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Abstract—This  paper  investigates  the  use  of  random forests  and
spatial random forests (RFsp) for the classification of coastal dune
areas  along  41km  of  Lake  Michigan’s  shoreline  using  a  lidar-
derived  DEM.  Terrain  variables  across  a  range  of  spatial
neighborhood  scales  are  utilized,  and  for  two  different  cell
resolutions.  Distance  is  explicitly  incorporated  into  the  RFsp
models  through the calculation of  buffer  distances around small
numbers  (6-13)  of  gridded  points  in  the  study  area.  While
classification  accuracy  is  high  generally,  RFsp  produced  much
more accurate results. At the fine scale, topographic variables and
their  neighborhood  ranges  were  not  predictive  of  dune  areas,
perhaps  because  large  (>  0.1  hectare)  neighborhoods  were  not
tested at that scale. At the coarse scale these variables were much
more important. The use of small numbers of gridded (non-sample)
points to improve spatial prediction warrants further investigation.

I.  INTRODUCTION

The largest  body of  freshwater  dunes  in  the  world  occurs
along the eastern shore of Lake Michigan in Michigan.  These
dunes consist largely of parabolic landforms that, in many cases,
are over 30 m high. They line the shore for long (> ~ 1.5 km)
stretches along the southwestern shore of Lower Michigan and
occur in more isolated embayments and bluff-top locations in the
northwestern  part  of  the  peninsula  [1].  These  ecologically
important dunes are also heavily utilized for industrial purposes,
recreation, and home construction, and are thus one of the most
contested  landscapes  in  the  Great  Lakes  region.  Due  to  these
pressures, the State of Michigan has established so-called critical
dune areas along the coast to facilitate land management of this
region. Critical dune areas have been revised several times since
the  1980’s  when  they  were  first  enumerated.  The  latest
assessment was conducted in 2017-2018 by two of the authors of
this paper for the State of Michigan. This study used submeter
lidar-based  DEMs  and  aerial  imagery  to  manually  produce  a

detailed  set  of  polygons  along  the  entire  coastline  of  lower
Michigan.

Coastal  dune  areas  are  ontologically  complex:  while  these
areas  are geomorphologically  determined,  the dune fields  they
cover  may  be  comprised  of  an  assemblage  of  distinctive
landscape features with varying degrees of crisp spatial boundary
definition. Vegetation cover can range from dense forest to bare
sand.  Moreover,  they  are  intended  for  management  purposes,
which means that these areas must be compact and without holes.
This complex of physical and management factors makes their
delineation challenging. 

Machine  learning  methods  have  been  applied  to  physical
classification  applications  like  this,  most  notably  in  landslide
hazard  mapping and  soil  classification  (e.g.,  [2],  [3],  [4]),  but
such  work  also  comes  with  significant  caveats  for  geospatial
applications [5].  The present  paper  concentrates  on the use of
random  forests  [6],  [7]  for  machine  learning  classification.
Random  forests  (RF)  are  an  extension  of  decision  tree
classification and regression methods which partition data into
hierarchical  groupings.  As  implied  by  its  name,  an  RF  is  an
ensemble  of  regression  trees,  each  built  using  subsets  of  the
training data and of the predictor variables at each split. The RF
estimate  for  any  set  of  predictor  variables  is  obtained  by
averaging across all trees [8].

Given  the  demonstrated  potential  of  random  forests  in
complex  classification  environments,  it  is  interesting  and
important  to  evaluate  its  use  in  a  range  of  geomorphometric
applications.  The  present  research  investigates  the  following
questions: 1) how effective are RF for classifying coastal dune
area complexes using terrain covariates?; 2) How does scale and
spatial  heterogeneity  affect  the  relative  importance  of
geographical  variables  used  for  classification,  as  well  as
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classification accuracy?; 3) How does the use of distance mesh
affect prediction accuracy?

II.  DATA AND METHODS 

The study site spans the western boundary of Allegan County
in  western  lower  Michigan  (Fig.1).  The shoreline  extends  for
41km roughly south to north, and all locations within 4km of the
shore were included, a distance designed to include the extents of
the  most  eastward-extending  dune  areas.  Manually  derived
polygons defining the reference dune areas were obtained for this
region. Dune areas were geographically heterogeneous, ranging
from large  parabolic  dune fields  spanning many kilometers  to
narrow barrier dunes along the beach. Large stretches of coastline
had no dunes. A lidar-derived DEM of the county with three-foot
(0.914 m.) spacing was obtained from the State of Michigan. The
Michigan State Plane South reference system was used, as this
was the original format of the data. All analysis was conducted in
R, and relied on procedures in libraries rgdal, sp, raster, GSIF,
and ranger.

Figure 1. Study Area. Inset map from
https://en.wikipedia.org/wiki/Allegan_County,_Michigan

Two  distinct  geographic  scales  were  used:  fine  (3  ft  cell
resolution, neighborhoods of up to 87 ft) and coarse (99 ft cell
resolution,  neighborhoods  of  up  to  2,871  ft).  Due  to
computational constraints two subareas, Site 1 and Site 2, were

used at the fine scale (Figure 1). Distance from lakeshore was the
only  non-terrain-related  variable.  Due  to  the  computational
expense of calculation, this variable was processed on a raster
with 99 foot foot horizontal resolution, then interpolated in two
stages to the 3-foot resolution of the fine-scale project. Derivative
products  were  calculated  from  the  DEMs:  slope,  aspect,
topographic position index, and roughness. Focal range of  each
derivative was calculated for 3x3, 5x5, 9x9, 15x15, and 29x29
cells  for  cross-scale information on topographic variation. The
coarse scale study was conducted region-wide using the DEM
resampled to 99ft, and with the same variables calculated at this
resolution and further processed with the same focal ranges. As a
final variable for experiments at both scales, extending the RFsp
concept introduced by [9],  distance buffers were calculated for
six points spaced in regular grids across each subarea and for 13
points over the entire coastal area. 

For training and validation, stratified random point samples
were taken from each subarea site and the entire region (n=1,000,
evenly split between dunes/non-dunes). At least 20 samples were
taken from each of the eight separate dune areas. Each sample
was  randomly  divided  into  a  training  set  (800  points)  and  a
validation  data  set  (200  points).  RF  models  were  run  on  the
training set points using all variables to predict ‘dunes’ or ‘not
dunes’. Setting mtry close to the number of variables used in the
model improved performance, while reasonable values of other
tuning parameters had negligible impacts on accuracy. The effect
of  sample  size  on  accuracy  was  evaluated  using  multiple
sampling with varying size on the training set.

III.  RESULTS 

Excluding distance buffer variables, variable importance for
Site 1 and Site 2 was quite similar. Distance from lakeshore and
elevation  were  by  far  the  most  important  variables.  However,
model predictive capability was different. Site 1 validation error
was 89.5%, while that for Site 2 was 96%. Errors of commission
for the ‘dunes’ class were the main source of confusion at Site 1.
Accuracy  (over  20  replications  of  RF  for  each  size)  was
dependent  on  sample  size:  accuracy  improves  as  sample  size
increases (Fig. 2). Finally, these models were used to classify all
pixels  within  each  site.  These  site-wide  classifications  had
somewhat lower overall accuracy, at 88% and 94%, respectively.
Errors of commission were a significant issue for Site 1 (Fig. 3,
upper row).

When distances from the six gridded points are added to the
RF model, validation prediction accuracy increased to 98% and
99%  for  each  site.  Distance  from  lakeshore  and  elevation
remained the most important  variables for Site 1,  followed by
five  of  the  six  buffer  distances.  For  Site  2,  the  two  most
important variables were buffer distances, followed by lakeshore
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distance  and  elevation,  followed  by  two  of  the  other  buffer
distances.  In  both  cases  terrain  derivative  variables  were  not
particularly important. Site-wide classifications enjoyed overall
accuracies of 97% and 98% (Fig. 3, lower row).

Figure 2. Random Forest accuracy and sample size. 20 samples at each size
were drawn to build boxplots.

The  coarser-scale,  county-wide  model  had  roughly
comparable  overall  accuracy  of  90%.  The  most  important
variables  were slope range over a 29x29 window (a square area
2,971  ft  on  a  side,  or  about  80  hectares),  distance  to  the
lakeshore, the pixel elevation, and TPI range over the same large
window. Accuracy increased with sample size, reaching 80% at a
size of ~120 and slowly increasing to 90% at a sample size of
400.  Study-wide classification accuracy  dropped to 86%, with
producers accuracy of just 59% for the ‘dune’ class (Fig. 4).

Figure 3. RF (first row) and RFsp (second row) classifications for Site 1 and
Site 2. Reference dune area polygons marked with dotted lines.

Incorporating the 13 buffer distance variables improved the
model to an overall accuracy of 96% using the validation dataset.
Distance to the lakeshore and slope range over the 29x29 window
remained important, but the most important variable was one of
the buffer distances. Several buffer distances, as well as TPI and
roughness  range over the 29x29 window were  also important.
Study-wide  classification  accuracy  was  95%,  with  errors  of
commission  (producers  accuracy)  of  the  ‘dune’  class  largely
contributing to  the error.  Fig.  4  shows the result  –  errors  are
particularly noticeable in the northern portion of the county, with
good fidelity to the reference data in other areas.
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Figure 4. RF (first col) and RFsp (second col) classifications for the entire
coast. Reference dune area polygons marked with dotted lines.

IV.  DISCUSSION 

Over  fairly  homogenous  areas  with  well-defined  coastal
dunes, RF performed well at both fine (3 foot) and coarse (99
foot) scales. However, at the fine-scale the topographic variables
used were unable to effectively partition the landscape, and the
models  relied  on raw height  and  distance  from lakeshore  – a
reliance that led to the egregious errors of commission visible in
Fig. 3. We suspect that the window sizes for the neighborhood
operations may have simply been too small to distinguish dune
landscapes effectively using these terrain variables. At the coarse
scale, terrain variables were much more important, especially at
the larger neighborhood sizes. Dunes were characterized at rates
of  80-90% using  independent  validation  samples  in  all  cases.
However, errors of commission for dune areas were a substantial
problem.

The  use  of  spatial  random  forests  (RFsp)  with  buffer
distances  around  gridded  points  (not  sampled  locations)  was
highly  effective  in  improving  classification  accuracy,  and
reducing  errors  of  commission.  We  were  surprised  by  the
effectiveness  of  distances  from  just  a  few  gridded  points  to

improve the classification. We suspect that this improvement is
due to two factors: 1) the geographic context that even this small
number  of  points  provide  to  the model;  2)  they  enable  better
handling of spatial heterogeneity. Increasing the number of buffer
points to 52 did not greatly improve model performance.

Samples were stratified by class but not by space, leading to
concerns  that  spatial  autocorrelation  may  have  affected  the
classifiers. However, spatial autocorrelation was also a positive
force  in  improving  accuracy  using  RFsp  with  the  buffer
distances.  Further analysis on RF standard errors is warranted.
Finally,  we note  that  the reference  dune area  polygons,  while
professionally interpreted, are subject to uncertainty themselves,
and  some  classification  error  in  the  RF  models  may  in  fact
identify places with particularly fuzzy dune area properties for
computer and human interpreters alike.
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