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Abstract—Landslides, bifurcations, multi-saddles and remnants of 
terraces are distinctive landforms. Some points on the surfaces of 
these objects are degenerate points. This may help us with their 
automatic recognition and identification. All first-order and 
second-order partial derivatives of analyzed function are necessary 
for detection of degenerate points. Terrain slope, curvatures and 
Hessian are required for classification of degenerate points. The 
paper is aimed at detection of fossil landslides. A point of landslide 
surface where the concave section of thalweg is turning into convex 
section of ridge line is a degenerate point. Two zero isolines of 
Hessian and zero isoline of profile, streamline and plan or 
tangential curvatures pass through this point. Final result of the 
detection procedure depends to a great extent on the quality of 
DEM and  accuracy of derivatives.       

I. INTRODUCTION 
Topographic surface may be expressed by the function of two 

variables x, y in Carthesian coordinates system <0, x, y, z>. Let 
the general formula z = ƒ(x,.y) represent a continuously 
differentiable real function whose second-order partial 
derivatives exist. The Hessian matrix H of the function  ƒ(x,.y)  is 
a matrix of second partial derivatives 
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Define D(x,.y) to be determinant  
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so-called Hessian. Hessian form is identical to the numerator of 
discriminant of second fundamental form.  

Eigenvalues λ1, λ2 of the Hessian matrix are computed by 
solving the quadratic                                                                        
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If D(x,.y) at any point (x0,.y0) is positive, then osculating  
paraboloid at point (x0,.y0) has the form of elliptic paraboloid. If 
eigenvalues λ1, λ2 are positive, the elliptic paraboloid is concave 
up and if point (x0,.y0) is a critical point, the function ƒ(x,.y) has a 
local minimum value there. Critical point is the point of function 
ƒ(x,.y) where the gradient vector vanishes, for example if the first 
partial derivatives are equal to zero. If eigenvalues λ1, λ2 are 
negative, the elliptic paraboloid is concave down and if point 
(x0,.y0) is the critical point, the function ƒ(x,.y) has a local 
maximum value there. For elliptical points Dupin indicatrix will 
form an ellipse aligned with the principal directions. If D(x,.y) is 
negative at the point (x0,.y0), then osculating  paraboloid has the 
form of hyperbolic paraboloid. If hyperbolic point (x0,.y0) is the 
critical point and eigenvalues λ1, λ2 have opposite signs, the 
function ƒ(x,.y) has a saddle point there. For hyperbolic point 
Dupin indicatrix will form a hyperbola. The directions of its 
asymptotes are the same as asymptotic directions. If D(x,.y) = 0, 
then osculating paraboloid has the form of parabolic cylinder and 
Dupin indicatrix in the point has the form of two parallel lines 
[3].  

Zero isolines of Hessian and streamline curvature together 
with zero isolines of profile curvature pass through some peaks, 
pits and double saddle points of isoline field of gradient or slope  
and together with zero isolines of plan or tangential curvature 
pass through such points of isoline field of aspect as well [2]. 

Peaks, depression points and double saddle points on a 
topographic surface are non-degenerate critical points. Let’s  
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Figure 1.  Remnant of terrace surface (z = x3 + y2)  

assume that function ƒ(x,.y) or its part is non-Morse function. It 
means that the Hessian matrix is singular, i.e. Hessian equals to 
zero at some critical points of function ƒ(x,.y). Zero Hessian then 
defines the degenerate critical points of function ƒ(x,.y).                                

II. DEGENERATE CRITICAL POINTS 
 Cusp on a remnant of terrace surface in Fig. 1 and central 

points of double saddle surfaces in Fig. 2 and Fig. 3 and of multi-
saddle surfaces [4] are degenerate critical points. Hessian matrix 
at degenerate critical points have one (e.g. limited cases of  
saddles or remnants of terraces) or both eigenvalues equal to 
zero.   

Occurrence of degenerate critical points on sufficiently 
smooth land surface is rare. Such are, for example, multi-saddle 

 

Figure 2.  Limited case of saddle surface (z = y2 + x2y) or (z = x2 + y2x) 

 

Figure 3.  Limited case of saddle surface (z = y2 - x2y) or (z = x2 - y2x) 

points. Additionally, degenerate critical points may be unstable, 
disappearing even by a small change in altitude. These points 
appear only for a short time until their disruption (e.g.  the 
limited case of saddle surface in Fig. 2 transforms into various 
surfaces with double saddle points and limited case of saddle 
surface, i.e. incipient bifurcation in Fig. 3 often transforms into 
surface of neighboring valleys with low drainage divide).  

The remnant of terrace surface in Fig. 1 and its inverse 
surface transform into the surfaces with non-zero gradient 
magnitude at the central point. Central cusp point vanishes but 
the point remains an inflection point (the inflection point of 
valley and ridge longitudinal profile, i.e. the inflection point of 
the thalweg and ridge line). Inflection point of transformed 
surfaces is a regular point (at least one first-order partial 
derivative is non-zero), though it retains the properties of 
degenerate critical point (Hessian always equals to zero). We call 
this point a “degenerate regular” point.  

 

Figure 4.  Landslide surface (z = x3 ± y3) …   
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Except for the remnants of terraces, the frequent landforms 
are landslides. Natural landslide is a dynamic geomorphological 
form. Sharp edges of an active landslide quickly transform into 
smooth surface of a fossil landslide. The contours on both sides 
of central straight contour of ideal landslide surface will bend 
outward. Typical and degenerated critical point of an ideal 
landslide surface is the inflection point where a concave section 
of the thalweg is turning into convex section of the ridge line 
(Fig. 4). All derivatives from the Hessian matrix, and thus also 
both zero eigenvalues at inflection point of ideal landslide surface 
equal to zero.       

III. DETECTION OF DEGENERATE POINTS 

First partial derivatives and zero Hessian define degenerate 
critical or regular points. Not all points with zero Hessian are 
important marks on the topographic surface. Important marks are 
the points mentioned above. In order to determine degenerate 
points, the derivatives and curvatures have to be applied.  

The course of zero isolines of triplet curvatures in the 
immediate neighborhood of the regular inflection point of an 
ideal landslide surface is illustrated in Fig. 5. Plan or tangential 
and profile curvatures are commonly used curvatures in current 
geomorphometry. Additional curvature can be given by                                                               

 

Figure 5.  Landslide surface (z = x3 + y3 + x + y): brown isolines – contours, red 
isoline – zero streamline curvature (thalweg and ridge line), dashed blue isoline 
–  zero profile curvature, magenta isolines – zero plan or tangential curvature, 
dashed black isolines – zero Hessian  
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when A is an aspect (values 0° and 360° correspond to the south 
direction) and normal direction n is a direction in physical terms 
[1]. Shary called the curvature with opposite sign “rotor” [6] and 
Peckham called it “streamline curvature” [5]. Streamline 
curvature expresses a curvature of flow lines in the plane (x, y).      

Two zero isolines of Hessian and zero isolines of all second-
order  partial derivatives pass through an inflection point, which 
divides landslide surface into the erosional and depositional 
landforms. Products of first and second partial derivatives define 
the numerators of the formulas of all curvatures, and therefore 
zero isolines of curvatures pass through the inflection point of 
landslide surface from Fig. 5 as well.   

In the case of remnant of terrace surface from Fig. 6, the zero 
isoline of Hessian and zero isoline of profile and streamline 
curvature pass through a regular inflection point of the thalweg. 
Two zero isolines of plan or tangential curvature in the contours 
direction only determine the neighborhood of the inflection point. 

  
Figure 6. Remnant of terrace surface (z = x3 + y2 + x + y): brown isolines – 
contours, red isolines – zero streamline curvature, blue isoline – zero profile 
curvature, magenta isolines – zero plan or tangential curvature, dashed black 
isoline – zero Hessian 
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Figure 7.  Result of landslide detection procedure: brown isolines – contours, 
red isolines – zero streamline curvature, blue isolines –  zero profile curvature, 
magenta isolines – zero plan or tangential curvature, dashed black isolines – zero 
Hessian  

Result of the detection procedure is shown in Fig. 7. In the 
figure, three points may be the inflection points of fossil 
landslides. Two zero isolines of Hessian and zero isolines of 
streamline, profile and plan/tangential curvatures pass through 
the inflection point of  the Landslide I and Landslide II and the 
Inflection point I. The Landslide I and Landslide II points 
determine  landslide surfaces evident from contours.  

The Inflection point I is not a local minimum but a saddle 
point in the gradient magnitude or slope angle isoline field. This 
means that profile curvature in the immediate neighborhood of 
the point is positive (convex) in the up-slope direction and 
negative (concave) in the down-slope direction. The Inflection 
point I is not an inflection point of landslide surface. The gradient 
magnitude or slope in the surrounding area of the Inflection point 
I is greater than the gradient magnitude or slope in the more 
distant areas where head scarp and toe should be in the case of 
real landslide.    

The intersection points of zero isolines of Hessian and zero 
isolines of streamline and profile curvature and the intersection 

points of zero isolines of Hessian and zero isolines of the 
streamline and plan or tangential curvature in Fig. 7 delimit more 
or less inclined slopes which resemble remnant parts of various 
terraces. Such shapes are also landslide scarp and debris bulge.         

IV. CONCLUSIONS 
Two zero isolines of Hessian and zero isoline of profile, 

streamline and plan or tangential curvature pass through the 
point where a concave thalweg is turning into a convex ridge 
line or, on the contrary, a convex thalweg is turning into a con-
cave ridge line. It is similar to the situation when a ridge line is 
turning into a thalweg. All second-order partial derivatives at the 
point are equal to zero.  

The test of second-order partial derivatives is a principle of a 
certain procedure to detect degenerate points with two zero ei-
genvalues. Supplementary conditions needed for differentiation 
of points can be very simple: for example, sign of profile curva-
ture in the down-slope and up-slope direction or kind of singu-
larity of gradient magnitude or slope angle isoline field. The 
method for extraction of potential fossil landslide shapes per-
forms better if the surface is sufficiently smooth.     
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