteres 44 1
Candidate division WS3 29 3
Chlorobi 26 2
Armatimonadetes 25 1
Candidate division BRC1 24 5
Candidate division TM6 23 3
Candidate division WS6 19 2
WCHB1-60 12 1
Nitrospirae 6 2
Spirochaetes 6 2
Candidate Division OP8 2 1
Candidate division OP3 2 1

Supplementary Table 2. Taxonomic annotation of OTUs with a significant positive/negative correlations to TCS
concentration. Note that the number of OTUs at lower taxonomic levels (e.g. Flavobacteriaceae) are included in the
number of OTUs at the higher taxonomic levels (e.g. Bacteroidetes). Hence, some of the OTUs with positive
correlation (in total 83 OTUs) and the some of the OTUs with negative correlation (in total 88 OTUs), are counted
several times in the column to the right.

Taxonomic annotation Number ~ Number of OTUs with Percent OTUs with

of OTUs  significant significant

in taxa positive/negative positive/negative

correlations correlations

Actinobacteria/Acidimicrobiia/Acidimicrobiales 27 0/1 0/3.7
Bacteroidetes 450 25/18 55/4.0
Cytophagia 60 0/1 0/17
Flavobacteria/Flavobacteriales 166 20/5 12/3.0
Cryomorphaceae 31 3/1 9.7/3.2
Flavobacteriaceae 97 17/3 18/3.1
Unknown 29 0/1 0/34
Sphingobacteria/Sphingobacteriales 164 5/8 3.0/49
Chitinophagaceae 18 0/1 0/5.6
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Saprospiraceae 55 3/3 55/55

Unknown 83 2/4 24148
Candidate division BD1-5 40 8/2 20/5
Candidate division OD1 47 1/10 21/21
Chlamydiae 40 1/0 25/0
Cyanobacteria 46 2/0 43/0
Deinococcus-Thermus 4 1/0 25/0
Planctomycetes 248 3/8 1.2/32
Phycisphaerae/Phycisphaerales 55 0/5 0/9.0
Phycisphaeraceae 24 0/2 0/8.3
Unknown 31 0/3 0/9.7
Planctomycetacia/Planctomycetales/Planctomycetaceae 73 0/1 0/1.4
Unknown 19 3/2 16/11
Proteobacteria 654 42 [ 47 6.4/7.2
Alphaproteobacteria 222 6/37 27117
Rhizobiales/Rhodobiaceae 7 0/3 0/43
Rhodobacterales/Rhodobacteraceae 50 2/25 4.0/50
Rickettsiales 26 0/2 0/7.7
Sphingomonadales 18 3/0 17170
Erythrobacteraceae 9 2/0 2210
Sphingomonadaceae 8 1/0 13/0
Unknown 19 1/4 5.2/21
Deltaproteobacteria 145 817 56/4.8
Bdellovibrionales 59 5/4 8.5/6.8
Bdellovibrionaceae 12 3/0 25/0
Unknown 33 2/4 6.0/12
Desulfuromonadales 19 1/0 5.3/0
Myxococcales 22 2/1 9.1/45
Nannocystaceae 11 1/0 9.1/0
Unknown 6 1/1 17117
Unknown 18 0/2 0/11
Gammaproteobacteria 237 2712 11/0.84
Alteromonadales 63 6/0 95/0
Alteromonadaceae 40 5/0 13/0
Unknown 8 1/0 13/0
Chromatiales 11 2/0 18/0
Ectothiorhodospiraceae 1 1/0 100/0
Granulosicoccaceae 7 1/0 14/0
Oceanospirillales/Oceanospirillaceae 19 9/0 4710
Thiotrichales/Thiotrichaceae 11 4/1 36/9.1
Unknown 7 6/1 86/14
Unknown 9 0/1 0/11
Verrucomicrobia 100 0/1 0/1
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Supplementary Figure 1. Richness, measured as the unique number of OTUs, for each concentration of
TCS. For replicated concentrations, the bar represents the standard error. The richness in 31.6 and 316
nM was significantly decreased compared to the controls (p=0.0236 and p=0.0169 respectively).
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Supplementary Figure 2. Evenness, measured using Pielous’ index, for each concentration of TCS. For
replicated concentrations, the bar represents the standard error. The richness in 31.6 and 316 nM was
significantly decreased compared to the controls (p=8.18x10° and p=0.0299 respectively).
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Supplementary Figure 3. Percentage of significant over- and under-represented taxa in families from
pairwise comparisons between controls and exposure treatments. Only families containing three or more
taxa are included. Significance determined as adjusted p-value < 0.05 in Fisher’s exact test.
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Supplementary Figure 4. Abundance of Actinobacteria OTUs at different concentrations of TCS. Error
bars denote standards error of the mean.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27125v1 | CC BY 4.0 Open Access | rec: 17 Aug 2018, publ: 17 Aug 2018



	Manuscript_main_document_submitted_2
	Tables submitted
	Figures triclosan amplicon sequencing_final
	Supplementary figures and supplementary table 1 and 2

