
Deep learning for predicting disease status using genomic

data

Qianfan Wu  1  ,  Adel Boueiz  2, 3  ,  Alican Bozkurt  4  ,  Arya Masoomi  4  ,  Allan Wang  5  ,  Dawn L DeMeo  2  ,  Scott T

Weiss  2  ,  Weiliang Qiu Corresp.  2 

1 Questrom School of Business, Boston University, Boston, USA

2 Brigham and Women's Hospital/Harvard Medical School, Boston, USA

3 Pulmonary and Critical Care Division, Brigham and Women's Hospital/Harvard Medical School, Boston, USA

4 Department of Computer Science, Northeastern University, Boston, USA

5 Belmont High School, Boston, USA

Corresponding Author: Weiliang Qiu

Email address: stwxq@channing.harvard.edu

Predicting disease status for a complex human disease using genomic data is an

important, yet challenging, step in personalized medicine. Among many challenges, the

so-called curse of dimensionality problem results in unsatisfied performances of many

state-of-art machine learning algorithms. A major recent advance in machine learning is

the rapid development of deep learning algorithms that can efficiently extract meaningful

features from high-dimensional and complex datasets through a stacked and hierarchical

learning process. Deep learning has shown breakthrough performance in several areas

including image recognition, natural language processing, and speech recognition.

However, the performance of deep learning in predicting disease status using genomic

datasets is still not well studied. In this article, we performed a review on the four relevant

articles that we found through our thorough literature review. All four articles used auto-

encoders to project high-dimensional genomic data to a low dimensional space and then

applied the state-of-the-art machine learning algorithms to predict disease status based on

the low-dimensional representations. This deep learning approach outperformed existing

prediction approaches, such as prediction based on probe-wise screening and prediction

based on principal component analysis. The limitations of the current deep learning

approach and possible improvements were also discussed.
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14 Abstract

15

16 Predicting disease status for a complex human disease using genomic data is an important, yet 

17 challenging, step in personalized medicine. Among many challenges, the so-called curse of 

18 dimensionality problem results in unsatisfied performances of many state-of-art machine 

19 learning algorithms. A major recent advance in machine learning is the rapid development of 

20 deep learning algorithms that can efficiently extract meaningful features from high-dimensional 

21 and complex datasets through a stacked and hierarchical learning process. Deep learning has 

22 shown breakthrough performance in several areas including image recognition, natural language 

23 processing, and speech recognition. However, the performance of deep learning in predicting 
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24 disease status using genomic datasets is still not well studied. In this article, we performed a 

25 review on the four relevant articles that we found through our thorough literature review. All 

26 four articles used auto-encoders to project high-dimensional genomic data to a low dimensional 

27 space and then applied the state-of-the-art machine learning algorithms to predict disease status 

28 based on the low-dimensional representations. This deep learning approach outperformed 

29 existing prediction approaches, such as prediction based on probe-wise screening and prediction 

30 based on principal component analysis. The limitations of the current deep learning approach and 

31 possible improvements were also discussed.

32

33 1. Introduction

34

35 Complex human diseases, such as cancers, cardiovascular diseases, and respiratory diseases, 

36 have caused huge public health concerns and economic burdens [1, 2]. It is believed that both 

37 environmental factors (e.g., smoking exposure, nutrient intake, physical exercise, etc.) and 

38 genomic factors contribute to the development of complex human diseases[3]. We refer genomic 

39 factors to any molecular factors related to genes, such as genotype, gene expression, DNA 

40 methylation, microRNA expression, metabolites, proteins, etc. Cutting-edge technologies, e.g., 

41 genotyping and next-generation whole genome sequencing, greatly facilitate the investigations of 

42 the associations of genomic factors to complex human diseases so that researchers can 

43 unbiasedly detect disease-associated factors. In addition to uncovering the underlying molecular 

44 mechanisms, researchers expect that the disease-associated genomic factors could also help 

45 diagnose disease, personalize treatment, and develop new medicines[4]. 

46
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47 Several machine learning methods, such as support vector machine[5] (SVM), Random 

48 Forest[6], and K-Nearest Neighbors[7] have been successfully applied in disease prediction 

49 based on clinical data[8-10]. For genomic data generated by high-throughput technologies 

50 (Figure 1), the major challenge in disease prediction is the “curse of dimensionality”[11-13] (i.e., 

51 the number of genomic factors is far larger than the number of samples), resulting in model over-

52 fitting and computational inefficiency. 

53

54 A reasonable approach[14, 15] to handle the curse of dimensionality is to first apply feature 

55 selection techniques to select key features relevant to the disease of interest, and then to predict 

56 the disease status based on these key features (Figure 2). In genomic data analysis, a feature can 

57 be a gene probe/transcript or a (non)linear combination of several gene probes/transcripts. 

58 Traditional feature selection techniques (e.g., forward variable selection, backward variable 

59 deletion, stepwise variable selection, probe-wise tests, or principal component analysis) have 

60 limited performance in genomic data analysis. Forward variable selection, backward variable 

61 deletion, and stepwise variable selection are time-consuming. Hence they are not suitable for 

62 whole genome-wide analysis. Probe-wise tests ignore the fact that many omics variables are 

63 correlated and therefore carry redundant information regarding prediction. Ignoring the 

64 redundancy would result in the selected probes are non-reproducible in independent cohorts [13, 

65 16, 17]. In addition, contributions of different genomic risk factors might be different, however, 

66 probe-wise tests implicitly assign equal weights to all selected probes. Principal component 

67 analysis (PCA) explicitly assigns different weights to different probes. However, PCA produces 

68 linear combination of probes and ignores the possible non-linear relationship between probes.
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69

70 Figure 1: An illustration of gene expression data. In the above figure, each row represents 1 gene probe and each 

71 column represents one sample (one person). The (i,j) cell records the expression level of the i-th gene probe for the 

72 j-th sample. Gene expression data typically have high dimensionality (20,000 – 50,000 gene probes) and small 

73 sample size (<1000), resulting in the “curse of dimensionality problem.”

74

75
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76

77 Figure 2: An illustration of building prediction models using genomic datasets. The idea is to first reduce the 

78 dimensionality of the input features and then feed the low dimensionality features into prediction model/classifiers. 

79 Dimensionality reduction techniques typically include probe-wise testing, principal component analysis (PCA), and 

80 auto-encoders.

81

82 Recently, deep learning methods have made breakthrough progress in image/video 

83 recognition[18], natural language processing[19], and robotics[20, 21]. Through a stacked and 

84 hierarchical learning system, deep learning methods could efficiently capture complex 

85 relationships between high-dimensional features, either spatial or consequential[22]. 

86

87 In bioinformatics, deep learning methods have fruitful and innovative applications in medical 

88 image classification[23, 24], predicting DNA- and RNA-binding proteins sequences[25], and 

89 DNA sequence noncoding variants effects predicting[26]. However, using deep learning methods 

90 to predict disease status is not a well-researched area. 

91
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92 Most investigators in genomic data analysis fields might hear about deep learning and would like 

93 to learn more about deep learning and how deep learning could be used to predict disease status 

94 based on genomic data. In this review, we will first introduce the main components of deep 

95 learning and the most frequently used deep learning feature extraction methods in genomic data 

96 analysis. We will then review the papers that used deep learning to predict complex human 

97 diseases based on genomic data. The limitations of the current deep learning approach and 

98 possible improvements will also be discussed. 

99

100 2. Survey Methodology

101 To thoroughly search recent literatures on deep learning applications in disease prediction, we 

102 carefully reviewed previous works, searched popular sites: Google Scholar, PubMed, IEEE 

103 Xplore, and PMC, and examined related online blogs and tutorials, such as GitHub 

104 (http://github.com/), Kaggle ( http://www.kaggle.com/), and Cross Validated 

105 (https://stats.stackexchange.com/). We identified four papers[13, 31, 46, 47] published between 

106 January 2013 and December 2017, which applied deep learning methods in disease prediction 

107 using genomic data. 

108

109 Before we review the details of the four studies, we first introduce in the following sections the 

110 main components of deep learning and the most frequently used deep learning feature extraction 

111 methods in genomic data analysis.

112

113 3. Artificial Neural Networks (ANNs) and Deep Learning Methods in Predicting Disease

114
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115 The main component of all deep learning algorithms is Artificial Neural Networks (ANNs). 

116 Understanding how ANNs are constructed and trained is the first step to understand deep 

117 learning methods.

118

119 Artificial Neural Networks (ANNs):

120

121 Artificial Neural Networks are computing systems that are inspired by the biological neural 

122 networks constituting brains. Typically, an ANN is a network of nodes with multilayers (one 

123 input layer, one output layer, and several hidden internal layers). Within a layer, nodes are not 

124 connected, while between the layers nodes are fully connected (Figure 3, Figure 4). Each node 

125 can store a value (e.g., Zi for the i-th node in a given layer) and each edge can have a weight 

126 (e.g., wji for the edge connecting node i in the given layer with node j in the previous layer). The 

127 value of a node on a given layer, except for the first layer (i.e., the input layer), is a function of a 

128 bias (i.e., threshold; e.g., bi for the i-th node) and the weighted average values of all nodes on the 

129 previous layer. The function is called activation function. For instance,  if 𝑌1 = 1  

130  and  otherwise, where n is the number of nodes in the (𝑏𝑖 + 𝑤1𝑖 ∗ 𝑍1 + … + 𝑤𝑛𝑖 ∗ 𝑍𝑛) > 0 𝑌1 = 0

131 previous layer and Zj is the value for the j-th node in the previous layer. Usually, activation 

132 functions, such as Sigmoid, Rectified Linear Unit (ReLU)[27], and Hyperbolic Tangent (Tanh), 

133 are non-linear.
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134

135

136 Figure 3: An illustration of a simple ANN: This simple feed-forward ANN has four input nodes and one output node. 

137 On the edges, w1 – w4 represent the weights of the input nodes. The value for the output node is computed as 𝑌1 𝑌1

138 , where b is the bias term, and ƒ is the activation function. =  ƒ (𝑏 + 𝑍1 ∗ 𝑤1 + 𝑍2 ∗ 𝑤2 + 𝑍3 ∗ 𝑤3 +  𝑍4 ∗ 𝑤4)  

139

140

141 Figure 4: An illustration of a multiple-layer ANN. This multiple layer ANN has one input layer, two hidden layers, 

142 and one output layer, with each layer connected to the previous layer. The activation function ƒ is applied to each 

143 node on the hidden layer and the output layer.

144

145 Training ANNs:
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146

147 A training data set and a validation set, in which the values of the nodes in the output layers are 

148 known (e.g., 1 for a positive outcome and 0 for a negative outcome), are needed to estimate the 

149 optimal values of the biases and edge weights (i.e., to train the ANN).  The idea is to find a set of 

150 biases and edge weights (parameters) that minimize the difference between the true values and 

151 predicted values of nodes in the output layer. The difference is a function of the biases and edge 

152 weights and is usually called loss function. 

153

154 Gradient descent is an optimization method for updating the parameters of a neural network to 

155 minimize the loss function (Figure 5). It uses the fact that optimal parameters are achieved when 

156 gradient of the loss function with respect to the parameters are zero. However, finding 

157 parameters that are the solution to zero gradient equation is a nontrivial task for complex 

158 networks with large number of parameters. An alternative method to solving the gradient 

159 equation is, starting with an initial point, to iteratively update each parameter proportional to the 

160 negative of the gradient of the loss function with respect to the parameter, and continue this 

161 procedure until amount of change of parameters are below a predefined threshold. An important 

162 part of this method is to calculate the gradient of loss function with respect to every parameter in 

163 the network. Backpropogation is an algorithm for efficiently calculating the gradient for each 

164 parameter, using chain rule: For the simple network in Figure 3, , where 
∂𝐿𝑜𝑠𝑠(𝑤)∂𝑤1

=
∂𝐿𝑜𝑠𝑠(𝑤)∂𝑌1

 
∂𝑌1∂𝑤1

 

165  is the loss function. This implies that once we know the gradients at some layer, we can 𝐿𝑜𝑠𝑠(𝑤)
166 easily calculate the gradients for the layer before it.     

167

168
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169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184 Figure 5: Gradient Descent Training. The x-axis is the weight w and the y-axis is the loss function Loss(w). In 

185 Gradient Descent optimization, learning rate represents how much the edge weights are adjusted in each step before 

186 the global minimum is achieved. Learning rate could also be seen as the “step size” in the learning process. With a 

187 higher learning rate, the gradients are adjusted by a greater amount each step. With a lower learning rate, the 

188 gradients are adjusted by a smaller amount each step.

189

190 Deep Learning and Deep Neural Networks (DNNs):

191
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192 ANNs with only one or two hidden layers have a shallow architecture, which contains only two 

193 levels of data-dependent computational elements and can be very inefficient regarding the 

194 number of computational units (e.g., hidden nodes), and in terms of required training 

195 examples[11]. In contrast, ANNs with more than two hidden layers (i.e., deep neural networks) 

196 have a deep architecture, which can compactly represent a large number of computational 

197 elements via the composition of many nonlinearities[11]. Deep learning methods are defined as 

198 computational models that are composed of multiple processing layers to learn representations of 

199 data with multiple levels of abstraction[22]. 

200

201 The performance of deep learning relies on the methods to train the parametersin DNNs. 

202 Intuitively, we can train the parameters by minimizing the prediction error rates (the loss 

203 function) through applying gradient descent. However, empirical experiments showed that this 

204 supervised approach has poor performance for DNNs[11, 28], in the regime where number of 

205 input features are comparable to (or even far larger than) number of training samples, which is 

206 the case in genomic datasets. In  contrast, unsupervised learning at each stage of a deep network 

207 proposed by the seminal works of Hinton et al. (2006)[29] and Hinton and Salakhutdinov 

208 (2006)[30]pretrains each hidden layer as the encoder of an auto-encoder trying to reconstruct the 

209 output of the previous layer. . Hence, combining unsupervised approach with the supervised 

210 approach, such as combining an auto-encoder with a supervised fine-tuning phase (i.e., fine-tune 

211 all the parameters of the ANN using backpropagation and gradient descent on a global 

212 supervised cost function), can significantly improve the performance of deep learning methods 

213 for data-sparse datasets[11, 28].

214
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215 Auto-encoder (AE):

216 An auto-encoder is a type of ANN that aims to find a new representation of input nodes (e.g., 

217 gene probes in genomic data analysis) in an unsupervised manner, from which the input can be 

218 reconstructed without too much loss of information[28]. Like ANN, an auto-encoder has one 

219 input layer, one output layer, and one or multiple hidden layers (Figure 6). Suppose X is the 

220 original data in a p-dimensional space. An auto-encoder would first project X to a q-dimensional 

221 space Y=g1(X), where g1 is a non-linear projection function. Then it transforms Y back to the p-

222 dimensional space Z=g2(Y), where g2 is also a non-linear projection function. The optimal 

223 projection Y* minimizes the loss function loss[X, g2(Y)] that measures the differences between X 

224 and Z=g2 (Y). Note that since q is different from p, both the projection function g1 and the 

225 projection function g2 are not one-to-one mapping functions. Hence, the inverse functions g1
-1 

226 and g2
-1 do not exist.

227

228

229

230 Figure 6: Illustration of a basic auto-encoder. This auto-encoder has 2 hidden units. X is the inputs, Y=  is the 𝑋
231 reconstructed inputs in the output layer, h is the hidden layer.  The dimension of the original input data is reduced 

232 from p=4 to q=2. The optimal representation in the q-dimensional space is obtained by minimizing the difference 

233 between the inputs X and the reconstructed inputs Y. 

234
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235  

236 Similar to training ANNs, backpropagation and gradient descent can be applied to train an auto-

237 encoder, in which the output layer has the dimension as the original data Z= g2(Y)= g2(g1(X)). 

238

239 The nodes Y=g1(X) within the hidden layer are the representations of original features. The 

240 hidden layer is “under-complete” if the number (q) of nodes in the hidden layer is smaller than 

241 that (p) in the input layer (q<p). In most cases, auto-encoder outperforms Principal Component 

242 Analysis in processing high dimensional complex datasets because auto-encoder performs both 

243 linear and non-linear projections, while PCA performs only linear projection. Auto-encoders 

244 have been successfully used to efficiently extract meaningful features in disease diagnosis based 

245 on high-throughput genomic data[31, 32]. 

246

247

248 Sparse auto-encoder (Sparse AE):

249 Performing backpropagation and gradient descent could be inefficient if there are too many free 

250 nodes with complex dependencies in each layer[33, 34]. Sparse auto-encoder is developed to 

251 restrict the number of hidden nodes to be activated by introducing sparsity-constraints on the 

252 hidden units (Figure 7). Sparse auto-encoder have been proved to have favorable performance in 

253 image recognition[35] and speech emotion recognition[36], due to its efficiency in extracting 

254 meaningful features from high-dimensional data.
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255

256 Figure 7: Illustration of a sparse auto-encoder: A sparse auto-encoder restricts the number of hidden layers 

257 activated by adding a sparsity term to the loss function. The sparsity term set the expected activation value of the 

258 hidden nodes to a small constant so that most of the hidden nodes’ activations are near zero. Hence, very few hidden 

259 nodes are activated in a sparse auto-encoder. 

260

261 Stacked auto-encoder (Stacked AE):

262

263 A stacked auto-encoder[11, 37, 38] is a multi-layer auto-encoder, each hidden layer of which is a 

264 representation of previous layer obtained by an auto-encoder with one hidden layer (Figure 8).  

265 The training of stacked auto-encoders is often completed by applying the greedy layer-wise pre-

266 training approach[11]. Given extremely high-dimensional input data, a stacked auto-encoder 

267 could extract features layer by layer and finally forms a better representation to be passed into 

268 classifiers. 
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269

270 Figure 8: Illustration of stacked auto-encoder and greedy layer-wise pre-training: The stacked auto-encoder has 2 

271 hidden layers h1 and h2. Under the greedy layer-wise pre-training, hidden layer h1 is first trained under the same 

272 way as training a simple 1-layer auto-encoder by minimizing . The function  that maps X to  is learned 𝑙(𝑋,𝑋) 𝑔(1) ℎ1

273 from the first layer training, which is shown in (a). Then nodes values on  are passed to the second layer  to ℎ1 ℎ2

274 train the function  that maps  to  by minimizing , which is shown in (b). After pre-training all  𝑔(2) ℎ1 ℎ2 𝑙(ℎ1, ℎ1)

275 hidden layers, an output unit Y, which serves as a classifier, could be wired on top of the hidden layers to make 

276 predictions. The whole architecture could be fine-tuned together using backpropagation and labeled data, which is 

277 shown in (c).

278

279
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280

281 Denoising auto-encoder (DA):

282

283 A basic auto-encoder could successfully retain much of the information from the inputs in new 

284 features within the hidden layer. However, Vincent et al. (2010)[38] demonstrated that simply 

285 retaining information from the inputs does not guarantee that the extracted features are “good 

286 features”, which could achieve high-performance in supervised learning tasks. Denoising auto-

287 encoder has been proposed to overcome this challenge by generating a noisy representation 

288 based on the inputs, such as setting values to 0 for a small proportion of input nodes or adding a 

289 noise term with a Gaussian distribution, and then feeding the noisy term into the auto-encoder 

290 (Figure 9). With the introduction of the noise term to the original inputs, denoising auto-

291 encoders construct more robust feature representations and thereby could generalize better to 

292 unseen examples and datasets. 

293
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294

295 Figure 9: Illustration of a denoising auto-encoder. A denoising auto-encoder first transforms original inputs into 

296 noisy inputs. However, the loss in each step of the training process is still computed by the difference between the 

297 reconstructed representations in the output layer and the original inputs in the input layer.

298

299

300 Stacked denoising auto-encoder (SDAE):

301 A SDAE is a multi-layer auto-encoder, each hidden layer of which is a representation of the 

302 previous layer obtained by a denoising auto-encoder with one hidden layer. For example, when 

303 pre-train the 2 hidden layers  and  in Figure 8, one could add a noise term to the pre-training ℎ1 ℎ2

304 inputs  and to construct SDAE. Vincent et al. (2010)[38] showed that the features extracted 𝑋 ℎ1

305 by SDAE are stable and robust under noisy inputs, by achieving the best classification results 

306 under 9 out of 10 image databases. These features could efficiently capture useful information in 

307 the input distribution and have yield equivalent or better classification performance over most of 

308 the image data processing benchmarks.
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309 Table 1 summarizes the 5 auto-encoders described above.

310 Table 1. A summary of different auto-encoders

Method Description

Regular auto-encoder (AE) Find low-dimensional representation of input using 

an unsupervised approach (i.e., no outcome 

information is used)

Sparse AE Restrict the number of hidden nodes to be activated 

to avoid too many free nodes with complex 

dependencies in each layer

Stacked AE Each hidden layer is a low-dimensional 

representation of the previous layer obtained by AE

Denoising AE (DA) Introduce noises to input to make AE more robust to 

noises

Stacked denoising AE (SDAE) Combine stacked AE and DA (i.e., introduce noises to 

input in a stacked AE)

311

312

313

314

315 4. Deep Learning Applications in Disease Prediction

316

317 Previous Works of Disease Prediction in Genomic Data Analysis using non-deep learning 

318 approach:

319
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320 Plenty of methods have been proposed in disease prediction using genomic data (e.g., [39-44]). 

321 Due to the large number of predictors (i.e., gene probes), the main approach in disease 

322 detection/prediction is to first obtain a subset of gene probes (e.g., a few top gene probes in 

323 probe-wise tests) or a subset of representations of gene probes (e.g., a few top principal 

324 components), and then to predict disease status based on the selected probes or representations 

325 using machine learning algorithms. 

326

327 Furey et al. (2000)[39] used SVMs to classify cancer tissue samples using gene expression 

328 datasets. The study showed that SVMs are able to classify tissue and cell types based gene 

329 expression data and have similar performances to other machine learning methods. Khan et al. 

330 (2001)[40] was among the first to adopt basic ANNs (ANNs without hidden layers) to classify 

331 cancer samples and to identify relevant genes. In their study, the 10 top PCA components were 

332 used as inputs to the ANN to classify the small, round blue-cell tumors (SRBCT) to four distinct 

333 diagnostic categories. All 63 samples in the training set and all 25 samples in the independent 

334 testing set were correctly classified based on the 96 selected genes. Pal et al. (2007)[41] 

335 proposed to combine modified perceptron network and relational fuzzy clustering algorithms[45] 

336 to select a gene subset used for cancer subgroup classification. They applied their method to the 

337 SRBCT dataset analyzed by Khan et al. (2001)[40] and identified 7 genes that can accurately 

338 classify the samples in both training set and testing set. Chang et al. (2011)[42] used an ANN 

339 with one hidden layer coupled with an additive step-wise approach for predicting colorectal 

340 cancer (CRC) using microRNAs (miRNAs). Three miRNAs were identified with median 

341 accuracy 100% by using an extensive Monte Carlo cross-validation strategy. Sharma et al. 

342 (2012)[15] proposed a top-r feature selection technique that repeatedly divides and merge gene 
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343 expression data to select the gene subset minimizing the loss of information. The selected genes 

344 are then tested on three tumor datasets and achieved higher accuracies than other feature 

345 selection methods, such as probe-wise tests. Nanni et al. (2012)[43] examined the SVM 

346 classification performance using multiple feature reduction and data transformation approaches, 

347 including neighborhood preserving embedding, orthogonal wavelet coefficients, and texture 

348 descriptors. The study showed that a combination of different feature extraction methods could 

349 enhance genomic classification performance. For instance, the two combined methods achieved 

350 the highest average area under ROC curves (AUC = 92.18% for the WF method and 92.07% for 

351 the FUS method), while the AUC values for the 8 individual feature extraction methods were 

352 ranged from 79.24% to 91.85%. Jordan and Do (2018)[44] reviewed the studies that predict 

353 disease using full genomic information. Their review focused on polygenic risk scores (PRS), 

354 which is the most common method of integrating information from across the genome into a 

355 single estimate of genetic risk. A PRS is a weighted average of the genetic status at each 

356 associated risk locus. The weighting of each locus is usually the regression coefficient of GWAS 

357 association for the locus. Jordan and Do (2018) mentioned that the power of most PRSs to 

358 predict disease risk has been very low due to several reasons, such as small sample size, genetic 

359 ancestry, heterogeneity of risk factors and causation.

360

361 The main limitations of these previous works[13] include (1) ignoring potential non-linear 

362 relationships among the features; (2) ignoring the contribution of features with weak signals to 

363 distinguish diseases; and (3) over-simplifying the complex prediction problem, such as using 

364 single-layer ANNs.

365
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366 Deep Learning Applications in Disease Prediction

367

368 Through thorough literature search, we identified four papers[13, 31, 46, 47] published between 

369 January 2013 and December 2017, which applied deep learning methods in disease prediction 

370 using genomic data (Table 2). The details of the four studies will be discussed below. 

371

372 Fakoor et al. (2013)[13] is among the first to apply deep learning methods to extract key features 

373 from gene microarray data in predicting cancers. Fakoor et al. (2013)[13] first applied PCA to 

374 eliminate the effects of redundant and noisy dimensions, then applied three auto-encoders 

375 methods (a sparse auto-encoder with one hidden layer, a stacked auto-encoder with 2 hidden 

376 layers, and a stacked auto-encoder with fine tuning) to further extract non-linearly-correlated 

377 discriminating features based on the top principal components combined with some randomly 

378 selected original features, and finally used softmax regression to do classification based on the 

379 low-dimensional representations. Thirteen gene microarray datasets (the range of sample sizes is 

380 20 – 1,047; the range of the numbers of features is 2,000 – 54,613) were used to compare the 

381 performances of deep learning methods and two traditional prediction methods: Softmax based 

382 on the top principal components (PCA+Softmax) or SVM with Gaussian kernel based on the top 

383 principal components (PCA+SVM). Ten-fold cross-validation was applied to estimate the 

384 average and standard deviation of the prediction accuracies and compared the average ACCuracy 

385 (ACC) of the three deep-learning methods with the maximum of the accuracy of the two 

386 traditional methods. For 8 of the 13 genomic datasets, at least one of the three deep learning 

387 methods has significantly higher average accuracy than the maximum accuracy of PCA+Softmax 

388 and PCA+SVM. The median [min, max] increase of average ACC is 1.5% [0.7%, 8.3%]. The 
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389 sample sizes of the 8 datasets range from 20 to 1,047. However, stacked auto-encoder without 

390 fine-tuning usually had much worse accuracy than the traditional methods. The stacked auto-

391 encoder with fine-tuning achieved the best accuracy in six datasets with ACC ranging from 

392 76.67% to 95.15%, while the single-layer sparse auto-encoder perform the best in 5 datasets with 

393 ACC ranging from 46.76% to 91.50%. 

394

395 Tan et al. (2015)[31] used denoising auto-encoders to learn compact and efficient representations 

396 in predicting disease status. Tan et al. (2015)[31] used the Molecular Taxonomy of Breast 

397 Cancer International Consortium (METABRIC) cohort as the training set (1,424 samples) and 

398 the testing set (712 samples) and the cohort from The Cancer Genome Atlas (TCGA) as the 

399 independent evaluation set (547 samples). The DA used in Tan et al. (2015)[31] has four layers: 

400 an input layer, a corrupted input layer (i.e., noisy input layer), a hidden layer, and a reconstructed 

401 input layer. Each node in the hidden layer was used to predict disease status (e.g., tumor vs. non-

402 tumor, or ER+ vs. ER-) depending on whether the node value for a sample in the evaluation set is 

403 greater than the optimal threshold that was obtained based on the discovery set and testing set. 

404 Tan et al. (2015)[31] showed that each of the top three hidden nodes in the discovery set could 

405 also have high prediction accuracy (> 0.9) in the evaluation set when they used their method to 

406 predict tumor status (tumor sample vs. non-tumor sample). 

407

408 Danaee et al. (2016)[46] used SDAE to transform high dimensional, noisy RNA-seq gene 

409 expression data to lower dimensional, meaningful representations, based on which they applied 

410 different machine learning methods to classify breast cancer samples from the healthy control 

411 samples. They also identified a set of “Deeply Connected Genes” (DCGs) that have strongly 
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412 propagated influence on the reduced-dimension SDAE-encoding. Inspired by the classic study 

413 that applies SDAE to extract features in image data[38], Danaee et al. (2016)[46] built a SDAE 

414 model with four stacked layers of dimensions of 15,000, 10,000, 2,000, and 500, to obtain 

415 representations of genomic features to be fed into classifiers. A RNA-seq dataset (1,210 samples: 

416 1,097 breast cancer samples and 113 healthy samples) from TCGA is used to train and validate 

417 the model in the study. Danaee et al. (2016)[46] compared their prediction method with 

418 prediction methods based on PCA, Kernel PCA (KPCA, a non-linear PCA), the 206 

419 differentially expressed genes (DIFFEXP0.05) that were significant at an FDR of 0.05 in gene-

420 wised tests, and top 500 most significant differentially expressed genes (DIFFEXP500). Three 

421 classifiers, including a single-layer ANN, SVM, and SVM-RBF (SVM with a radial basis 

422 function kernel), were used to do the prediction based on extracted features. Like Tan et al. 

423 (2015)[31], Danaee et al. (2016)[46] used a training set and a testing set to train classifiers, and 

424 used a validation set to evaluate the performance of the prediction methods. The classification 

425 result shows that the low-dimensional representations by SDAE outperformed other four sets of 

426 extracted features. For example, SDAE+SVM-RBF had accuracy (98.26%), sensitivity 

427 (97.61%), specificity (99.11%), precision (99.17%), and F-score [48] (0.983). Furthermore, 

428 Danaee et al. (2016)[46] showed that DCGs had slightly lower prediction accuracy than SDAE-

429 extracted low-dimensional representations, but much higher prediction accuracy than the other 

430 methods.

431

432 Singh et al. (2016)[47] applied a stacked sparse auto-encoder (SSAE) to extract features to 

433 predict disease status for each of 36 datasets from the Gene Expression Machine Learning 

434 Repository (GEMLeR)[49]. The SSAE used by Singh et al. (2016)[47] has three hidden layers. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27123v1 | CC BY 4.0 Open Access | rec: 16 Aug 2018, publ: 16 Aug 2018



435 The input layer contains top 800 features selected based on Individual Training Error Reduction 

436 (ITER) ranking. The three hidden layers have 700, 600, and 500 nodes, respectively. The three 

437 classifiers, Softmax Regression, kernel SVM, and Random Forest, were applied to the 500 

438 extracted features to perform binary classification. Singh et al., (2016)[47] applied 10-cross-

439 validation to estimate the classification accuracy and area under the ROC curve (AUC). 

440 Compared with the benchmark classification results taken from the GEMLeR website[49], the 

441 deep learning approach achieved slightly higher performance: ACC > 90.8% for 35 datasets 

442 (ACC>83.7% for all 36 datasets), and AUC>90.2% for 34 datasets (AUC >79.6 for all 36 

443 datasets).  

444

445 Software packages for deep-learning-based feature extraction

446 Since deep learning algorithms usually are complicated, it is important to have open-source 

447 software packages available so that investigators can directly use these packages to their 

448 genomic data analysis. Both Tan et al. (2015)[31] and Danaee et al. (2016)[46] used Theano 

449 software that provides the implementation of auto-encoder algorithms. Fakoor et al. (2013)[13] 

450 and Singh et al. (2016)[47] did not mention the software packages that they used for auto-

451 encoding.

452

453 Several software packages/libraries are available to build auto-encoder models and fine-tune 

454 model parameters, such as Python packages (Scikit_learn, Theano, Keras, and TensorFlow) and 

455 R packages (h2o, kerasR, and autoencoder). Wikipedia provides a table of deep learning 

456 software (https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software).

457
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458 5. Discussion

459

460 In this article, we aimed to review all papers that applied the deep learning approach to predict 

461 disease status based on genomic data, which first obtains low-dimensional representations of 

462 high-dimensional genomic features, and then inputs these representations to the state-of-art 

463 classifiers that have excellent performance in low-dimensional classification problems. We 

464 found only 4 such papers, indicating that it is still in its infancy to predict disease status using 

465 deep learning on genomic data. However, the results of these 4 papers showed that the deep 

466 learning approach could extract useful genomic features from high-throughput whole genome 

467 data for prediction purpose with high accuracy. 

468

469 Compared with commonly-used dimension-reduction methods (such as PCA and probe-wise 

470 testing), the deep learning approach could have better performance in terms of a variety of 

471 accuracy measurements: accuracy, AUC, sensitivity, specificity, precision, and F-score. 

472 Especially, it is impressive that probe-wise testing, which is currently the most popular approach 

473 to identify disease-associated probes, performed poorly compared with PCA or auto-encoders 

474 [46]. However, whether the performance of the deep learning approach is significantly better 

475 than the commonly used approaches was not investigated in the 4 papers, among which only 

476 Fakoor et al. (2013)[13] provided standard errors for the estimated ACC. However, Fakoor et al. 

477 (2013)[13] neither provided some key details (e.g., the number of principal components used and 

478 the number of randomly selected raw features), nor provided p-values for testing if the mean 

479 ACC obtained using a deep learning approach is significantly better than that by using the PCA 

480 approach. Moreover, Fakoor et al. (2013)[13] showed that not all auto-encoders could 
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481 outperform PCA. For example, Table 2 of Fakoor et al. (2013)[13] showed that for the first 

482 dataset, mean ACC (standard error) is 74.36% (0.062%) by using PCA+sparse auto-encoder, 

483 51.35% (0.019%) by using PCA+stacked auto-encoder, while PCA approach had mean ACC 

484 94.04% (SE 0.03%), although PCA+stacked auto-encoder with fine tuning (95.15% (0.047%)) 

485 performed better than PCA.  

486

487 Different auto-encoders were used in the 4 papers, such as sparse auto-encoder, stacked auto-

488 encoder, stacked auto-encoder with fine-tuning, denoising auto-encoder, stacked denoising auto-

489 encoder, and stacked sparse auto-encoder. Except Fakoor et al. (2013)[13], the other three papers 

490 did not compare the auto-encoders used in the paper with other auto-encoders. Table 2 of Fakoor 

491 et al. (2013)[13] showed that PCA+stacked auto-encoder performed worse than PCA+sparse 

492 auto-encoder and PCA+stacked auto-encoder with fine-tuning in 12 of the 13 datasets. However, 

493 neither PCA+sparse auto-encoder nor PCA+stacked auto-encoder with fine-tuning could 

494 outperform each other in all 13 datasets. For a fair comparison, it could be beneficial for future 

495 studies to compare the deep learning methods mentioned above using the same datasets.

496

497 All four papers mentioned the number of hidden layers and the number of nodes in each hidden 

498 layer used for the auto-encoders. However, no justifications and guidance were given on why 

499 choosing those specific numbers of hidden layers and those specific numbers of nodes in each 

500 hidden layer. This is probably one of the main reasons why deep learning has not been widely 

501 used in the genomic research area. There are some existing methods to choose the number of 

502 layers and nodes, such as (1) starting from a small neural network and adding layers and nodes 

503 until the error stops decreasing, and (2) starting from a big neural network and remove layer and 
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504 nodes until the error increases significantly[50]. Optimization methods such as grid search and 

505 random search are also proposed and discussed[51] to optimize the parameters in model training. 

506 However, these methods are still not well studied in genomic data analysis and could not 

507 eliminate the risks of over-fitting and under-fitting. Future research is still needed in choosing 

508 and optimizing deep learning parameters, especially in genomic data analysis.

509

510 Another possible reason why deep learning has not been widely used in the genomic research 

511 area is the lack of software packages that implement deep learning algorithms for genomic data 

512 analysis. Many investigators in genomic research area use the R language and use packages in 

513 Bioconductor (a repository of R packages specifically for genomic data analysis). Although there 

514 are a couple of R packages, such as keras and kerasR, connecting R to the Keras deep learning 

515 library, there is lack of examples and tutorials on how to use them to analyze genomic data and 

516 to visualize the low-dimensional representations that are obtained by auto-encoders. 

517

518 It is a non-trivial task to interpret the low-dimensional representations (features) of the original 

519 expression data obtained by auto-encoders because the representations are non-linear functions 

520 of gene probes and the hidden layers in deep learning algorithms are like “black box”[52]. 

521 Among the 4 papers that we reviewed, Tan et al. (2015)[31] and Danaee et al. (2016)

522 [46] suggested interpreting the representations based on the probes having strongly propagated 

523 influence on the reduced-dimension auto-encoding. However, no details were given on how to 

524 select these probes, except that these probes have high edge weights. 

525
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526 To evaluate classification performance, several measurements were used in the four papers that 

527 we reviewed, including accuracy (ACC), area under the ROC curve (AUC), sensitivity, 

528 specificity, precision, and F-measure. When the dataset is imbalanced (i.e., number of 

529 cases/positive samples is much different from that of controls/negative samples), using ACC 

530 could be biased. For example, given a dataset with 99% true negative samples and 1% true 

531 positive samples, a classifier could achieve 99% ACC even if it wrongly classifies all the true 

532 positive samples to the negative group. Fakoor et al. (2013)[13] only used ACC as the 

533 performance metric, while several genomic datasets analyzed in Fakoor et al. (2013)[13] are 

534 imbalanced. Tan et al. (2015)[31] also only used ACC to evaluate the performances of different 

535 prediction methods, while both the training and testing datasets are highly imbalanced. For 

536 imbalanced data, other performance metrics can be used, such as AUC, F-measure, and G-

537 measure[48, 53], which are less sensitive to the case/control imbalance. 

538

539 Over-fitting is a big issue in prediction. Using the same data set to both train the prediction 

540 model and evaluate the performance of the prediction model usually causes over-estimation of 

541 the prediction accuracy. Ideally, a testing set from a population independent of the training 

542 population is required in evaluating prediction accuracy. However, genomic data are usually 

543 expensive to collect. Hence, it is usually hard to obtain independent testing set in genomic 

544 research. Thanks to the policy of the National Institute of Health of the United States, numerous 

545 genomic datasets are now publicly available in the Gene Expression Omnibus 

546 (https://www.ncbi.nlm.nih.gov/geo/), an online repository of genomic datasets. Other public 

547 genomic repositories are also available, such as TCGA (https://cancergenome.nih.gov) and 

548 GTEx (https://www.gtexportal.org/home/). Hence, nowadays it is relatively easy to obtain an 
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549 independent testing set for most of complex human diseases. Among the 4 papers that we 

550 reviewed, only Tan et al. (2015)[31] used an independent testing set. The other 3 papers used K-

551 fold cross-validation technique to alleviate the over-fitting issue. 

552

553 Genomic data usually contain technical noises, such as batch effects (large samples have to be 

554 handled in multiple batches due to capacity limits of machines). Several methods, such as 

555 ComBat[54], have been proposed to remove the effects of technical batches before downstream 

556 data analysis. We can apply ComBat to the training set and the testing set, separately. Suppose 

557 after removing technical noises we build and validate a prediction model based on the training 

558 set and the testing set, with excellent prediction accuracy. Now a new subject’s genomic data are 

559 obtained. Can we apply the prediction model to this new subject? The answer probably is “no”, 

560 since we do not know how to remove technical noises for only one new sample. One possible 

561 solution is to collect genomic data for a batch of subjects together. Then we can apply the 

562 prediction model to subjects in this batch after removing possible batch effects. A possiblely 

563 better solution is to improve the technology to reduce technical noises. With the advancements in 

564 sequencing technology and a rapid decline in sequencing costs, DNA sequencing has gained 

565 remarkable popularity among biomedical researchers. Compared to microarrays, DNA 

566 sequencing data is believed to deliver faster, more complete, and more scientifically accurate 

567 genomic analysis[55].

568  

569 The four deep-learning papers identified in this review compared the performances of deep 

570 learning approaches with PCA approach and probe-wise test approach. There are many more 
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571 advanced feature selection methods in the literature, such as the stable feature selection method 

572 [16] and the Boruta algorithm [17]. More comprehensive comparisons are warranted.

573

574 Recently, semi-supervised learning and reinforcement learning are receiving a lot of attention in 

575 image recognition, gaming, and robotics[56-58]. How to apply the frontier deep learning 

576 innovations to genomic data analysis could be an interesting future research topic[59]. 

577

578 6. Conclusion.

579 In summary, this review showed that applying deep learning to find a low-dimensional 

580 representation for high-throughput genomic data is a promising future trend in disease prediction 

581 based on high-dimensional genomic data. The low-dimensional representation obtained by deep 

582 learning could capture both linear and non-linear relationship among the probes. Deep learning is 

583 a new technology for most scientists in genetics. Scientists in genetics should collaborate to 

584 understand how deep learning could help predict disease status using genomic data, hence to 

585 move this field forward. 

586

587

588 Table 2. Summary of the four studies that applied deep learning to predict disease status in the genomic research

Author/Year Datasets

Total 

Number of 

Samples

Feature 

Extraction

Method

Classifier

Using cross-

validation 

or not

Performance 

based on 

deep 

learning

Traditional 

Methods 

compared 

with

Fakoor:2013

gene 

expression 

data from 13 

datasets

Various 

number of 

samples (20 -

1047) and 

PCA+Sparse 

Auto-encoder

PCA+Stacked 

Softmax 

regression

10-fold 

cross-

validation to 

evaluate 

ACC+/- 

standard 

error: 

(33.7%+/-

Dimensional 

Reduction:

PCA
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various 

number of 

features 

(2000 – 

54675) 

across 13 

datasets

Auto-encoder

PCA+Stacked 

Auto-encoder 

with Fine-

tuning

SVM with 

Gaussian 

kernel

classification 

performance

0.038%) – 

(97.5%+/-

0.079%)

Classifier:

Softmax 

regression

SVM

Tan:2015

Training:

A gene 

expression 

dataset from 

METABRIC 

(Illumina 

HT-12 v3 

platform)

Independent 

Testing:

A gene 

expression 

dataset from 

TCGA

METABRIC: 

2136 

samples 

(1992 breast 

cancer 

specimens 

and 144 

tumor-

adjacent 

normal 

tissues); 

2520 genes 

after data 

cleaning

TCGA:547 

samples (522 

primary 

tumors, 3 

metastatic 

tumors, and 

22 tumor-

adjacent 

normal 

samples); 

2520 genes 

after data 

cleaning

Denoising 

Auto-encoder 

(DA)

Sigmoid 

Activation

10-fold 

cross-

validation to 

determine 

the 

appropriate 

parameter 

setting for 

the training 

set

ACC in 

testing set: 

75.0%-99.6%

N/A
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Danaee:2016

An RNA-

seq 

expression 

dataset from

TCGA

1210 

samples 

(1097 breast 

cancer 

samples and 

113 healthy 

samples)

Stacked 

Denoising 

Auto-

encoder(SDAE)

ANN

SVM

SVM-RBF

5-fold cross-

validation to 

evaluate 

classification 

performance

ACC:

96.95%-

98.26%

Sensitivity: 

97.21%-

98.73%

Specificity: 

95.29%-

99.11%

Precision: 

95.42%-

99.17% 

F-measure 

0.970-0.983

PCA

KPCA

Differentially 

Expressed 

Genes

Singh: 2016

36 gene 

microarray 

datasets 

from 

GEMLeR  

(Affymetrix 

GeneChip 

U133 Plus 

2.0 arrays)

1545 

samples (9 

cancers, no 

control 

samples);

54676 

features

Stacked Sparse 

Auto-

encoder(SSAE)

Softmax 

Regression

Random 

Forest

Linear 

SVM

RBF SVM

10-fold 

cross-

validation to 

evaluate 

classification 

performance

AUC: 80%-

100%

ACC: 76%-

100%

KNN;

SVM-RFE

589

590

591

592
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