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ABSTRACT9

In genetic studies, quantitative traits are found possibly associated with genetic data. Due to advanced
sequencing technology, many methods have been proposed in genome wide association study (GWAS)
to search the single nucleotide polymorphism (SNP) associated with the traits. Currently several methods
that account for the evolutionary relatedness among individuals were developed. When comparing with
conventional methods without evolutionary relatedness among individuals, tree based methods are found
to have better performance when the population structure increases. In this work, we extend a tree based
method in previous studies by varying the magnitude of relatedness. The magnitude of relatedness of the
evolutionary history is controlled by an Ornstein-Uhlenbeck (OU) process through its parameters. Our
method combines a pertinent process and phylogenetic comparative method where the incorporated
evolutionary history is built by SNP data. We perform simulation as well as analyze drosophila longevity
data set.
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INTRODUCTION21

In genetics, searching single nucleotide polymorphism (SNPs) associated with traits helps people to22

identify and localize the possible origin of disease. In the past, scientists made effort to develop methods23

that aim to utilize SNPs for seeking connection with relevant trait. As the main goal is to find possible24

association, SNP from sequencing technology as well as traits measured from various ways are collected25

from controlled group and case group. However, currently it is still quite challenge to find statistical26

significance in association study. One difficulty is to successfully link the SNPs with the traits. As those27

studies were required to meet sufficient rigorous statistical tests during the process. From genetic basis,28

SNP makers are scanned into analysis using a couple of thousand individuals each with certain long29

sequence length (around 0.5 million in general).30

The statistical methods developed for association studies in literature can be divided into two main31

categories: the one assumed the evolutionary independence of individuals without relatedness and the32

other incorporates the evolutionary relatedness of individuals into analysis. For the case of independence33

assumption among individuals, the observed trait of n individuals with values y1,y2, · · · ,yn are assumed34

as independent identical distributed random variable from identical statistical distribution. To detect35

association between trait and SNP datasets, under the evolutionary independence assumption, typically36

a paired t-test is conducted for investigating the significance of the SNPs associated with the trait of37

interest on the controlled group yi1 ,yi2 , · · · ,yin1
, and with the trait on the case group y j1 ,y j2 , · · · ,y jn2

where38

n1 +n2 = n (McClurg et al., 2006). The paired t-test method serves a fast and efficient way in association39

study (Thompson and Fardo, 2016).40

In the other category of study for linking SNP and traits, people incorporated evolutionary relatedness41

represented by a tree for association analysis (Pan et al., 2009; Zhang et al., 2012). A previous work42

(Thompson and Kubatko, 2013) demonstrated that the tree based method for linking the association43

between traits and gene can be improved when the covariance structure VVV among randomly-sampled indi-44

viduals is estimated from the evolutionary history within each SNP. To initiate the analysis, those methods45

make use of SNP data to build a phylogenetic tree T which is a rooted, bifurcated (or multifurcated)46
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(a) (b) (c)

Figure 1. (a) A demonstrated example of evolutionary tree. The horizontal axis represents a
pseudo-evolutionary time from past to current. The evolutionary time started with t = 0 and stopped at
current at t = 5. (b) The matrix representation VVV for the evolutionary tree. (c) A phylogenetic tree built
from SNP of 164 diploid observations. The corresponding traits are represented by colored circles. Three
colors (red, yellow, and blue) represent the magnitude of the trait value with hypothetical low values of
yellow, hight value in red and intermediate values colored blue. Tree and traits were obtained from
(Schmitz, 2017).

directed and ultrametric (each individual has the same height from the root to tip in the tree) graph. To47

given an illustration, we use a simple tree containing a few individuals. The evolutionary relatedness of48

five individuals A, B, C, D, E, F is shown by a tree in Fig. 1a. It is expected that the level of relatedness49

among individuals contain some useful information linking to the trait. For example, as two individuals D50

and E shared more evolutionary history, it is reasonable to think that their trait are more similar (shown51

in red circles ). While individuals A and F are more evolutionary unrelated (independent), hence their52

characteristics might present more diversity (e.g. the two black squares � and � in different sizes). The53

matrix VVV shown in Fig. 1b is the covariance matrix (an isomorphic transformation) of the tree in Fig. 1a.54

An element vi j in the matrix VVV represents relatedness between a pair of individuals i and j. Note that vi j55

is obtained by measuring the shared evolutionary history from root (scaled at 0) of the tree to their most56

recent common ancestor.57

The tree in Fig. 1c is a larger tree constructed using a SNP data of 164 individuals. It is reasonable to58

view that trait among individuals are more similar when sharing higher relatedness.59

In this paper, we intend to expand model in Thompson and Kubatko (2013). We start by briefly
introducing the tree based method as following. Considered a cluster of tree where the trait of n individuals
are separated into k clusters. We can use an n by k matrix D = [di j] to represent the cluster where D is
defined by

di j =

{
1, if observation i falls in cluster j;
0, otherwise.

(1)

where i = 1,2, · · · ,n and j = 1,2, · · · ,k.60

The matrix D will be useful for the next step analysis of studying trait evolution. Let Y =(y1,y2, · · · ,yn)
t

61

be the trait observed from n individuals, Y can be treated as a random variable with expected value62

E[Y ] = Dµ ∈ Rn where the vector µ = (µ1,µ2, · · · ,µk)
t is identified as the mean for the k distinct groups.63

We can get cluster trees from setting different number of clusters. The clustered tree can then be64

transformed into the variance covariance matrix V . We illustrate this by reproducing Fig. 2 in (Thompson65

and Kubatko, 2013). In Fig. 2, three clustered trees for 6 individuals are shown with different cluster66

number k = 0,2,3. The corresponding matrices V s for the tree of k = 0 and k = 2 are shown in Table 1.67

Here we use the clustered tree to consider the broad-scale phylogenetic relationships among SNPs, this68

can account for the evolutionary history among genes with using all coalescent relationships where the69

structure of V is equivalently to the tree topology, and each element in V is an estimate of the covariance70

structure in the data that is required for estimation of branch lengths along the topology.71
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Figure 2. A demonstration of a six-taxon tree with branch lengths. The overall tree (k = 0) is shown in
the left panel. The corresponding clustered trees for 2 clusters (k = 2) and 3 clusters (k = 3) are in middle
panel and right panel, respectively.

Table 1. The variance covariance matrix V for the tree in Fig. 2. The left matrix is for the left tree k = 0,
the right matrix is for the middle tree k = 2. The numbers in bold in the matrix shows the difference
between the two clustering results.

A B C D E F
A 100 18 18 0 0 0
B 18 100 98 0 0 0
C 18 98 100 0 0 0
D 0 0 0 100 6 6
E 0 0 0 6 100 89
F 0 0 0 6 89 100

A B C D E F
A 100 18 18 0 0 0
B 18 100 18 0 0 0
C 18 18 100 0 0 0
D 0 0 0 100 6 6
E 0 0 0 6 100 6
F 0 0 0 6 6 100

Model for Haploid Data72

Haploid of a cell has a single set of unpaired chromosome. For SNPs data of haploid type, the tree can be73

constructed from sequencing reads as well as from assembled genomes or contigs. Thompson and Kubatko74

(2013) used a transformation by considering clustering using tree structure that clusters the individual75

into several subgroups depending on the number of k. In contrast with work in Besenbacher et al. (2008),76

Thompson and Kubatko (2013) instead assumed that an observation is taken to be a chromosome level77

which offers an alternative to aggregate information. Next, assume a Brownian motion for trait evolution78

on the tree (Felsenstein, 1985), the statistical model given a trait Y and a tree TTT follows a multivariate79

normal distribution with mean vector Dµ and variance-covariance matrix σ2V80

Y ∼N (Dµ,σ2V ) (2)

where the parameter σ measures the rate of evolution during the process.81

The statistical model in Eq. (2) has analytical formula for the maximum likelihood estimators
for the mean µ̂ = (DTV−1DT )−1DTV−1Y and variance σ̂2 = (Y −Dµ̂)TV−1(Y −Dµ̂)/n, respectively.
Therefore, the maximum likelihood can be computed directly once the trait and tree are ready. Thompson
and Kubatko (2013) used likelihood score statistics (LSS) score to determine the tree score. LSS is defined
as the maximum score over the number of clusters.

LSS = max
k
{2`(µ̂, σ̂2|Y,Vk)− k logn} (3)

where `(·) is the log likelihood in Eq. (2). Therefore the hypothesis test for detecting significance82

of association between SNP and trait of a group of individuals can be carried out using a likelihood83

framework.84

Inference85

In order to identify the detection between SNP and trait, Thompson and Kubatko (2013) use the LSS score86

in Eq. (3) for model in Eq. (2). To access the significance, a permutation test was performed and the LSS87

score for the tree is calculated according to each permuted trait data set at each locus along a chromosome.88

The statistical null hypothesis is setting with no linking between the snp and trait. i.e. H0 : no association.89
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Figure 3. The magnitude of hierarchical clustering is controlled under the OU process using parameter
α .

Then a p-value is determined by the ranking of score of the observed data set in an ordered score of the90

permuted data set. i.e. p-value = #{LSSper > LSSobs}/N where LSSper is the score for permuted data91

set, LSSobs is the score for the observed data set and N is the number of permutations.92

In fact, model built in Eq. (2) is under the assumption of Brownian motion for evolution Felsenstein93

(1985) since the variance covariance matrix is specified by utilizing the tree. Observing that currently94

there is still a need of methods that include more biologically-realistic situations, we propose a method95

that extend works in (Thompson and Kubatko, 2013) by introducing Ornstein-Uhlenbeck (OU) process96

Hansen and Martins (1996) for studying the association between traits and SNP data. Our aim is hope to97

provide a robust method in GWAS study.98

METHODS99

OU process for trait evolution100

If the trait of the ith individual is assumed to evolve under an Ornstein-Uhlenbeck process (Hansen and
Martins, 1996), then the trait value of the individual at time t, denoted as a stochastic variable yi,t , is a
solution the following stochastic differential equation

dyi,t = α(µ− yi,t)dt +σdBt , t > 0. (4)

Eq. (4) expresses the dynamic of yi,t with respect to time. On the left hand side of Eq. (4), the term101

dyi,t is the change in the character yi,t over the infinitesimal interval from time t to t +dt. The right hand102

side of Eq. (4) contains the sum of two terms: the deterministic term α(µ − yt)dt and the stochastic103

terms σdBt where Bt is a Brownian motion, the real value parameter µ represents the optimal value (an104

evolutionary niche) of yi,t , the positive value parameter σ is the overall rate of evolution, and the positive105

value parameter α represents the magnitude of force that pulls yi,t back to the optimum µ . When yi,t is106

far from the optimal µ , the force would have stronger effect (larger value of α) to pull yi,t back to the107

optimum µ while weaker force (smaller value of α) is presented whenever yi,t is close to the neighborhood108

of µ .109

To implement OU model in tree based genome wide association study, we use α to control the level110

of clusters. In Fig. 3, larger values of α = 0.5, or α = 1 provided more independent relatedness among111

clusters than the smaller value of α = 0 given different number of cluster k = 0 (plots in upper panel for112

the raw tree case) or k = 2 (plots in lower panel for 2 cluster case). Implementing OU process could be a113

potential benefit for detecting the association between snp and trait.114
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Currently we focus on studying the model in (Hansen and Martins, 1996) with single force, single115

optimum and single rate as mentioned in Eq. (4) though other more sophiscated models are possible to116

develope for this purpose (see (OMeara et al., 2006; Butler and King, 2004; Beaulieu et al., 2012)).117

OU Model for Haploid Data118

The observed trait for the ith individual yi,t under the OU process has normal distributions with the mean

E(yi,t |y0) = y0 exp(−αt)+µ(1− exp(−αt)) (5)

and variance

var[yi,t |y0] =
σ2

2α
(1− exp(−2αt)) (6)

where y0 = yi,0 is the trait value at t = 0.119

The method used in Thompson and Kubatko (2013) set the parameter α = 0 which reduces it to the
Brownian Motion with means E(yi,t |y0) = y0 and var(yi,t |y0) = σ2t. For OU model with n individuals,
the observed trait Y = (y1,y2, · · · ,yn)

t is treated as a random vector that following a multivariate normal
distribution with mean vector µ =(µ1,µ2, · · · ,µn)

t
n×1 and variance-covariance matrix Vn×n where V [i, j] =

cov[yi,t ,y j,t ] is the covariance between species i and species j of the form

cov[yi,t ,y j,t ] = σ
2Vαi j =

σ2

2α
e−αdi j e−2αti j (7)

where ti j is the branch length shared by the ith and the jth individual and di j is the distance between the120

ith and the jth individual on the tree.121

Under the OU process, the trait vector observed at the tip denoted as Y = (y1,y2, · · · ,yn)
t would follow

a joint multivariate normal distribution

Y ∼MMMVVV NNN(Dµ,σ2Vα) (8)

The mean vector and variance can be expressed as a function of α

µ̂(α|T,Y,D) = (DTV−1
α DT )−1DTV−1

α Y, (9)

σ̂
2(α|T,Y,D, µ̂) =

(Y −Dµ̂)TV−1
α (Y −Dµ̂)

n
. (10)

By Eq. (9) and Eq. (10), the negative log likelihood function for OU model can be written as a function
of α :

`(α|Y,T, µ̂, σ̂2) =
n
2

log(2π)+
n
2

log σ̂
2 +

1
2

log |Vα |+
1

2σ̂2 (Y −Dµ̂)tV−1
α (Y −Dµ̂). (11)

Inference122

From the model in Eq. (8), the hypothesis testing for significance between SNPs and trait can be proceeded
through a likelihood framework. To choose the best cluster, we modify the penalized likelihood approach
in Thompson and Kubatko (2013) where the likelihood score statistics is calculated as

LSS = max
0≤k≤m

{2log(α̂, µ̂, σ̂2|Y,V )− k logn} (12)

where m is the maximum number of clusters that used for analysis.123

To access the statistical significance, we further consider to use an upper bound defined by the124

maximum of the observed LSS value plus the standard error of the permuted maximum LSS valued125

multiplied by the (1−α) quantile of t distribution with degree of freedom of n−1 where n is the number126

of individuals. i.e.127

b = max
0≤k≤m

LSSobs +qtα/2,d f=n−1
sdLSSper√

n
(13)

where sdLSSper = sd({max0≤k≤m LSSper}m
i=1). And the p-value is caluclated by the number of permuted128

LSS score greater than this bound b. This provide a more conservative alternative in detecting the129

significance.130
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SIMULATION131

Haploid Data132

In order to assess the performance of the proposed techniques, we simulating the data sets under specific133

parameter values, the local phylgogenetic tree at each SNP is estimated using SVDquatets (Chifman and134

Kubatko, 2014). The SVDquatets is currently implemented in PAUP (Swofford, 2011) and computes a135

score based on singular value decomposition of a matrix of site pattern frequencies corresponding to a136

split on a phylogenetic tree. These quartet scores can be used to select the best supported topology for137

quartets of taxa, which in turns can be used to infer the species phylogeny using quartet methods where138

branch lengths are estimated.139

Given an estimated T, the next step to complete the association study is to conduct the phylogenetic140

comparative analysis to computing the LSS score. Tree from PAUP analysis is a non-ultrametirc tree.141

Since the expected quantity of trait change (the variance vii in the variance-covariance matrix V ) in142

comparative analysis under Brownian motion is given by the product of the rate of evolution σ of the143

trait with branch length and under OU process the vii(α) is given by the deterministic change inherit144

from ancestor plus the Brownian motion for random change. So using a non-ultrametric tree is a way to145

assume different rates of evolution for each branch which leads to a more sophisticated and complex case.146

To alleviate this, we convert the non-ultrametric tree to an ultrametric tree using the mean path lengths147

(MPL)(Britton et al., 2002) method where the age of a node is estimated with the mean of the distances148

from this node to all tips descending from it. Hence we can assume a clock-like trait evolution which149

means the quantity of change from the root to the tips is the same.150

To calculate score in Eq. (12), we current use the number of cluster from k = 3 to k = 5. Algorithm 1151

provides a step-by-step procedure for calculating the p-value.152

For each size, we use ms(Hudson, 2004) to simulate sequence of length 1000. We use paup to analyze153

the sequence and get the tree by SVDquartets. For each haploid size, we simulate 100 replicates of154

sequence to get 5 trees respectively. To simulate trait, given a tree with known topology and branch length,155

we consider to use two stages OU model with parameters Θ = (α1,α2,σ1,σ2,θ0,θ1,θ2) where for BM156

data simulating using α1 = α2 = 1e−6;θ0 = 90,θ1 = 80,θ2 = 100, we set three different rate evolution157

σ1 = σ2 = 1,5 and 10, respectively.158

We use 100 replicates where for each replicates we simulate traits using the true parameters Θ. We159

then consider to estimate the parameters using the 100 replicates. Since there are various clusters, we160

use the parameter estimate from the best selected cluster k∗. For each replicate, we consider to assess the161

significance of the trait associated with the simulated snp. We use the permutation method in algorithm162

Thompson and Kubatko (2013) to permute the trait for 500 times. We present our algorithm in Algorithm163

1.164

RESULT165

We present out simulation results for BM model and OU model in the following subsection.166

Haploid: OU vs BM167

We first simulate snp sequence using ms(Hudson, 2002). The ms settting168

ms 10 1 -T -s 1000169

would generate 10 individuals each is with sequence length 1000. We then use this data and paup(Swofford,170

2011) to obtain the estimated tree. We simulate traits under BM model using σ2 = 1 and treated it as the171

true data set. To evaluate the p-value for this data set, we use 500 replicates, and a p-value is computed by172

the ratio of count of the maximum LSS statistics greater than the max LSS of the true trait over 500. For173

each replicates, we compare the LSS statistics of k = 3,4,5 cluster to get the maximum LSS statistics. We174

repeat above procedure 50 times for each tree estimated using of sequence length 1000. The following175

table is the overall average of parameter estimates using 10 trees. We consider the taxa size of 10,30,50176

Table 2 shows the median estimate and the 95% confidence interval of the p-value under BM and OU177

model178

Currently we found for BM model, the overall p-value bandwidth is narrower when compare to OU179

model. This might indicates that OU model is more conservative to detect the significance than the BM180
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Algorithm 1 Model Inference

1: simulate snp sequence data set from ms and treat Y as the true data set.
2: use PAUP and SVDquatets to analyze the data sets and return an estimate tree T with topology

and branch length information.
3: for j = 1 : k do
4: cluster the tree T and get T j of j cluster and store matrix D and variance covariance matri Vj.
5: if model is BM
6: simulate trait data Y under mutlinormal distribution.
7: compute log(µ̂, σ̂2|Y,T,V );
8: if model is OU
9: simulate trait data Y under mutlinormal distribution.

10: transform Vj into Vα, j
11: optimize the log function
12: compute the LSS statistics using formula
13: choose the largest value of LSS and return the best cluster index j∗.
14: endfor
15: for i = 1 : b do
16: obtain sample Yi by permuting Y .
17: repeat step 2 to step 10 to obtain LSSi.
18: endfor
19: compare LSSi with LSS and report p value.

Table 2. quantile for the σ2 from simulation, the true value is 1.

Taxa 10 30 50
BM 0.46(0.13,1.16) 0.64(0.35,1.06) 0.63(0.32,1.02)
OU 1.03(0.98,1.17) 1.01(1.00,1.09) 1.01(1.00,1.05)
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Table 3. quantile for the α from simulation, the true value is 0.25.

Taxa 10 30 50
OU α 1.07 (0.01,4.65) 0.53(0.01,1.46) 0.57(0.01,1.80)

model. As BM model is a submodel of OU, it is likely that this phenomenon come from data is simulated181

from OU model with a special case of α = 0.182

Table 3 shows the median estimate and the 95% confidence interval of the p-value under the OU183

model for parameter α184

Figure 4. Asseess significance through simulation study under OU model. compare to BM, OU has
higher p-value which indicates that OU model is more conservative than BM model.

Figure 4 compare the result of significance under different number of taxa for OU model. Trait data is185

simulated under OU model, OU has a bit higher p-value than the BM model.186

Power Analysis187

We access the power of the OU model. Currently we use 100 trials where for each trial a p-value is188

obtained using algorithm 1. The power is computed by counting the frequencies of p-value smaller than a189

given significant level (here we set the level to 0.1).190

0.0.1 Haploid data from BM model191

For the power of OU model, We look at the p-value of OU model when data are simulated from BM192

model. We show the boxplot in Figure 5193
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Figure 5. Data are simulated from BM model and analyzed under the OU model. The p-value increases
with sample size and hence decrease the power. Overall the p-values does not change in different σ (
σ = 1,5) The results is summarized using 5 trees.

The p-value increases with sample size and hence decrease the power. One possible rationale behind194

this plot might due to equation (13), when sample size n increases, the bound for determining the p-value195

shrinks which increases the number of permuted maximized LSS score that exceed this bound, hence196

increasing the p-value.197

Haploid data from OU model198

We also look at the power of BM model when data are simulated from OU model We show the box-plot199

in Figure 6200
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Figure 6. Data are simulated from OU model and analyzed under the BM model. The p-value increases
with sample size and hence decrease the power. Overall the p-values does not change in different α

(α = 5,10) The results is summarized using 1 tree. Result using summarizing 5 trees has similar pattern
with 5 tree but slightly lower in the 128 taxa case.

Drosophila melanogaster201

Fruit flies (Drosophila melanogaster) have haploid cell. In liteature, there are studies about the logenvity of202

fruit flies. Durham et al. (2014) identified that the senescence (a decline in physiological function in age)203

trait is related to the longevity of fly. They provided evidences that individuals alles influence fecundity204

in an age specific manner and so the genetic basis of natural variation in fecundity chanes dramatically205

with age. They complete a genome-wdie assicuation to indentify single-nucleotide polymorphism (SNPs)206

affecting lifespan and age-specific fecundity using the Drosophila melanogaster genertic Reference panel.207

They identified 1,031 SNPs affecting fecundity and 52 influcing lifespan. Only one SNP is aoosicated208

with both early and late-age fecudity. The age-speciefic effect of candidate genes on fecunity is validated209

using RNA interence. Their result provides support for the mutation accumulation theory of aging.210
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Figure 7. Genotype-phenotype association for 6 chromosomes in 205 drosophila and calculated using
single-SNP linear regression, while controlling for genetic structure(tree was built under SNP dataset).
− log10(p− value)> 4 or p-value < 0.0001 are regarded as SNPs significant.

DISCUSSION AND CONCLUSION211

In this work, we extend the tree-based methods described in Thompson and Kubatko (2013) for genome-212

wide association study(GWAS) for the haploid case. Our method considers incorporating phylogenetic213

tree built under the SNP dataset and then use the tree as a dependent evidence among individuals. We then214

use clustering technique in order to identify any possible associations between a trait and SNP maker. To215

cluster tree, we consider to alter the strengths of affinity among individuals but not change the topology.216

To do this, we apply a Gaussian process called Ornstein-Uhlenbeck process to stretch/lengthen/shrink the217

branch lengths in the tree.218

We evaluate the performance of our model as well as compare the existing tree-based model via219

through accessing their statistical power. Currently, we found that the overall statistical performance for220

our model is with lower powers when true data are simulated from the alternative models (data simulated221

from BM model). This might due to the tree is estimated from the SNP data. However, the major issue222

that contributes to this lower power of OU model could be the clustering procedure which changes the223

structure of the affinity among the individuals. Hence true data loses some information inherited from the224

model. In particular, this might due to the clustering k index and the matrix D transform the mean and225

variance among individual V which might cause the different result of estimation from the true value. For226

OU model, we find that α and σ2 cannot be estimated well simultaneously.227

It is possible to report the false discovery rate for both BM and OU model, in that case we can compare228

both models. We also can compare the model by determining the sample size at a threshold power level.229

Smaller size would report a higher power of the model. Finally, we hope that our model can benefit the230

research community in GWAS research area. While our model is planned to analyze the haploid dataset,231

we also wish to extend it to apply to association study in primate or human.232
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R script as well as other analysis result can be accessed at https://github.com/djhwueng/233

OUsnp.234
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