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Abstract Tags are evolvable labels that provide genetic programs a flexible mech-
anism for specification. Tags are used to label and refer to programmatic elements,
such as functions or jump targets. However, tags differ from traditional, more rigid
methods for handling labeling because they allow for inexact references; that is, a
referring tag need not exactly match its referent. Here, we explore how adjusting
the threshold for how what qualifies as a match affects adaptive evolution. Further,
we propose broadened applications of tags in the context of a genetic program-
ming (GP) technique called SignalGP. SignalGP gives evolution direct access to the
event-driven paradigm. Program modules in SignalGP are tagged and can be trig-
gered by signals (with matching tags) from the environment, from other agents, or
due to internal regulation. Specifically, we propose to extend this tag based system
to: (1) provide more fine-grained control over module execution and regulation (e.g.,
promotion and repression) akin to natural gene regulatory networks, (2) employ a
mosaic of GP representations within a single program, and (3) facilitate major evo-
lutionary transitions in individuality (i.e., allow hierarchical program organization
to evolve de novo).
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1 Introduction

In Genetic Programming Theory and Practice IX, Spector et al. (2011a) explored
the use of tag-based naming in evolving modular programs. In this chapter, we con-
tinue exploring tag-based naming with SignalGP (Lalejini and Ofria, 2018); we in-
vestigate the importance of inexactness when making tag-based references: How
important is imprecision when calling an evolvable name? Additionally, we discuss
possible broadened applications of tag-based naming in the context of SignalGP.

What’s in an evolved name? How should modules (e.g., functions, sub-routines,
data-objects, etc.) be referenced in evolving programs? In traditional software de-
velopment, the programmer hand-labels modules and subsequently refers to them
using their assigned label. This technique for referencing modules is intentionally
rigid, requiring programmers to precisely name the module they aim to reference;
imprecision often results in syntactic incorrectness. Requiring evolving programs
to follow traditional approaches to module referencing is not ideal: mutation op-
erators must do extra work to guarantee label-correctness, else mutated programs
are likely to make use of undefined labels, resulting in syntactic invalidity (Spec-
tor et al., 2011a). Instead, is genetic programming (GP) better off relying on more
flexible, less exacting referencing schemes?

Inspired by John Holland’s use of “tags” (Holland, 1987, 1990, 1993, 2006) as
a mechanism for matching, binding, and aggregation, Spector et al. (Spector et al.,
2011b,a, 2012) introduced and demonstrated a tag-based naming scheme for GP
where tags are used to name and reference program modules. Tags are evolvable
labels that are mutable, and the similarity (or dissimilarity) between any two pos-
sible tags is quantifiable. Tags allow for inexact referencing. Because the similarity
between tags can be calculated, a referring tag can always link to the program mod-
ule with the most similar tag; further, this ensures that all possible tags are valid
references. Because tags are mutable, evolution can incrementally shape tag-based
references within evolving code. Spector et al. demonstrated the value of an evolv-
able name, showing that the tag-based naming scheme supports the evolution of
programs with complex, modular architectures by allowing programs to more eas-
ily reference and make use of program modules (Spector et al., 2011a).

We previously extended Spector et al.’s tag-based naming scheme, broadening
the application of tags to develop SignalGP (Lalejini and Ofria, 2018), a GP tech-
nique designed to provide direct access to the event-driven programming paradigm.
In Spector et al.’s original implementation (Spector et al., 2011b), tags were used
as an evolvable mechanism to label and later refer to code fragments. At there core,
tags provide general-purpose, evolvable specificity — an evolvable way to spec-
ify zero or more tagged entities. SignalGP broadens the application of tags, using
them to specify the relationships between events and event handlers (i.e., program
modules that process events). However, the application of tag-based naming can be
further broadened. For example, tag-based naming could be used to label and refer
to particular instructions, other agents, or other virtual hardware components (e.g.,
registers, locations in memory, etc.). In this broader context, tags are still mutable la-
bels with well-defined tag-tag similarity measures, allowing for inexact referencing.
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The context of a referring tag can limit the valid set of tagged entities with which it
can match. For example, in the context of a function call, a referring tag might only
match to function tags, whereas in the context of a memory access, a referring tag
might only match to a tagged location in memory.

In this chapter, we investigate the importance of inexactness when making tag-
based references, and we propose possible extensions to SignalGP that use broader
applications of tag-based naming. In Section 2, we give a brief overview of Sig-
nalGP. In Section 3, we use an environment coordination toy problem to investigate
the effectiveness of different thresholds of allowed imprecision when performing
tag-based referencing. We compare the fitness effects of requiring different levels of
tag similarity when matching referring tags to referents, ranging from requiring ex-
act matches between tags for a successful reference to placing no restrictions on tag
similarity for a successful reference. We find that, indeed, allowing for some inex-
actness when performing tag-based referencing is crucial. In Section 4, we demon-
strate that requiring a minimum threshold of similarity for tags to match is important
when programs must evolve to ignore irrelevant or misleading environmental sig-
nals. In addition to providing access to the event-driven programming paradigm, the
way SignalGP programs are organized is well-suited for several interesting exten-
sions. In Section 5, we speculate on several possibilities for how SignalGP can be
extended to support module regulation, multi-representation programs, and major
transitions in individuality.

2 SignalGP

SignalGP defines a way of organizing and interpreting genetic programs to provide
computational evolution direct access to the event-driven programming paradigm.
The event-driven programming paradigm is a software-design philosophy where
software development focuses on the processing of events (often in the form of
messages from other processes, sensor alerts, or user actions) (Cassandras, 2014;
Etzion and Niblett, 2010; Heemels et al., 2012). Events are processed by segments
of code called event handlers. In traditional event-driven programming, some identi-
fying characteristic associated with the event (e.g., its name or type) determines the
most appropriate event handler to trigger for processing the event, and the program-
mer is responsible for labeling event handlers such that they process the appropriate
types of events. Software development environments that support the event-driven
paradigm often abstract away the logistics of monitoring for events and triggering
event handlers. This technique simplifies the code that must be designed and imple-
mented by the programmer in domains that require on-the-fly reactions to signals
from the environment or other agents.

SignalGP provides similarly useful abstractions to evolving programs. In Sig-
nalGP, signals (events) trigger the execution of program modules (functions) to re-
spond to those signals. SignalGP applies tag-based referencing techniques to specify
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which function is triggered by each signal, allowing the relationships between sig-
nals and functions to evolve over time.

Here, we give a general overview of SignalGP in the context of linear GP,
wherein programs are represented as sequences of instructions; however, the under-
lying organization and interpretation of SignalGP programs is generalizable across
a variety of evolvable representations of computation (see Section 5.2). Figure 1 is
provided to visually guide our discussion of SignalGP. A more detailed discussion
can be found in (Lalejini and Ofria, 2018).

Functions have two components:
  1) a tag (bit string)

  2) a linear sequence of instructions

Events have two components:

  2) data

  1) a tag (bit string) [tag]
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Fig. 1 A high-level overview of SignalGP. Programs are defined by a set of functions. Events
trigger functions with the most similar tag, allowing programs to respond to signals. SignalGP
agents handle many signals simultaneously by processing them in parallel.

SignalGP programs (agents) are explicitly modular, composed of a set of func-
tions, each of which associates a tag with a linear sequence of instructions. SignalGP
makes explicit the concept of events. Each event is associated with a tag (indicating
the event type) as well as additional event-specific data. In our work, we represent
tags as fixed-length bit strings where tag similarity is quantified as the proportion of
matching bits between two tags (simple matching coefficient). Because both events
and functions are tagged, SignalGP uses tag-based referencing to determine the most
appropriate function to process an event: events trigger the function with the clos-
est matching tag as long as its within a fixed threshold. When an event triggers a
function, the function is run with the event’s associated data as input. In this way,
functions act as event handlers, and tag-based referencing is used as an evolvable
mechanism to determine the most appropriate function to trigger in response to an
event. SignalGP agents handle many events simultaneously by processing them in
parallel. Events may be generated internally, by the environment, or by other agents,
making SignalGP particularly well-suited for domains that require programs to re-
spond quickly to their environment or other agents.

The underlying instruction set is crafted to allow programs to easily trigger inter-
nal events, broadcast external events, and to otherwise work in a tag-based context.
In our implementation of SignalGP, instructions are argument based, and as in tra-
ditional linear GP representations, arguments modify the effect of an instruction,
often specifying memory locations or fixed values. In addition to evolvable argu-
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ments, each instruction has an evolvable tag, which may also modify the effect of
an instruction. For example, instructions that refer to functions do so using tag-based
referencing, and when an instruction generates an event (e.g., to be used internally
or broadcast to other agents), the instruction’s tag is used as the event’s tag. The set
of SignalGP instructions used in this work are documented in our supplemental ma-
terial, which can be accessed via GitHub at https://github.com/amlalejini/
GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP (Lalejini, 2018).

In Spector et al.’s original conception of tag-based referencing, as long as a pro-
gram had at least one tagged module, all referential tags could successfully ref-
erence something (Spector et al., 2011b). The tag-based referencing employed by
SignalGP, however, can be configured to only match tags whose similarity exceeds
a threshold, allowing programs to ignore events by avoiding the use of similar tags.
This similarity threshold allows us to adjust the degree of exactness required for
tag-based references to succeed.

3 The Value of Imprecision in Evolvable Names

How important is imprecision when calling an evolvable name? Tag-based refer-
encing has built-in flexibility, not requiring tags to exactly match to successfully
reference one another. In Spector et al.’s initial implementation of tag-based refer-
encing (Spector et al., 2011b), referring tags always matched to the most similar
receptor tag. Spector et al. speculated that tag-based referencing performed well be-
cause of this inexactness: any tag-based reference is able to find a referent as long
as one exists. We can, however, imagine different degrees of allowed imprecision
when performing tag-based referencing, ranging from only identical tags being al-
lowed to reference one another, to any two tags being allowed to match as long as
they are the most similar pair. Indeed, any minimal level of tag-similarity for suc-
cessful referencing can be imposed (e.g., requiring tags to be at least 50% similar
before they can be considered as the best match).

Here, we explore the importance of imprecision in tag-based referencing using
SignalGP. We evolve SignalGP agents to solve an environment coordination prob-
lem under a range of similarity thresholds, spanning from 0% (no similarity require-
ment) to 100% (requiring perfect matches).

3.1 The Changing Environment Problem

The changing environment problem is a toy problem that we designed to test GP
programs’ capacity to respond appropriately to environmental signals. We have pre-
viously used this problem to demonstrate the value of the event-driven paradigm
using SignalGP (Lalejini and Ofria, 2018).
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The changing environment problem requires agents to continually match their
internal state with the current state of a stochastically changing environment. The
environment is initialized to a random state, and at every subsequent time step, the
environment has a 12.5% chance of randomly changing to any of 16 possible states.
To be successful, agents must monitor the environment for changes, adjusting their
internal state as appropriate.

Environmental changes produce signals (events) with environment-specific tags
that will trigger an appropriate SignalGP function; in this way, SignalGP agents can
respond to environmental changes. Each of the 16 environment states is associated
with a distinct tag that is randomly generated at the beginning of a run. Agents adjust
their internal state by executing one of 16 state-altering instructions (one for each
possible environmental state). Thus, the optimal solution to this problem is a 16-
function program where each function is triggered by a different environment sig-
nal, and functions, when triggered, adjust the agent’s internal state appropriately. An
example solution to the changing environment problem is documented in our sup-
plemental material, which can be accessed via GitHub at https://github.com/
amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP

(Lalejini, 2018).
To explore the value of imprecision in tag-based referencing, we evolved 30 repli-

cate populations of SignalGP agents under nine treatments, each requiring a differ-
ent similarity threshold for events to trigger functions: 0%, 12.5%, 25%, 37.5%,
50%, 62.5%, 75%, 87.5%, and 100%. Note that when performing a tag-based refer-
ence, if the closest matching tag is not greater than or equal to the required similarity
threshold, the reference fails.

3.1.1 Hypothesis

A 100% similarity threshold is equivalent to exact-name referencing; thus, we ex-
pected it to perform poorly. A 0% similarity threshold is equivalent to what Spector
et al. (2011b) used in their original demonstration of tag-based referencing; thus, we
expected to it perform well. However, are intermediate thresholds just as effective?
They provide varying degrees of allowed imprecisions while allowing programs to
passively ignore some incoming signals. In prior work using SignalGP (Lalejini and
Ofria, 2018), a 50% similarity threshold performed well on the changing environ-
ment problem; thus, we expected treatments with intermediate thresholds to perform
better than runs requiring exact tag-matching for references to succeed.

3.1.2 Experimental Parameters

For each treatment, we evolved 30 replicate populations of 1,000 agents for 10,000
generations, starting from a simple ancestor program consisting of a single func-
tion with eight no-operation instructions. We initialized all replicates with a unique
random number seed. Each generation, we evaluated all agents in the population
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three times (three trials). Each trial was composed of 256 time steps, and an agent’s
score for a single trial was equal to the number of time steps the agent’s internal
state matched the environment state. Thus, possible scores ranged from 0 to 256.
An agent’s fitness was the minimum score achieved after three trials, thus selecting
agents that performed consistently. We used a combination of elite and tournament
(size four) selection to determine which agents reproduced asexually each genera-
tion.

Offspring were mutated using SignalGP-aware mutation operators. We used
whole-function duplication and deletion operators, applied at a per-function rate
of 0.05; these operators allowed evolution to tune the number of functions in a
SignalGP program. We mutated instruction- and function-tags at a per-bit muta-
tion rate of 0.005. We applied instruction and argument substitutions at a per-
instruction/argument rate of 0.005. We applied single-instruction insertion and dele-
tion operators at a per-instruction rate of 0.005; when a single-instruction insertion
occurred, we inserted a random instruction with random arguments and a random
tag. In addition to single-instruction insertions and deletions, instruction sequences
could be inserted or removed via slip-mutation operators (Lalejini et al., 2017).
When triggered, slip-mutations can either duplicate or delete multi-instruction se-
quences within a function. We applied slip-mutations at a per-function rate of 0.05.

Agents were limited to a maximum of 16 total functions, each of which were
limited to a maximum length of 32 instructions. Agents were limited to a maximum
of 32 parallel-executing threads. Agents were further limited to 128 call states per
call stack. All tags were represented as length-16 bit strings.

3.1.3 Data Analysis

We analyzed evolving populations at two time points during the evolutionary pro-
cess: generation 1,000 and generation 10,000. For every population analyzed, we
extracted the best-performing program and evaluated it 100 times (to account for
environmental stochasticity), using its average performance as its representative fit-
ness. For each time point (generation 1,000 and 10,000) analyzed, we compared
the performances of evolved programs across treatments. To determine if any of the
treatments were significant (p < 0.05) within a set, we performed a Kruskal-Wallis
test. For a time point in which the Kruskal-Wallis test was significant, we performed
a post-hoc pairwise Wilcoxon rank-sum test, applying a Bonferroni correction for
multiple comparisons. All statistical analyses were conducted in R 3.3.2 (R Core
Team, 2016).

All visualizations of our results were generated using the seaborn Python library
(Waskom et al., 2017). The code to run our experiments, perform statistical analyses,
and generate visualizations is publicly available on Github (Lalejini, 2018).
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3.2 Results and Discussion

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%100.0%

(A) Generation 1,000

0

50

100

150

200

250

Fi
tn

es
s

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%100.0%

(B) Generation 10,000

Fig. 2 Changing environment problem results at: (A) generation 1,000 and (B) generation
10,000. The box plots indicate the fitnesses (each an average over 100 trials) of the best performing
programs from each replicate across a range of minimum similarity thresholds.

Table 1 Pairwise Wilcoxon rank-sum test results for the changing environment problem at
generation 1,000 and generation 10,000. Each row/column corresponds to a tag similarity thresh-
old treatment. Each entry in the table indicates the Bonferroni-adjusted p value for a given compar-
ison between two treatments. Statistically significant relationships (p < 0.05) are bolded. ‘NONE’
indicates that two treatments have identical distributions of data. Results for generatoion 1,000 are
in red, below the table’s diagonal (in black). Results for generation 10,000 are in yellow, above the
table’s diagonal.
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Figure 2 gives the results for the changing environment problem early during our
experiment (generation 1,000) and at the end of our experiment (generation 10,000).
At both generation 1,000 and generation 10,000, programs evolved under different
similarity thresholds had significantly different performance (Gen. 1,000: Kruskal-
Wallis test, Chi-squared = 161.27, p < 2.2e-16; Gen. 10,000: Kruskal-Wallis test,
Chi-squared = 221.72, p < 2.2e-16). Table 1 gives the results of a post-hoc pair-
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wise Wilcoxon rank-sum test for our results at both generation 1,000 and generation
10,000.

At generation 1,000, programs evolved in the 87.5% and 100.0% similarity
threshold treatments perform significantly worse than programs evolved in treat-
ments with lower similarity thresholds. After 10,000 generations of evolution, pro-
grams evolved in the 87.5% and 100.0% similarity threshold treatments still perform
significantly worse than those evolved in treatments with lower similarity thresh-
olds. However, by 10,000 generations, some replicates evolved under the 87.5%
similarity threshold treatment were able to produce optimal programs. No optimal
programs evolved in the 100.0% similarity threshold treatment (exact name match-
ing). Fully detailed statistical results can be found in our supplemental material
(Lalejini, 2018).

Allowing for some imprecision is crucial when calling a tag-based name.
Because we limited agents to a maximum of 16 total functions, optimally solving the
16-state changing environment problem required programs to dedicate each of their
16 possible functions to responding to a particular environment state. Each function
must be tagged such that only a single environment state change could trigger it, and
when triggered, the function must immediately update the agent’s internal state ap-
propriately. If exact tag-matching (100% similarity threshold) is required for events
to trigger functions, each function’s tag must evolve to match a single environment
state tag bit-for-bit. As expected, our results demonstrate that requiring tags to ex-
actly match for successful references impedes evolution: after 10,000 generations,
no optimal programs evolved under the 100.0% similarity threshold treatment.

In treatments that allow for inexactness when performing tag-based referencing,
each function’s tag must evolve to closely match (above a given similarity threshold)
a single environment state; higher minimum required similarity thresholds require
evolution to more precisely tune function tags. As demonstrated by the 87.5% simi-
larity threshold treatment, requiring exceedingly high levels of precision can impede
evolutionary adaptation.

By 10,000 generations, there was no significant difference in program perfor-
mance among all treatments with similarity thresholds lower than 87.5%. While al-
lowing for inexactness in tag-based referencing is crucial for evolving programs to
solve the changing environment problem, intermediate levels of required precision
(12.5%, 25.0%, 37.5%, 50.0%, 62.5%, and 75.0% similarity thresholds) proved just
as effective as not imposing any tag similarity constraints (0.0% similarity thresh-
old).

3.2.1 Illuminating solution space with MAP-Elites

We use the MAP-Elites (Mouret and Clune, 2015) evolutionary algorithm to further
illuminate the importance of inexactness when using tag-based naming schemes. In
MAP-Elites, a population is structured based on a set of chosen traits of evolving
solutions. Each chosen trait defines an axis on a grid of cells where each cell repre-
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sents a distinct combination of the chosen traits; further, each cell maintains only the
most fit (elite) solution discovered with the cell’s associated combination of traits.
A MAP-Elites grid is initialized by randomly generating solutions and placing them
into their appropriate cell in the grid (based on the random solution’s traits). After
initialization, occupied cells are randomly selected to reproduce. When a solution is
selected for reproduction, we generate a mutated offspring and determine where that
offspring belongs in the grid. If the cell is unoccupied, the new solution is placed in
that cell; otherwise, we compare the new solution’s fitness to the current occupant,
keeping the fitter of the two. Over time, this process produces a grid of prospective
solutions that span the range of traits we used to define our grid axes.

Dolson et al. extended the use of MAP-Elites to examine GP representations
(Dolson et al., 2018). By selecing MAP-Elites grid axes that correspond to program
architecture, we can get a snapshot of what types of programs are capable of suc-
ceeding at a task and what tradeoffs might exist between the chosen traits. We use
this approach to explore the role of inexactness in SignalGP: we apply the MAP-
Elites algorithm to the changing environment problem, using minimum similarity
threshold for tag-based referencing and the number of unique functions used by a
program during evaluation to define our MAP-Elites grid axes. In our more tradi-
tional evolution experiment, we locked in the minimum required similarity threshold
for each treatment. In our MAP-Elites analysis, we allow the minimum similarity
threshold for a program to evolve between 0.0% and 100.0%. Further, we increased
the allowed number of functions in a program from 16 to 32.

We initialized our MAP-Elites grid with 1,000 randomly generated SignalGP
programs. We ran the MAP-Elites algorithm for 100,000 generations where each
generation represents 1,000 reproduction events. We ran 50 replicate MAP-Elites
runs, giving us 50 grids of diverse solutions for the changing environment problem.
At the end of each run, we filtered out any program unable to solve the problem
perfectly in each of our 50 runs. The heat map in Figure 3 shows the density of
optimal programs (aggregated across runs) within our chosen trait space.

From Figure 3, we can see that all optimal programs use 16 or more functions.
This is not surprising, as the changing environment problem cannot be optimally
solved with fewer than 16 functions. The highest similarity threshold among all
evolved solutions represented in Figure 3 was 87.4657%, supporting the idea that
requiring too much precision when performing tag-based referencing can impede
evolution.

4 The Value of Not Listening

What’s the value of ignoring signals in the environment? In some problem domains,
the capacity to completely ignore distracting, irrelevant, or misleading signals while
monitoring for others is crucial. For example, selective attention at a crowded restau-
rant allows us to ignore background noise and pay attention to a single conversion.
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Fig. 3 Heat map of SignalGP programs evolved to solve the changing environment problem
using MAP-Elites. Locations in the heat map correspond to distinct combinations of the following
two program traits: the number of unique functions used by a program during evaluation and the
program’s minimum tag similarity threshold. Darker areas of the heat map indicate a higher density
of perfect solutions found with a particular trait combination.

Here, we incorporate misleading distraction signals into the changing environ-
ment problem to demonstrate the value of ignoring signals in the context of Sig-
nalGP. In SignalGP, a 0% similarity threshold for tag-based references prevents
agents from passively ignoring signals (events) in the environment. SignalGP pro-
grams can still be organized to actively ignore signals by having appropriately
tagged, ineffectual functions to consume signals or by filtering signals based on
event-specific data. In SignalGP, a 100% similarity threshold for tag-based refer-
ences causes SignalGP programs to ignore any event whose tag is not an exact
match with one of the agent’s function tags, which we have shown to impede evolu-
tion (Section 3). Intermediate similarity thresholds, however, allow SignalGP agents
to passively ignore signals in the environment without impeding adaptive evolution.
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We explore the value of allowing varying degrees of passive signal-discrimination
via different similarity thresholds in SignalGP using the distracting environment
problem.

4.1 The Distracting Environment Problem

The distracting environment problem is identical to the changing environment prob-
lem (described in Section 3.1) but with the addition of randomly occurring distrac-
tion signals. Like the changing environment problem, the environment can be in
one of 16 states at any time with a 12.5% chance to change each update. Every time
step there is also a 12.5% chance of a distraction event occurring, independent of
environmental changes. Just as we randomly generate 16 distinct tags associated
with each of the 16 environment states, we also generate 16 distinct distraction sig-
nal tags, which are guaranteed to not be identical to environment-state tags. Thus,
to be successful, agents must monitor the environment for changes (adjusting their
internal state as appropriate) while ignoring misleading distraction signals.

We repeated the experiment described in Section 3 with identical experimental
treatments and parameters, but in the context of the distracting environment problem
instead of the changing environment problem.

4.1.1 Hypothesis

As in the changing environment problem, optimal performance in the distracting
environment problem requires 16 functions, each tagged such that it is triggered by
a single environment-state signal; once triggered, a function must adjust the agent’s
internal state appropriately. However, the distracting environment problem also re-
quires agents to ignore distraction signals. If a distraction signal is able to trigger a
function, the agent cannot reliably maintain an internal state that matches the current
environment state. Given that agents must dedicate 16 functions to adjusting inter-
nal state in response to environmental changes, they must be able to passively ignore
distraction signals to avoid triggering an erroneous internal state. As such, the 0%
similarity threshold treatment cannot produce optimally-performing programs. Fur-
ther, intermediate similarity thresholds must be high enough to allow agents to pas-
sively discriminate between distraction signals and environmental changes. We ex-
pect treatments with higher intermediate similarity thresholds to be able to achieve
optimality.

4.1.2 Statistical Methods

Our statistical methods for analyzing these data are identical to those described in
Section 3.1.3.
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4.2 Results and Discussion
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Fig. 4 Distracting environment problem results at: (A) generation 1,000 and (B) generation
10,000. The box plots indicate the fitnesses (each an average over 100 trials) of the best performing
programs from each replicate across a range of minimum similarity thresholds.

Table 2 Pairwise Wilcoxon rank-sum test results for the distracting environment problem
at generation 1,000 and generation 10,000. Each row/column corresponds to a tag similarity
threshold treatment. Each entry in the table indicates the Bonferroni-adjusted p value for a given
comparison between two treatments. Statistically significant relationships (p < 0.05) are bolded.
Results for generation 1,000 are in red, below the table’s diagonal (in black). Results for generation
10,000 are in yellow, above the table’s diagonal.
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Figure 4 gives the results for the distracting environment problem early during
our experiment (generation 1,000) and at the end of our experiment (generation
10,000). At both generation 1,000 and generation 10,000, programs evolved under
different similarity thresholds had significantly different performance (Gen. 1,000:
Kruskal-Wallis, Chi-squared = 144.3, p < 2.2e-16; Gen. 10,000: Kruskal-Wallis,
Chi-squared = 193, p < 2.2e-16). Table 2 gives the results of a post-hoc pairwise
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Wilcoxon rank-sum test for our results at both generation 1,000 and generation
10,000.

As in the changing environment problem, runs requiring exact name matching
(the 100% tag similarity threshold treatment) produce programs that perform sig-
nificantly worse than those evolved in all other treatments. At generations 1,000
and 10,000, programs evolved in the 75% tag similarity threshold treatment signifi-
cantly outperform programs evolved in all other treatments. By 10,000 generations,
only the 75% and 87.5% tag similarity threshold treatments produced perfectly op-
timal programs. Fully detailed statistical results can be found in our supplemental
material, which can be accessed via GitHub (Lalejini, 2018).

Requiring some precision when calling a tag-based name can be important, too.
These data are not surprising: we designed the distracting environment problem as
a toy problem to demonstrate the idea that sometimes requiring some amount of
precision when using tag-based referencing can be important. Because we limited
programs to 16 functions and all 16 functions were required to monitor for envi-
ronment changes, solving the distracting environment problem required programs
to have the capacity to discriminate between true, meaningful signals and irrele-
vant, meaningless signals. However, even in this case where signal discrimination
was crucial, requiring exact tag-matching for signals to successfully trigger program
functions was still too harsh a requirement for well-performing programs to evolve.

For both the changing environment and distracting environment problems, the
75% tag similarity threshold treatments produced optimally performing programs,
allowing for sufficient signal discrimination in the distracting environment problem
while not too badly impeding evolution’s ability to bootstrap program responses to
true signals. However, these data do not necessarily imply anything general about a
75% tag similarity threshold. The critical tag similarity threshold for the distracting
environment problem depends on the number of distraction signals that must be
ignored versus the number of true signals the programs must respond to, the number
of bits composing a tag (here, we used 16), as well as the number of functions
SignalGP programs are allowed to have.

4.2.1 Illuminating solution space with MAP-Elites

As we did for the changing environment problem, we again use the MAP-Elites
evolutionary algorithm (Mouret and Clune, 2015) to illuminate the solution space
for the distracting environment problem. We apply MAP-Elites to the distracting
environment problem exactly as described in Section 3.2.1, using minimum tag sim-
ilarity threshold for tag-based referencing and the number of unique functions used
during program evaluation as our MAP-Elites grid axes. The heat map in Figure 5
shows the density of optimal programs evolved using MAP-Elites within our chosen
trait space.

Figure 5 confirms our intuition about the solution space in the distracting en-
vironment problem, showing that many strategies with a wide range of minimum
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Fig. 5 Heat map of SignalGP programs evolved to solve the distracting environment problem
using MAP-Elites. Locations in the heat map correspond to distinct combinations of the following
two program traits: the number of unique functions used by a program during evaluation and the
program’s minimum tag similarity threshold. Darker areas of the heat map indicate a higher density
of solutions found with a particular trait combination.

tag similarity thresholds exist that use around 32 functions where extra ’dummy’
functions can consume distraction signals. Indeed, there are optimal solutions that
use only 16 functions; however, these solutions seem require high minimum tag
similarity thresholds.
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5 What else is in an evolved name? Broadened applications of
tag-based naming in SignalGP

Thus far, we have explored the importance of inexactness in evolvable names in the
context of SignalGP. In this section, we discuss several extensions to the SignalGP
framework that are possible because of the evolvable specificity afforded by its tag-
based naming scheme.

5.1 SignalGP Function Regulation

Bringing together ideas from GP and gene regulatory networks is not novel (Banzhaf,
2003; Lopes and Costa, 2013). The capacity to regulate genotypic expression is
valuable in both biological and computational systems, allowing environmental
feedback to alter phenotypic traits within an individual’s lifetime.

SignalGP is easily extended to model gene regulatory networks where functions
can be up-regulated (i.e., be made more likely to be referenced by a tag) or down-
regulated (i.e., be made less likely to be referenced by a tag). For example, a function
that would normally not be triggered by an event can be up-regulated to increase its
priority over other function that have closer match. We can add regulatory instruc-
tions to the instruction set that increase or decrease function regulatory modifiers,
using tag-based referencing to determine which function should be regulated by a
particular instruction.

Gene regulation provides yet another mechanism for phenotypic flexibility, al-
lowing SignalGP programs to alter referential relationships in response to envi-
ronmental feedback. Such a mechanism might be useful for problems that require
within-lifetime learning or general behavioral plasticity.

5.2 Multi-representation SignalGP

In this work and in prior work, we have exclusively used SignalGP in the context of
linear GP: SignalGP functions associate a tag with a linear sequence of instructions.
However, in principle, SignalGP is generalizable across a variety of evolutionary
computation representations.

SignalGP programs are composed of a set of functions where each function is
referred to via its tag. We can imagine these functions to be black-box input-output
machines: when called or triggered by an event, they are run with input and can pro-
duce output by manipulating memory or by generating signals. We have exclusively
used linear GP in SignalGP functions; however, we could have just as easily used
other types of representations capable of receiving input and producing output (e.g.,
other GP representations, artificial neural networks, Markov Brains (Hintze et al.,
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2017), hard-coded modules, etc.). We could even employ a variety of representa-
tions within a single agent.

The evolvable specificity afforded by SignalGP’s tag-based naming scheme al-
lows us to use this sort of black-box metaphor. Functions composed of different
representations can still refer to one another via tags, and events are agnostic to the
underlying representation used to handle them, requiring only that the representa-
tion is capable of processing event-specific data. Allowing for these types of multi-
representation agents may complicate the SignalGP virtual hardware, program eval-
uation, and mutation operators, but it would provide evolution with a toolbox of
diverse representations.

Hintze et al. proposed and demonstrated the evolutionary Buffet Method where
Markov Brains (Hintze et al., 2017) could be composed of heterogeneous compu-
tational substrates, allowing evolution to work out the most appropriate representa-
tion for a given problem (Hintze et al., 2018). Further, Hintze et al.’s Buffet Method
demonstrated the success of hybrid solutions. Multi-representation SignalGP pro-
vides an unexplored, alternative approach to evolving multi-representation agents,
bringing the Buffet Method into an event-driven context.

5.3 Major Transitions In SignalGP

In a major evolutionary transition in individuality, formerly distinct individuals unite
to form a new, more complex lifeform, redefining what it means to be an individ-
ual. The evolution of eukaryotes, multi-cellular life, and eusocial insect colonies
are all examples of transitions in individuality. Often the individuals that make up
the higher-level entity are limited to local information, lacking direct access to the
global state of the higher-level unit; lower-level units must rely on signaling and
sensory information to coordinate their roles in the group (Smith and Szathmary,
1997; West et al., 2015). In a computational sense, a major transition in individual-
ity is the evolution of a distributed system. Capturing these types of transitions in
GP would give evolution a mechanism to incrementally form distributed systems
from formerly individual programs.

In the previous section, we described how SignalGP could be extended to allow
multi-representation programs where functions (modules) can be of any represen-
tation capable of receiving input and producing output. We can take this approach
to multi-representation SignalGP one step further: any module within a SignalGP
agent could be another (former) SignalGP agent. This approach is conceptually
similar to Tangled Program Graph representation (Kelly and Heywood, 2017).

We can imagine a mutation operator that, when applied, induces transitions in
individuality by injecting co-evolving SignalGP programs as self-contained, tagged
modules into the program being mutated, allowing single individuals to be aggre-
gates of lower-level individuals. Further, transitions in individuality can be applied
hierarchically. Biological evolution has examples of such hierarchical transitions:
eusocial insect colonies are composed of many multicellular individuals, each which
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Fig. 6 Example of a multi-level SignalGP program. In this example, the agent is composed of
five modules, including a neural network, a Markov Brain, a linear GP representation, and two
multi-module programs at a lower level of organization.

are composed of many eukaryotic cells, which in turn are composed of organelles
(many of which are thought to have been formally distinct individuals). An indi-
vidual SignalGP program may be composed of many SignalGP program modules,
which may themselves be composed of many SignalGP programs, and so on.

Implementing a mutation operator capable of inducing arbitrary numbers of hi-
erarchical transitions in individuality requires us to answer the following questions:
How should formerly individual programs interact when forced into an aggregate?
And, how should an evolutionary algorithm handle evaluating both individuals and
aggregates of individuals?

From the evolutionary algorithm’s perspective, a multi-level SignalGP program
is indistinguishable from a single-level. However, just as biological organisms com-
posed of lower-level units of individuality require more energy to subsist, multi-level
SignalGP programs require many more CPU cycles than single-level SignalGP pro-
grams. This is consistent with biology where major transitions disproportionately
occur in energy-rich environments (Smith and Szathmary, 1997).

Extending SignalGP to support hierarchical transitions in individuality would
provide a useful model for studying biological evolutionary transitions, allowing us
to ask general questions about their dynamics. A transition in individuality muta-
tion operator would also allow us to solve problems that might be best solved by
a distributed system without knowing the optimal configuration of that distributed
system a priori.
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6 Conclusion

In this chapter, we explored the importance of inexactness when calling a tag-based
name in GP. We show that allowing for inexactness when performing tag-based ref-
erences is crucial for rapid adaptive evolution. Conversely, when some signals need
to be ignored (such as in our distracting environment) it can be critical to prevent
dissimilar tags from finding incorrect matches. As such, intermediate thresholds for
tag similarity may be ideal for optimal evolution in a broad range of environments.
The most appropriate similarity thresholds for a given problem will depend on the
specifics of the problem and the representation used. For example, we would need
to consider the ways tags are used in a particular problem, as well as how those tags
are represented, mutated, and compared.

Interestingly, while exact naming is the most intuitive referencing mechanism
for human programmers, evolution is far more successful when program references
are allowed to be inexact. In fact, mutation-selection balance may prevent exact
references from being stably maintained over evolutionary time. If tags are mutated
such that we expect at least one of a program’s tags (referring or referent) to be
mutated per reproduction event, the relationships between referring and referent
tags are unlikely to be stably maintained.

Both SignalGP and our proposed extensions to SignalGP are inspired by bio-
logical systems and processes. As we continue to develop SignalGP, our goal is to
continue to push the boundary of GP and to use SignalGP as a tool to study the
natural systems that inspired its development, such as the evolution of modularity,
gene regulation, cell signaling, and major evolutionary transitions in individuality.
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