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Abstract—Surface roughness is frequently measured using DEMs to 

characterize the ruggedness and topographic complexity of 

landscapes. Roughness maps have been applied in geological 

mapping, ecological modeling, and other environmental 

applications. These maps are typically derived using a roving-

window approach, where kernel size dictates the scale at which 

roughness is assessed. The pattern of roughness is strongly scale 

dependent and this roughness-scaling relation can reveal useful 

information about the geomorphologic character of landscapes. 

This study applied hyper-scale analysis of a normal-vector based 

roughness metric for a LiDAR DEM of Rondeau Bay, Canada. The 

use of integral images, a data structure for computationally 

efficient filtering operations, allowed for the fine scale resolution of 

the analysis. The unique roughness scale signature of each grid cell 

in the DEM was derived for all spatial scales ranging from 3 to 

5000 cells (7.5 m to 12,502.5 m). Maps of maximum roughness and 

the scale of maximum roughness were created for the study site. 

This cell-specific scaling approach to the characterization of 

surface roughness is in contrast to the use of single, often 

arbitrarily selected, kernel sizes to map topographic attributes. The 

additional information provided by the scale map was found to 

provide valuable ancillary data for landscape interpretation. 

I. INTRODUCTION 

Surface roughness is a common topographic attribute 
measured from DEMs. A range of DEM-derived surface 
roughness metrics have been widely applied in geoscience and 
environmental research [1], [2]. For example, roughness maps 
have been used to delineate large-scale geological units on the 
moon [3] and Mercury [4]. Glenn et al. [5] applied surface 
roughness mapped from a fine-resolution LiDAR DEM to 
characterize the Salmon Falls landslide in Idaho. Roughness has 
also been widely applied in the study of fire behavior [1], [6].   

Roughness maps are derived by measuring topographic 
variability within the local neighborhood surrounding each grid 
cell in a DEM. Thus, roughness is commonly mapped using the 
same roving-window approach used for many topographic 
attributes. The size of the local neighborhood dictates the scale at 
which surface roughness is characterized and will significantly 

impact the resulting roughness map. The scale-variant nature of 
roughness is widely recognized in the literature [2], [3], [7]. 
Ideally, roughness is assessed at a scale that is meaningful with 
respect to the scale of landforms, geomorphological processes, 
and the application. Ultimately, for heterogeneous landscapes, a 
single optimal scale cannot be defined to measure surface 
roughness. Rather, a range of scales are more appropriate for 
capturing the varying complexity of the topographic surface in a 
region. This has led some researchers to study the multi-scale 
properties of topographic surface roughness [2], [7]. 

Grohmann et al. [2] used a combination of filtering, based on 
varying sized kernels, and data resampling (i.e. DEM grid 
coarsening) to study roughness for a site in Scotland across a 
wide range of spatial scales. They concluded that the 
computational time required to calculate roughness using large 
kernel sizes is problematic for multi-scaled analysis. Data 
coarsening methods can improve the computational efficiency of 
these operations, but at the cost of losing some topographic 
information. More recently, [8] and [9] showed how efficient 
filtering methods based on integral images [10] can be applied to 
measures of local topographic position (LTP), allowing for 
efficient ‘hyper-scale’ (analogous to hyper-spectral) analysis of 
topographic properties. This paper extends these earlier studies to 
examine the hyper-scale properties of topographic roughness. 

II. ROUGHNESS MEASURES 

A large number of roughness metrics have been devised and 
previously applied in the literature. In part, this reflects the fact 
that at least two different but related concepts are often conflated 
in common usage of the term surface roughness. First, roughness 
can refer to local elevation variability. Elevation range (relief), 
standard deviation in elevation, and standard deviation of 
topographic residuals are common metrics used to characterize 
elevation variability. This dimension of the roughness concept 
will be referred to as ruggedness. The second aspect of roughness 
is surface complexity, a measure of topographic texture. 
Roughness metrics that characterize texture either use surface 
area (e.g. topographic roughness index [1]), or surface normal 
vectors (or components of normals, e.g. slope and aspect). Vector 
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dispersion and standard deviation of slope have been used 
previously to characterize surface complexity [2]. Notice that 
relatively flat, smooth surfaces can exhibit high ruggedness (e.g. 
a plateau) and areas of complex texture can exhibit relatively low 
relief (e.g. the micro-topography of an agricultural field). 

The scale-dependency of ruggedness is in part a result of the 
increased likelihood of including more prominent regional 
elevation minima and maxima with more extensive kernels. As a 
result, ruggedness maps tend to highlight elevation 
minima/maxima and breaks-in-slope, and ruggedness scale 
signatures (i.e. relation between roughness and kernel size) tend 
to be simple, monotonically increasing, non-linear functions. By 
comparison, the scale signatures for texture-based roughness 
metrics are generally more complex and are often indicative of 
variation in the topographic expression of geological units and 
their age. 

III. METHODS 

A. Hyper-scale surface roughness measurement 

Working in the field of 3D printing, Ko [11] described 
surface roughness as the angular deviation between a surface’s 
normal vectors and the normals of a corresponding ideal (i.e. 
smoothed) surface. This measure of surface complexity is 
therefore in units of degrees. Specifically, roughness is defined in 
this study as the neighborhood-averaged difference in the normal 
vectors of the original DEM and a smoothed DEM surface. 
Smoothed surfaces were derived by applying a mean filter of the 
same size as the neighborhood. Estimating normal vectors is a 
small local neighborhood operation, and therefore 
computationally more efficient than the extended neighborhood 
operation needed to smooth the DEM with varying and large 
kernel sizes. However, an integral image approach was used in 
this study to improve the computational efficiency of the 
smoothing operation. 

An integral image is a raster data structure in which each grid 
cell’s value represents the sum of an underlying distribution (a 
DEM in this case) within the rectangular area bounded by the cell 
and one of the image corners (usually the upper left corner). 
Widely applied in the field of computer vision, integral images 
allow for efficient four-operation measurements of the total of the 
underlying distribution for arbitrary sized rectangular areas. This 
can facilitate image filtering with computational efficiency 
varying with the number of grid cells in the image, but 
independent of the size the filter kernel. This is the basis for 
efficient, hyper-scale geomorphometric analysis proposed by [8]. 
Integral images must be calculated sequentially, because each 
value in grid cell depends on previous cells; however, integral-
image based filtering operations are readily parallelized for 

further improved efficiency. Similarly, calculation of local 
normal vectors can also be parallelized. Two hyper-scale 
roughness plugin tools were implemented in the open-source 
WhiteboxTools library using the Rust programming language. 
The first tool (MultiscaleRoughnessSigature) was used to 
measure and plot the roughness metric at point locations across a 
specified range of spatial scales; the second tool 
(MultiscaleRoughness) mapped the pattern of maximum 
roughness, and the scale at which maximum roughness occurred, 
for each cell.  

Note that in addition to window totals and averages, integral 
images can also be used to efficiently measure standard 
deviations within moving windows. As such, many other 
common roughness metrics (e.g. standard deviation in elevation, 
standard deviation in topographic residuals, standard deviation in 
slope, vector dispersion, and area ratio) are all conducive to the 
approach used in this study. Elevation range is the only one of the 
common roughness metrics that is poorly suited to measurement 
using integral images, since this method cannot measure window 
min/max values. Newman et al. [9] present other efficiency-
optimized filtering techniques that could be used in this case. 

B. Study Site and DEM 

Scale-variant roughness patterns were evaluated for a 8026  
8125 rows by columns, 2.5 m resolution LiDAR DEM of the 
Rondeau Bay area, located in Southwestern Ontario, Canada, 
along the northern coast of Lake Erie (Fig. 1). The Blenheim 
moraine transects the study site. McGregor Creek, a tributary of 
the Thames River, drains the region north of the moraine towards 
Lake St. Clair. The morainal ridge rises approximately 20 m 
above its surroundings. Drainage systems on the moraine are 
poorly organized owing to the hummocky topography. The area 
south of the moraine drains into Rondeau Bay through a series of 
deeply incised stream channels arranged in a parallel drainage 
pattern. The bay is sheltered from Lake Erie by Rondeau Spit, 
which consists of a tightly packed series of low, parallel sand 
ridges and dunes. Agriculture is the dominant land use in the site, 
although the spit is largely forested, and some smaller urbanized 
areas are also present, including the towns of Blenheim and 
Ridgetown (Fig. 1). The DEM was interpolated from last- and 
only-returns of the LiDAR point clouds, excluding early-returns 
and points classified as vegetation and buildings. An inverse-
distance-weighting (IDW) scheme was used for interpolation. 
Several major roads transect the site, and their embankments are 
apparent in the DEM. While buildings were excluded from the 
interpolation, the urban areas are marked in the DEM by their 
differing texture. The dataset is irregular in extent; large no-data 
voids (white areas in Fig. 1) occur within the water bodies 
(Rondeau Bay) and in the areas to the southwest and northeast. 
While the overall relief is low-to-moderate, a range of surface 
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textures result from the variety of topographies within the areas 
of the moraine, spit, and incised fluvial dissection. This character 
makes the dataset well-suited to the purpose of studying surface 
roughness. 

 

Figure 1.  Hillshaded 2.5-m LiDAR DEM of the Rondeau Bay study site. 

IV. EXPERIMENTAL RESULTS  

The surface roughness tools processed the test DEM in 59 
min. using a dual-core 3.3 GHz processor. Fig. 2 presents the 
roughness scale signatures for the five sites identified in Fig. 1. 
Site 1 (flat agricultural area north of the moraine) was the only 
site with a signature that did not contain at least one peak. Sites 2 
(urban) and 3 (area of incised channels) both experienced peak 
roughness with filter kernels in the range of 220-400 cells (550-
1000 m). Site 3, located on the sand spit, possessed the highest 

peak (3.18) and peaked at a relatively short spatial scale (15 
cells; 37.5 m). Site 5 (hummocky terrain on the moraine) 
demonstrated one sharp and high peak at short spatial scales (55 
cells; 137.5 m) and another broad, low peak at around 1500 cells 
(3750 m). Most of the variability in the scale signatures of the 
test sites occurred at scales less than 1000 cells (2500 m). 

Fig. 3 shows the pattern of surface roughness in the Rondeau Bay 
site. This roughness map is unlike others reported in the 
literature, in that it does not represent the surface complexity at a 
single spatial scale; instead, it shows the peak roughness value of 

the unique scale signature associated with each grid cell. That is, 
Fig. 3 is a product of an amalgamation of scales, where each grid 
cell is represented at the scale of maximum roughness for the 
local topography within the broad range of tested scales. Fig. 4 
maps the scale at which maximum surface roughness occurs for 
each cell. 

 

Figure 2.  Roughness scale signatures for study sites (locations in Fig. 1). The 

range of filter sizes from 3  3 to 5000  5000 (7.5 m to 12,502.5 m). 

 

Figure 3.  Maximum surface roughness (degrees) measured with filter sizes 

ranging from 3 to 5000 cells. 
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Figure 4.  Filter size (i.e. spatial scale) of maximum surface roughness. 

V. DISCUSSION AND CONCLUSIONS  

The combination of the maximum roughness (Fig. 3) and the 

scale of maximum roughness (Fig. 4) aid in the interpretation of 

topographic properties of the study site. Areas of relatively high 

roughness were associated with the upper sections of the 

moraine, the two urban areas, the incised channels, the regions 

of low ridges on the sand spit, and all road embankments. 

Within the relatively smooth planar region in the northern 

section of the study site, broad stretches of low roughness were 

punctuated by locally high values associated with incised 

channels and roads. The impact of road embankments 

emphasizes the importance of removing these features from 

fine-resolution LiDAR DEMs in some applications. The region 

of tightly packed sand ridges along the eastern shoreline of 

Rondeau spit was associated with an extensive area of moderate 

to high values of roughness. The surface mounds of a landfill 

site, situated along the southwestern edge of the area, was also 

particularly apparent in the roughness map. 

The mosaic of spatial scales associated with maximum 

roughness (Fig. 4) reveals substantial information about the 

topographic character of the test DEM. The widely ranging 

values of maximum roughness show that there is no single 

optimal kernel size that can be chosen to characterize 

topographic texture in a complex and extensive area. 

Interestingly, areas of high roughness were associated with 

shorter spatial scales and vice versa. The contrasting scales 

shown in Fig. 4 could provide additional information in 

geological mapping applications. 

To conclude, this study demonstrated an application of the 

integral-image approach to measure surface roughness 

(topographic complexity) across a broad range of spatial scales 

with extremely fine scale resolution. This method allows for the 

characterization of maximum surface roughness at spatial scales 

that are optimal for each individual grid cell within a DEM. The 

information contained within the scale map can provide 

additional useful information for landscape interpretation. 
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