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Abstract—Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard 
computational problem with no approach that works well in all cases. Methods based on profile hidden Markov models (HMM) 
often exhibit relatively higher sensitivity for detecting remote homologies than commonly used approaches. However, calculating 
similarity scores in profile HMM methods is computationally intensive as they use dynamic programming algorithms. In this paper 
we introduce SHsearch: a new method for remote protein homology detection. Our method is implemented as a modification of 
HHsearch: a remote protein homology detection method based on comparing two profile HMMs. The motivation for modification 
was to reduce the run time of HHsearch significantly with minimal sensitivity loss. SHsearch focuses on comparing the important 
submodels of the query and database HMMs instead of comparing the complete models. Hence, SHsearch achieves a significant 
speedup over HHsearch with minimal loss in sensitivity. On SCOP 1.63, SHsearch achieved 88X speedup with 8.2% loss in 
sensitivity with respect to HHsearch at error rate of 10%, which deemed to be an acceptable tradeoff. 

 
Index Terms—biological sequence classification, hidden Markov models 

——————————   ◆   —————————— 
 

1 INTRODUCTION 
Analysis of large scale sequence data has become an important task in computational biology and comparative                               
genomics, inspired in part by numerous scientific and technological applications such as the biomedical                           
literature analysis or the analysis of biological sequences. Protein homology detection has attracted particular                           
interest due to its critical role in many biological applications. One of these applications is protein function                                 
prediction [1] which is an important task in drug design [2] .The process of drug design can be divided into                                       
two phases. First phase is searching for a target protein whose molecular function is to be moderated, in many                                     
cases blocked, by a drug molecule binding to it. Second phase is selecting a suitable drug that binds to the                                       
protein tightly, is easy to synthesize, is bio-accessible and has no adverse effects such as toxicity. The                                 
knowledge of protein function can be of significant help in both phases. However, protein annotation with                               
functional information lags behind in the rapidly increasing amount of sequence data resulting from the                             
numerous ongoing genome sequencing projects. Consecutively, the manual analysis and annotation of protein                         
function via laboratory experimental procedures, which is a low throughput process, became no longer                           
effective. The availability of a large amount of protein sequences data and the vitality of the problem motivated                                   
the development of high throughput computational methods for protein function prediction.  

A family of state-of-the-art protein function prediction approaches relies on gathering information about                         
protein functions from different sources [1]. These sources of information include protein homology [3] [4],                             
gene expression analysis [5], protein interaction networks analysis [6], phylogenic trees and profiles analysis                           
[7], and literature text mining [8]. One of the most effective means of inferring the function of a newly                                     
sequenced protein is to detect what functions are performed by homologous proteins [4]. Two proteins are                               
homologous if they share a common ancestor. Since the actual sequence of the common ancestor is unavailable,                                 
sequence homology can only be inferred by statistical means.  

Dynamic programming algorithms, such as the Needleman-Wunsch [9] and Smith-Waterman algorithms                     
[10], or related heuristic algorithms, such as BLAST [11] and FASTA [12], can be used to assign to each                                     
sequence in the database a score indicating the likelihood that this sequence is homologous to the query based                                   
on their similarity score. However, these approaches have low sensitivity in remote homology detection [13].                             
Consequently, other approaches have been developed targeting the detection of remote homologies. For                         
example, motif based approaches [14] are developed based on comparing query and database sequences’                           
motifs. Other approaches works by building a profile for a query sequence which is constructed from a                                 
multiple alignment of sequences closely related to the query [15]. Then this profile is scored against all                                 
database sequences. A significant advance is achieved by comparing query profiles to database profiles [16]                             
[17] [18] [19]. Database profiles are built from the multiple alignments of clusters of closely related sequences in                                   
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a database. This type of profile-profile comparison approaches gives relatively higher sensitivity in detecting                           
remote homologies than other methods in the literature [19]. 

The rest of the paper is organized as follows. In section 2 we review background information and related 
work. In section 3 we propose our method. In section 4 we illustrate the experimental setup and performance 
measures. In section 5 we show and discuss results. In Section 6 we present our conclusion.  

2 BACKGROUNDS AND RELATED WORK:  
In this section, the background of homology detection methods is reviewed. We illustrate the evolution of 
different methods for solving different issues related to homology detection. 
2.1 BASIC HOMOLOGY DETECTION METHODS   
Over the past decades, various methods have been proposed for the task of homology detection. The key idea 
behind most of these methods is to calculate a score to measure the similarity between a given query and all 
databases sequences. The query and database sequences are classified as homologous if the score exceeds some 
predefined threshold.  

The most commonly used score for comparing two sequences is the Smith-Waterman score [10]. It is 
calculated as the score of the local optimal pairwise alignment of two sequences. For retrieving sequences 
similar to a newly sequenced protein (a query), Smith-Waterman algorithm [10], BLAST [11] and FASTA [12] 
are the most commonly used methods. These methods use the Smith-Waterman score to measure the similarity 
between sequences in different ways. BLAST and FASTA are heuristic algorithms which use certain 
assumptions and approximations. Both programs first identify very short exact matches between the query and 
database sequences. Next, the best short hits from the first step are extended to look for longer stretches of 
similarity. Finally, the best hits are optimized with some form of dynamic programming. On the other hand, 
the Smith-Waterman approach is a completely dynamic programming tool which effectively makes all possible 
pairwise comparisons to all of the database sequences. Hence, it is a much more sensitive technique as 
compared to BLAST and FASTA, but it is much more computationally expensive and slower than any of them. 
However, all mentioned methods’ sensitivity degrades significantly in remote homology detection as they 
depend only on pairwise similarity score between the query and database sequence [13]. 
2.2 Remote homology detection methods 
For the remote protein homology detection task, numerous methods have been developed to achieve relatively 
higher sensitivity than the methods mention in Sec. 2.1. For example, the method proposed in [14] is based on 
the presence of sequence motifs. The motif content of a pair of sequences is used to define a similarity that is 
used as a kernel for a classifier. Motifs represent limited, highly conserved regions of proteins [20]. By focusing 
on comparing motifs, important clues to a protein’s function can often be revealed even if it is not globally 
similar to any known protein in databases. Hence, this approach works well in remote homology detection as it 
alleviates depending on low global pairwise similarity score and focus on conserved segments which usually 
have relatively higher similarity in distantly related sequence.  

An improvement in remote homology detection is achieved by developing methods based on 
profile-sequence comparison [15]. A profile is usually built from query sequence(s) either from the multiple 
alignment of the family of closely related sequences to the query or directly from an input multiple alignment. 
The profile allows one to distinguish between conserved positions that are important for defining members of 
this family and non-conserved positions that are variable among the members of the family. Furthermore, it 
describes exactly what variation in amino acids is possible at each position by recording the probability for the 
occurrence of each amino acid along the multiple alignment. Therefore, a profile contains more information 
about the sequence’s family of closely related sequences than a single sequence. Hence, profile-sequence 
methods provide higher sensitivity for detecting remote homologies than BLAST, FASTA and similar methods 
based on comparing query and database sequences.  

A typical example of profile-sequence methods is PSI-BLAST [21]. Given a query sequence, PSI-BLAST first 
performs a quick BLAST search to retrieve database sequences closely related to the query. Then a multiple 
alignment is created from this initial search’s hits. After that, a Position Specific-Scoring Matrix (PSSM) is 
generated from this alignment. This PSSM is used as a profile which is scored against all database sequences 
and a new PSSM is created by combining search results to original PSSM. The last step is repeated until no 
significant new search results are retrieved. A PSI-BLAST variant; Cascade PSI-BLAST [22]detects remote 
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homologies by performing cascade propagation of PSI-BLAST search results through all hits identified for a 
query. This approach allows effective detection of remote homologies for that query sequence. 
 

2.3 Profile hidden Markov model procedures for remote homology detection 
A significant breakthrough in profile-sequence methods is achieved by using a hidden Markov model (HMM) 
as a profile for modeling a family of related sequences instead of a PSSM or other types of standard profiles 
[23] [24]. SAM [25] and HMMer [26] [27] are the most popular software packages that use HMMs as profiles. 
Krogh introduced an HMM architecture well suited for representing a profile for multiple sequence alignments 
[28]. For each consensus column in the multiple alignment, a ‘match’ state models the distribution of residues 
allowed in this column. An ‘insert’ state and ‘delete’ state at each column allow for insertion of one or more 
residues between this column and the next, or for deleting the consensus residue. An emission probability 
distribution is associated with each match and insert state to model the residues emitted from that state. Also, a 
transition probability is assigned to transit form a state to another based on the model architecture.  

A profile HMM can be considered as an abstraction model which by following its states’ emission and 
transition probabilities, a set of sequences is generated that are closely related to the sequences used to build 
the model. Figure 1a shows a sample multiple sequence alignment, and a profile HMM built form this 
alignment is shown in figure 1b.  

 
(a) Protein multiple sequence alignment 

 
(b) Profile HMM architecture 

Fig. 1. The Profile HMM in (b) is built from the multiple sequence alignment shown in (a) with three consensus columns. 
These three consensus columns are modeled by three match states (rectangles: M1-M3), each has 20-residue 
emission probabilities vectors. Insertions in the multiple alignment are modeled by insert states (diamonds: 
I0-I3) which also have 20-residue emission probabilities vectors each. Delete states (circles: D1-D3) are silent 
states with no emission probabilities. Transitions are represented by arrows with a transition probability 
assigned for each arrow, for example . The model length is measured by the number of match states;tI0−D1  
hence this model is of length 3.  

 

A profile HMM has several advantages over a PSSM and other types of standard profiles [29]. It has a 
formal probabilistic basis and a consistent theory behind match, insertion and deletion scores, in contrast to 
other types of profiles which use heuristic methods. Also, a profile HMM applies a statistical method (Henikoff 
and Henikoff [30]) to estimate the true frequency of a residue at a given position in the alignment from its 
observed frequency. These estimated frequencies are used to build match and insert states’ emission 
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probabilities vectors. On the other hand a PSSM uses the observed frequency itself to assign an emission 
probability for that residue .This means that a profile HMM derived from a relatively small number of 
sequences can be of equivalent quality to a PSSM created from a larger number of aligned sequences [20]. 
Hence a profile HMM provides better modeling capability and homology detection sensitivity. 

 However, the methods relying on profile HMMs are computationally intensive as dynamic programming 
algorithms are used for building a HMM and scoring its similarity against database sequences. These 
algorithms called Forward-Backward (for building model) and Viterbi (for scoring a model against a sequence) 
have a worst case time complexity of , where  is the number of sequences ,  is the number of(NM L )O 2

seq N M  

HMM states and is sequence length [23]. Another approach is used to build a profile HMM from a  Lseq  

multiple alignment called Maximum A-Posteriori algorithm (MAP) [31] is of time complexity  where(NL )O 2
align  

 is the number of columns in the multiple alignment.Lalign   

Many variants to HMMer have been proposed to either increase computational speed or sensitivity. One 
variant is proposed in [32] which extracts submodels from a query profile HMM, called sub-HMMs. These 
sub-HMMs represent parts of the HMM that model the most conserved parts (motifs) of the sequences used to 
build the original HMM. Sub-HMMs are shorter, information rich models with the same architecture of a 
profile HMM. Based on that definition, extracting sub-HMMs works as follows. First the Kull-back-Leibler 
divergence (KL-divergence or relative entropy) [33] is calculated for each mach state, then a series of 
normalization and smoothing steps is performed and the most information rich HMM regions are excised from 
the original profile HMMs. KL-divergence is calculated as in (1) 

 

 n (j)hi = ∑
 

j
l ( Bj

E (j)Mi )EM i
 (1) 

 
where  is the KL-divergence value of match state  ,  is the estimated emission probability of residue hi M i (j)  EM i

 

 in the emission distribution vector  of  .  is the background distribution of residue . KL-divergence j  E M i Bj  j  

measures the amount of information carried by this state’s emission distribution relative to the background 
distribution. The result of these extraction steps is an ordered set of extracted sub-HMMs. These extracted 
submodels are then scored against each database sequence. This set of submodels is ordered from left to right 
based on their position in the original model. Figure 2 shows sample sub-HMMs and sample emission vectors. 

 

 
(a)  

 
(b) 
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Fig. 2. (a) Two sample sub-HMMs ( ) extracted from a profile HMM with match states belonging to that sub model; ,  shmmj j = 1 2  
highlighted in red. (b) Sample protein residues emission distributions for two mach states (the distribution M 6  
on the left) and (the distribution on the right).  has high KL-divergence value hence it belongs to a M 9  M 6  
sub-HMM. On the other hand  has low KL-divergence value so it doesn’t belong to a sub-HMM. M 9  

 

The target of this sub-HMM based homology detection approach is to extend the use of profile-HMMs to be 
used in highly localized sequence similarity searches that focus on shorter conserved parts of sequence rather 
than entire domains or global similarities. Another variant to HMMer is HMMERHEAD [34] which filters a 
query profile to the most important parts for homology detection. HMMERHEAD initially generates and 
identify significant “words”. This step consists of identifying ungapped four residue words from a profile 
HMM’s match state emission vectors that possess a probability above some threshold. A word score is 
calculated as the sum of the log-odds emission probabilities of the word’s residues, as determined from the 
profile-HMM. These words are then identified in the database sequences using a deterministic finite 
automaton. After that, each word identified in a database sequence is the seed for an ungapped alignment 
between the sequence and the profile-HMM. By focusing on important short words, HMMERHEAD achieves a 
20X speed over HMMer with 4% loss in sensitivity.  

A major advance in profile based remote homology detection methods was achieved by comparing profiles 
to profiles. Profile-profile comparison approaches can be considered as an extension to profile-sequence 
approaches which leverages profiles’ advantages in similarity search for both database and query sequences. 
Several programs for homology detection have recently been developed based on this idea: PROF_SIM [16], 
COMPASS [18], LAMA [17] and HHsearch [19]. These programs were shown to be significantly more sensitive 
than PSI-BLAST and have been applied for identifying evolutionary links between protein families previously 
thought to be unrelated [17] [18] [35]. HHsearch is based on comparing two profile HMMs by calculating the 
co-emission probability ( ) [36] for these two models. Co-emission probability is the probability that twoP coem  

HMMs independently generate the same sequence, that is for models  and  generatingHMM i HMM j  

sequences over and alphabet ∑ we compute  according to (2)P coem  

 

 P coem HMM ,( i HMM j) = ∑
 

s∈Σ*
PHMM i

(s)PHMM j
(s)  (2) 

 
where is the probability that  generates sequence . A detailed dynamic programming PHMM i

(s)  HMM i s  

algorithm for computing  is introduced in [36].   expresses how two HMMs are similar which inP coem P coem  

turn reflects the similarity of the groups of sequences represented by these two HMMs [25]. By combining the 
advantages of profile-profile methods and profile-HMMs, HHsearch achieves relatively higher sensitivity in 
detecting remote homologies than other homology detection methods. In the following section we present how 
we modify HHsearch for achieving higher computational speed with minimal loss in sensitivity. 

3 Proposed Method 
The experimental results in [19] show that HHsearch’s sensitivity for detecting remote homologies is 

relatively higher than other homology detection methods in the literature. However, HHsearch has a high 
computational complexity and takes significant run time since it uses a dynamic programming algorithm 
similar to the Smith-Waterman algorithm for scoring the similarity of two HMMs. The high computational 
complexity of HHsearch was the main motivation for developing our method.  

The main idea behind the modification is focusing on scoring short “key” submodels of database profile 
HMMs against submodels extracted from the query profile HMM, instead of scoring two complete models. 
These key submodels are the most important submodels for homology detection, as they carry most of the 
information needed for classifying database profile HMMs as homologous or non-homologous to a given 
query. The work we introduce in this paper is similar to HMMERHEAD [34](see Sec. 2.2) in an effort to reduce 
search time significantly with minimal loss in sensitivity. 

Since the time complexity for scoring two HMMs depends on the lengths of these models (will be discussed 
in Sec. 3.3), our modification significantly reduces the run time of HHsearch with a minimal loss in sensitivity. 
Also by focusing on selecting the most important submodels to use in comparison for homology detection, the 
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sensitivity loss becomes minimal as shown in results in Sec. 4. In section 3.1 we start with rules and definitions. 
We describe the details of SHsearch method in section 3.2. 

 
3.1 Rules and definitions 

In this section we present rules and definitions used in SHsearch method. In rule 1 we present conditions for 
aligning two sets of submodels extracted from two HMMs. In definition 1 we introduce  : a new score forS2  
measuring the similarity of two profile HMMs. In definition 2 we introduce a novel relevancy score that is used 
for extracting key submodels. We present a formal definition for hierarchal clustering in databases of 
sequences and homology and non-homology clustering levels in definition 3 

 
Rule 1 (submodels alignment): Let   and  be two different profile hidden Markov models,  andHMM i HMM j  li  

 be the lengths (number of match states)of these models. Let ( ) be the co-emission lj P coem ,HMM i HMM j  
probability of the two HMMs as described in [36]. A similarity score of the two HMMs based on P coem  
introduced in [36] and is calculated as shown as in (3) 

 

 (HMM , )S1 i HMM j =
P (HMM , HMM )coem i j

√P HMM ,HMM P (HMM ,HMM )coem( i j)* coem j j

 (3) 

 

 is normalized i.e. . Recall from Sec. 2 that sub-HMM is a shorter model with the sameS1 0 ≤ S1 ≤ 1  
architecture and parameters set of a profile HMM. Hence,  can be used to score pairs of sub-HMMs and toS1  
construct an alignment for the two sets of extracted submodels. Let  be a sub model extracted from shmmia  

 with index , then the alignment rules are as follows:HMM i a  

1. Every submodel in the first set is aligned with a submodel in the other set iff both have the highest S1  
score amongst all possible pairings. This rule can be stated formally as follows:  

is aligned with    shmmia′ shmm   jb′ f fi  

 , where ,  is the number of a,  ;  , 1  S1 shmm ,( ia′ shmmjb′)  ≥ S1 shmm ,( ia shmmjb)∀ b 1 ≤ a ≤ ni  ≤ b ≤ nj  ni  nj  

extracted submodels from  and  .HMM i HMM j  

2. No cross alignment is allowed, that is:  
For any submodels:  , ,  and   If is aligned with  and  shmmia′  shmmia′′  shmmjb′  shmmjb′′   shmmia′  shmmjb′  

,then  can only be aligned with  ,iff  a′′ > a′  shmmia′′  shmmjb′′  b′′ > b′  

Figure 3a shows an alignment of two sets of submodels that satisfies the two conditions, while the 
alignment in figure 3b has a cross alignment and hence violates condition 2. 

 

(a) 
 

 

 

(b) 
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Fig. 3. Alignments for two sets of extracted submodes (a) consistency conditions are satisfied. (b) Cross alignment violates 
condition 2 

 
This alignment rule is a modification of the rule presented in [37]or aligning sequences based on their 

conserved segments. 
 
Definition 1 (Weighed HMMs similarity score): Let   and  be two different hidden MarkovHMM i HMM j  

models,  and  be the lengths of these models,  be the set of aligned submodels based on li  lj  shmm ,( ia* shmmjb*)  

rule 1 and  be the number of aligned pairs of sub models. We define  as in (4) np S2  

 

 (HMM , )S2 i HMM j =
(l +l )∑

np

p=1
ia* ib*

l +l S (shmm ,shmm )∑
np

p=1
( ia* jb*) 1 ia* jb*

 (4) 

 

where  is the similarity score mentioned in rule 1,  and  are lengths of  and S1 shmm ,( ia shmmjb)  lia  ljb  shmmia  

, where  and  ,  is the number of pairs of aligned submodels where  shmmjb l∑
ni

a=1
lia <  i l∑

nj

b=1
ljb <  j  np   np ≤ n ,( i nj)   

 are the number of extracted submodels from and , respectively.  is also normalized i.e.,  ni nj HMM    i HMM   j S2  
.0 ≤ S2 ≤ 1   

 
The logic behind weighting  by lengths of submodels is that longer submodels represent longer conservedS1  

segments of sequences, which are more important in identifying related families of sequences than shorter 
segments.  is used to score the similarity between a query and database HMMs as we will detail in sectionS2  
3.2. Hence SHsearch achieves a speedup over HHsearch ,as  calculations are limited to shorter keyS2  
submodels, instead for calculating similarity of the complete HMMs. Figure 4 shows an example for calculating 

 for two sample HMMs;  and  and their extracted and aligned set of submodels.S2 HMM 1 HMM 2   
 

 
 

Fig. 4. An example of  (  calculation. Arrows represent aligned pairs of submodels. Number of extracted S2 , )  HMM 1 HMM 2  
submodels:  , , and number of aligned pairs of submodels .  is calculated for each aligned n1 = 5  n2 = 4  np = 3  S1  
pairs. Hence  is calculated as follows: S2  

 (   S2 , )  HMM 1 HMM 2 =       (l +l )+(l +l )+(l +l )11 21 12 22 13 24

(l +l )S (shmm ,shmm )+(l +l )S (shmm ,shmm )+(l +l )S (shmm ,shmm )11 21 1 11 21 12 22 1 12 22 13 24 1 13 24  

 
 
Definition 2 (submodels relevancy score): Given a database that provides a hierarchical clustering for its 
sequences (as will be shown in definition 3), let  be a profile HMM built from a multiple alignment of aHMM k  
set of sequences of a cluster at level-1  (See definition 3). Let  be a submodel extracted from C1k  shmmka HMM k  
with index , as shown in Sec. 2.3. We define a relevancy score for each submodel as in (5)a  
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 S  a≠a =  and k≠k =R (shmm )ka =
shmm ,shmm∑

 

i′
S1( ka k a′ ′)

(shmm ,shmm )∑
 

i′′
S1 ka k a′′ ′′

′ / a′′ ′ / k′′  (5) 

 
where  represents all submodels in the homology cluster of the original model (See definition shmm

k a′ ′ HMM k  

3). On the contrary,  represents all submodels in all non-homology clusters with respect to  shmm
k a′′ ′′ HMM k

.This score measures for each submodel how much it is close to other homologous submodels and how much it 
is distant relative to non-homologous submodels. The higher value of  means that this submodel is moreS  R  
important for homology detection. The submodels with the highest  value are selected as “key” submodels.S  R   

The derivation of this relevancy score is inspired by the term frequency-inverse document frequency 
(TF-IDF) numerical score [38]. This score reflects how important a word is to a document in a collection or 
corpus and is often used as a weighting factor in information retrieval and text mining. In our case a keyword 
corresponds to a key submodel and a document collection corresponds to a homology cluster (See definition 3). 
 
Definition 3 (Homology and non-homology clustering levels): Given a set of sequences …  where , ,S1 S2 , SN s N s  
is number of sequences in a database, a hierarchical clustering of sequences can be constructed as shown in 
figure 5. Assume that there are  levels in the clustering hierarchy with level-1 being the lowest level and levelH  

 being the highest. As cluster levels increase, the sequences become less related (less similar) to each other.H  
Let  be a cluster at level  with  where . Each level in the hierarchy represents a certainCxk x  k , k  1 ≤ x ≤ H  ≥ 1  
degree of similarity and evolutionary relationship between sequences belonging to every cluster at that level.  

A profile HMM ( ) is built from the sequences of each level-1 cluster . The Smith-WatermanHMM k C1k  
pairwise similarity score and information about functional and structural similarity can be used as a pairwise 
similarity measure for constructing the hierarchical clusters. Based on the hierarchical clustering scheme we 
present, we define both a homology and a non-homology clustering levels;  and  as follows:xh xnh  
 

(i) Let  be any cluster at level  with index  and ,  be any two sequences belonging to , whereCx kh xh  k Si Sj Cx kh  
 and . We call  a “homology clustering level” iff  and  are homologous for all values1 ≤ xh ≤ H , ,  i j k ≥ 1 xh Si Sj  

of  and . In other words; any two sequences belonging to the same cluster at level  are classified asi  j xh  
homologous.  is called a homology cluster for all profile HMMs belonging to it.Cx kh  

 
(ii) Let and  be any two different clusters at level  with indices and  where ,  Cx knh

 C
x knh ′ xnh   k k   ′ 1 ≤ xnh ≤ H  

 and . Let  be any sequence belonging to ,  be any sequence belonging to . We=k / k′ ,  k k′ ≥ 1 Si Cx knh
 S

i′
 C

x knh ′  

call  a “non-homology clustering level” iff  and  are non-homologous for all values of .In otherxnh Si  S
i′

, , ,  i i′ k k′  
words; any two sequences belonging to two different clusters at level  are classified as non-homologous.xnh Cx knh

 
is called a non-homology cluster for all profile HMMs not belonging to it. For any hierarchical clustering of 
database sequences .xnh > xh  
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Fig. 5. Hierarchical clustering of database sequences .  is a cluster at level  ;  with index  1. The, ,  S1 S2 . . . , SN s
 Cxk  x  1 ≤ x ≤ H  k ≥  

Smith-Waterman pairwise similarity score and information about functional and structural similarity can be 
used along with other sources of information to measure similarity between sequences and to construct 
clusters.  

 
 

3.2 SHsearch method 
 

In this section we describe the details of SHsearch method. The main idea behind the proposed method is 
limiting calculations of scoring query and database profile HMM to the shorter “key” submodels in the 
database. These key submodels are obtained by extracting submodels from the database HMMs then filtering 
them to the ones with the highest relevancy score (See definition 2 in Sec. 3.1). The input database must have a 
hierarchical clustering for its sequences with homology and non-homology clustering levels defined as shown 
in definition 3. This hierarchical clustering can be predefined like SCOP database [39] (as will be detailed in 
Sec.4) or we can use evolutionally relationship information and similarity score values between sequences to 
construct hierarchical clusters. SHsearch works in two main phases: 

1. Database preprocessing phase 
1.1. A multiple alignment is built for sequences in each level-1 cluster ( ) in the hierarchy usingC1k  

ClustalW if there is no existing alignment created in the database. 
1.2. A profile HMM ( ) is built for each alignment using the Maximum A-Priori (MAP)HMM k  

algorithm. 
1.3. For each , a set of submodels ) is extracted using the method explained in Sec. 3.HMM k shmm  ( kl   
1.4. For each  the relevancy score  is calculated. Then the set of submodels is shmmkl S(shmm )  R kl  

sorted in descending order based on the calculated  values. After that, these submodels areS  R  
filtered to the subset of the highest  score based on a given filtering ratio  as willS  R 0 ≤ rf ilter ≤ 1  
be detailed in preprocessing algorithm (figure 7) this subset is called “key” submodels.  
 

2. Search phase:  
2.1. Given an input sequence , perform a BLAST search to get sequences closely related to  ands s  

then a multiple alignment is built from results.  
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2.2. A query HMM (  is built from the alignment built in step 2.1 using the MAP algorithm.HMM )q  
Then all submodels are extracted from this query HMM. 

2.3. The proposed weighted similarity score ( ) is calculated between the query profile ( )S2 HMMq  
and each database HMM ( ). If ) , where  is aHMM k (qHMM ,S2 HMM k   ≥ thomology thomology  
predefined homology threshold, , then and  are classified as0 ≤ thomology ≤ 1 HMM   q HMM   k  
homologus. Therefore, all sequences used to build  are also classified as homologous toHMM k  
query sequence .s  

A flowchart of SHsearch method is shown in figure 6. The details of preprocessing and search phases are 
shown in the algorithms in figures 7 and 8. 

 
Fig.6. SHsearch method flowchart 
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Fig. 7. Preprocessing algorithm for SHsearch process 
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Fig. 8. Search algorithm for SHsearch method 

 

3.3 Time complexity analysis: 
As shown in section 4.2 the main computation operation in HHsearch and SHsearch is scoring the similarity 

of two HMMs. The similarity of two HMMs (or sub-HMMs) is based on calculating the co-emission ( ) ofP coem  

these two models as mentioned in section 3.1. The main difference of the two algorithms is that HHsearch 
calculates the similarity of two complete models where SHsearch combines the similarity score of shorter 
submodels; this is the key reason for the speed gain. The algorithm used for calculating this co-emission 
probability introduced in [36] is similar to the Smith-Waterman local alignment algorithm [10] . The time 
complexity for calculating the Smith-Waterman score (SW-score) for two sequences  and  [40]isseq1 seq2  

calculated as in (6)  
 

 
-ime complexity of  calculating SW  T core  s (seq , )1 seq2

 = 2 * O l l( seq1 seq2) + O l( seq1 + lseq2)  
(6) 

 
where and  are the lengths of  and  respectively. Similarly, the time complexity of  lseq1 l   seq2 seq1 seq2  

calculating the co-emission probability is as shown in (7) 

 ime complexity of  calculating P  T coem HMM ,( i HMM j)  (7) 
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 = 2 * O l l( i j) + O l( i + lj)   

 
where  and  are the lengths(number of match states) of  and . Accordingly the time li  lj HMM i HMM j  

complexity of comparing two HMMs in SHsearch can be calculated as in (8) 

 
ime complexity of  calculating S  T 2  

(2 (l ))= ∑
np

p=1
* O l l( ia* jb*) + O ia* + ljb*  (8) 

 
where  and  are the lengths of aligned sub models  . To compare time complexities in (7) lia*  lib* ,  shmmia* shmmjb*  

and (9) we can approximate  and  to their average values  and . Based on this approximation, lia*  ljb*  li−avg  lj−avg  

the average time complexity of calculating  is as in (9)S2  

 
pproximate average T ime complexity of  calculating S  A 2  

 = 2 * O n l l( p i–avg j–avg) + O n l + n l( p i–avg  p j–avg)  
(9) 

 
Given that   and typically  <  and  , and by comparing (7) and (9) we can np in(n , )  ≤ m i nj l  np i–avg  li l  np j–avg < lj  

see that the calculation time of  time is on average less than  and therefore SHsearch is faster thanS2 P coem  
HHsearch. 

 
4 EXPERIMENTAL EVALUATION 

We study the performance of our method in terms of sensitivity and run time for detecting remote 
homologies using standard benchmark datasets for protein sequence analysis. 

4.1 Datasets and experimental setup 

We test our proposed method on the task of remote protein homology detection. This task tests the ability to 
build a classifier that would correctly detect proteins remotely homologous to a newly sequenced protein. We 
construct a benchmark dataset based on SCOP 1.63 database  [41] to test the proposed method’s performance 
on remote homology detection. SCOP (Structural Classification of Proteins) [39] database aims to categorize 
proteins into structural hierarchy of classes, folds, superfamilies, families and domains as shown in figure 9. 
SCOP is used by many previous works (e.g. [42] [43] [44]).  

 
Fig. 9. Structural Classification of Proteins (SCOP) hierarchy. Protein domains organized into classes, folds, superfamilies, and 

families. Protein sequences from the same superfamily are considered homologous. Sequences 
from two different classes are considered non-homologous. 
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The steps for constructing the remote homology dataset are similar to what is introduced in [19] as follows: 
1. The sequences of the SCOP database are filtered to a maximum sequence identity of 20% (‘SCOP-20’) 

which are obtained from the ASTRAL server [45]. We obtain a set of “seed” sequences each 
corresponds to a single domain. 

2. An alignment is built from each seed sequence by PSI-BLAST with up to eight iterations. An inclusion 
threshold of  is the last iteration and  in previous iterations is used. A set of “synthetic”10−4 10−5  

domains is built around these sequences. 
3. A multiple sequence alignment is build using ClustalW for the sequences of each synthetic domain. 
4. A profile HMM is build form each alignment using the MAP algorithm. 

 
After applying these 4 steps on SCOP database we obtain a remote homology datasets of profile HMMs for 

distantly related sequences. This constructed dataset then will be used to compare the performance of our 
proposed remote homology method against other methods. The performance measures we will discuss are 
sensitivity, run time and scalability. 
4.2 Run time analysis 

We test SHsearch and HHsearch1 (the basic version of HHsearch) using each sequence in the constructed 
dataset as a query (All-against-All search). The parameter affects the number of database key submodels  rf ilter  

used for homology detection and hence the number of submodels to be aligned. As shown in (8) the time 
complexity of calculating  is proportional to number of aligned submodels , thus  affects the runS2  np rf ilter  

time of SHsearch. The parameter  doesn’t affect run time of SHsearch. Hence, for run time analysis wethomology  

vary  values only. The measures we use for to compare the run time of SHsearch and HHsearch1 is therf ilter  

average HMM-HMM comparison time for both SHsearch and HHsearch1. To compare the run time of both 
SHsearch and HHsearch1 we calculate the speed up achieved by SHsearch over HHsearch1 as in (10) 

 

 peedups = Average computation time for HMM–HMM  comparison SHsearch
  Average computation time for HMM–HMM  comparison HHsearch1  (10) 

 

4.3  Sensitivity analysis 
Homology detection methods classify each database sequence as homologous to a query if their similarity 

exceeds a predefined threshold. Hence, sensitivity [46] is used to measure the performance of homology 
detection methods. Sensitivity is defined as in (11) 

 

 ensitivityS = number of  true positives
number of  true postives+number of  false negatives  (11) 

 
where true positives (TP) are the correctly identified homologous pairs, and false negatives (FN) are the 
homologous pairs that aren’t detected. Following SCOP, we classify any two domains (and their corresponding 
sequences and HMMs) as homologous if they are members of the same superfamily. Domains from different 
classes are classified as non-homologous. All other pairs are considered as ‘unknown’ in the benchmark as 
their evolutionary relationship can’t be ascertained  [19]. 

The sum of the numbers of true positives and false negatives is the total number of homologous pairs. Hence, 
in SCOP the total number of homologous pairs is the total number of all possible pairs in belonging to the same 
superfamily. The number of true positives is the number of pairs classified as homologous and belonging to the 
same superfamily. The number of false positives is the number of pairs classified as homologous and belonging 
to different classes. Also we calculate the error rate value as shown in (12) 

 rror ratee = number of  false positives
number of  true postives+number of  false negatives  (12) 
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where false positives (FP) are the non-homologous sequences pairs identified as homologous. We run an 
All-against-All search for SHsearch and vary the values of  and  to measure SHsearch’s sensitivity.rf ilter thomology  

Also we perform All-against-All runs for HHsearch1, HMMer, PSI-BLAST and BLAST and compare their 
sensitivity to the values obtained from testing SHsearch.  

 

4.4 Scalability Analysis  
We test the scalability of SHsearch by measuring how its speedup values scales as the database size grows 

.We construct smaller databases by randomly selecting a proportion of the sequences in the constructed remote 
homology dataset. Then we test SHsearch with different  values on these generated databases andrf ilter  

measure the method’s speedup for different databases’ sizes.  
 

4.5 Parameters selection 
The parameter  affects run time as it controls the number of submodels used for homology detection,rf ilter  

hence it controls the time complexity of comparing two HMMs. Also,  affects sensitivity as it controls therf ilter  

amount of information lost due to selecting some of the submodels. On the other hand,  affectsthomology  

sensitivity only; as  increases, the homology detection classifier becomes more “restrictive”. For runthomology  

time and sensitivity analysis, the range of  values is set to be between 0.5 and 0.9 with an increment of 0.1,rf ilter  

and the value of  is fixed at 0.8. By using this range of values for  , we obtain significant speedthomology rf ilter  

gains with acceptable sensitivity losses. For sensitivity analysis, the  values’ range is set to be from 0.95thomology  

to 0.25 with a decrement of 0.05. This range results in different values for true positives and false positives and 
the sensitivity curves shown in figure 10 are traced out. In scalability analysis we use values of  ,.5, .9  rf ilter = 0 0  

  and we select of a proportion of 50, 60,70,80,90 and 100% of the sequences in the remote.8  thomology = 0  

homology dataset. 

5 Results and Discussion 

In this section we discuss the results obtained for each type of analysis mentioned in Sec. 5. 
 

5.1 Run time analysis results 
By varying  values and fixing the value of   we obtain different run time values ofrf ilter .8  thomolgy = 0  

HMM-HMM comparison as shown in table 1.  
 

Table 1: SHsearch speedup over HHsearch1 

 

 
In our experiment, the average of profile HMM’s lengths in the constructed dataset is found to be 1054. By 

substituting these values for   and  in (7), we find the average time complexity of calculating  for li  lj P coem  

scoring the similarity of two complete HMMs is 2225204 basic operations (where basic operations are 
arithmetic summation and multiplication). On the other hand, in SHsearch at  the average value for.9  rf ilter = 0  

the number of aligned pairs of sub-HMMs ( ) are found to be  , and the average values of the lengths of np 12    

the submodels ( and ) ; hence by substituting in (9) the average time complexity for  li–avg l   j–avg s 30.5  i  

calculating  is 23058 basic operations. According to these calculations the expected speedup is .S2 6.5  23058
2225204 = 9  
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The measured experimental speedup at these parameters is 88.6 as shown in table 1. The experimental speedup 
value is less than the expected analytical value as there exists and initial overhead in SHsearch for extracting 
query submodels. 

 

5.2 Sensitivity analysis results  
By run HHsearch1 and SHsearch with  and  with the ranges mentioned in Sec. 5.4 we obtainrf ilter thomology  

the sensitivity analysis curves as shown in figure 10. The error rate is the factor that controls the ratio between 
the number of true positives and false positives and can be represented as a straight line as shown in figure 9 
where dashed line represents an error rate of 10% and dotted line represents an error rate of 15%. In our 
experiment on SCOP 1.63 database there is total number of true positives of 41510 and false positives of 1.8x107. 

As we see in figure 10, it is observed that despite that SHsearch’s sensitivity is less than HHsearch, it still 
outperforms HMMer3, PSI-BLAST and BLAST. Also from figure 10 and the speedup results shown in table 1 
we can see that SHsearch achieves a significant speedup over HHsearch1 with a minimal sensitivity loss. The 
reason behind the minimal sensitivity loss is that the information lost due to filtering HMM to a subset of its 
extracted submodels is minimized by selecting the most important submodels for the homology detection task. 

 
Fig. 10. Sensitivity analysis of SHsearch at different values of  against different homology detection rf ilter  
methods .The higher the curve, the higher the sensitivity of the corresponding method. We observe that as 

 increases, the sensitivity curve of SHsearch rises up. Also we can see that the sensitivity curves of rf ilter  
SHsearch at different values of  is slightly lower than the curve of HHsearch, which means that rf ilter  
SHsearch’s sensitivity is slightly less than HHsearch. Furthermore, the curves of SHsearch are significantly 
higher than the curves of other homology detection methods. 

 

5.3 Speed-up vs. Sensitivity Analysis 
Table 2 and 3 show the speed gain against sensitivity values and sensitivity loss of SHsearch relative to 

HHsearch1 at error rate of 10% and 15%. We use these values for error rate, as we can see in figure 10, the 
straight lines intersect the curves at points where the search methods’ curves “saturate”, i.e. they detect all the 
true positives they can. The values in these two tables are calculated from the intersection of the error rate lines 
with the sensitivity analysis curves.HHSearch1 finds 18520 true positive out of 41510 (found via 
experimentation), so its sensitivity at error rate 10% = =44.6%. The relative sensitivity loss shown in the41510

18520  

tables is calculated as in (13) 
 

 elative sensitiviy loss for SHsearch relative to HHsearch1R = number of  tru
number of  true positives in HHse

(13) 
Table 2 
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Sensitivity and Speedup values for SHsearch and HHsearch at error rate of 10% 

 
Table 3 

Sensitivity and Speedup values for SHsearch and HHsearch at error rate of 15% 

 

 

From tables 2 and 3 we can see that for SHsearch, as speedup increases, sensitivity decreases. The reason is that as 

 decreases, the number of submodels in homology detection decreases, hence the time complexity of comparingrf ilter  

time decreases and speedup occurs. However, the decrease in number of used submodels increases the information loss 

which leads to decrease in sensitivity. In situations where we need high sensitivity, we recommend using =0.9 andrf ilter  

0.8, this will achieve a speedup of 8.8X over HHsearch and sensitivity  42%. In other situation where wethomology ≥ ≥  

want a quick search to get initial homology results we can use lower values for .rf ilter   

 

5.4 Scalability analysis 
We test SHsearch against different sizes databases that are constructed for the remote homology database as 

illustrated in section 5.3. Tables 4 and 5  and figures 11 and 12 shows the scalability analysis results by listing 
measured values of speedup against different databases sizes at two values for  and a fixed value forrf ilter  

.thomology   
Table 4 

Scalability analysis results for SHsearch at   and .5  rf ilter = 0 .8  thomology = 0  
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Fig. 11. Scalability analysis curve at  .5  rf ilter = 0   

and  (Plotting of table 4 results).8  thomology = 0   
 

Table 5 
Scalability analysis results for SHsearch at  = 0.9 and =0.8 rf ilter thomology   

 

 
Fig. 12. Scalability analysis curve at .9  rf ilter = 0  
and  (Plotting of table 5 results).8  thomology = 0  

From the results in figure 11 and 12 we can infer that SHsearch has approximately a linear scalability for 
different databases’ sizes. In Figure 11, we can see that SHsearch achieves a 10X speedup for each increase of 
250 domains in database size. SHsearch has a one-time overhead for building query extracting submodels form 
the query, which doesn’t exist in HHsearch. This overhead effect becomes less when the database size 
increases. This linear scalability makes SHsearch more attractive to use other than HHsearch for very large 
databases. 

6 Conclusion  
We presented SHsearch; a new remote homology detection method. SHsearch is developed as a modification 

for HHsearch, a remote homology detection method based on comparing two profile-HMMs. SHsearch focuses 
on comparing “the most informative” submodels extracted from the query and database HMMs, that’s the 
reason of minimal loss in sensitivity. Also, the aggregate lengths of these submodels is significantly less than 
the original HMM, hence SHsearch achieves a noticeable speedup over HHsearch. We have benchmarked 
SHsearch against HHsearch using a remote homology dataset constructed based on SCOP database. SHsearch 
achieves 88X speedup with 8.2% loss in sensitivity at 10% error rate which deemed to be an acceptable tradeoff. 
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In addition, SHsearch has a relatively higher sensitivity than HMMer3, PSI-BLAST and BLAST. Furthermore, 
SHsearch exhibits almost linear scalability for speedup over HHsearch as database size increases. This makes 
SHsearch attractive to use especially in larger size database.  
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