
Making computer science results reproducible - A case study

using Gradle and Docker

Wilfried Elmenreich Corresp., 1 , Philipp Moll 1 , Sebastian Theuermann 1 , Mathias Lux 1

1 Universität Klagenfurt, Klagenfurt, Austria

Corresponding Author: Wilfried Elmenreich

Email address: wilfried.elmenreich@aau.at

This paper addresses two questions related to reproducibility within the context of

research related to computer science. First, requirements on reproducibility are analyzed

based on a survey addressed to researchers in the academic and private sector. The

survey indicates a strong need for open but also easily accessible results, thus reproducing

an experiment should not require too much effort. The results from the survey are then

used to formulate general guidelines for making research results reproducible. In addition,

this paper explores a number of existing software tools that could bring forward

reproducibility in research results. After a general analysis of tools a further investigation

is done via three case studies based on actual research projects which are used to

evaluate the previously introduced tools. Results indicate that due to conflicting

requirements, none of the presented solutions fulfills all intended goals perfectly. However,

we present requirements and guidelines for making research reproducible. While the main

focus of this paper is on reproducibility in computer science, the results of this paper are

still valid for other fields using computation as a tool.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

Making Computer Science Results1

Reproducible – A Case Study using Gradle2

and Docker3

Wilfried Elmenreich1, Philipp Moll1, Sebastian Theuermann1, and Mathias4

Lux1
5

1Alpen-Adria-Universität Klagenfurt, Austria6

Corresponding author:7

Wilfried Elmenreich1
8

Email address: wilfried.elmenreich@aau.at9

ABSTRACT10

This paper addresses two questions related to reproducibility within the context of research related to

computer science. First, requirements on reproducibility are analyzed based on a survey addressed to

researchers in the academic and private sector. The survey indicates a strong need for open but also

easily accessible results, thus reproducing an experiment should not require too much effort. The results

from the survey are then used to formulate general guidelines for making research results reproducible.

In addition, this paper explores a number of existing software tools that could bring forward reproducibility

in research results. After a general analysis of tools a further investigation is done via three case studies

based on actual research projects which are used to evaluate the previously introduced tools. Results

indicate that due to conflicting requirements, none of the presented solutions fulfills all intended goals

perfectly. However, we present requirements and guidelines for making research reproducible. While the

main focus of this paper is on reproducibility in computer science, the results of this paper are still valid

for other fields using computation as a tool.

11

12

13

14

15

16

17

18

19

20

21

22

INTRODUCTION23

Being able to reproduce the results of an experiment is a fundamental principle in science across all24

disciplines. Reproducing results of published experiments, however, often is a cumbersome and ungrateful25

task. The reason for this is twofold: First, some fields like for example biology are concerned with26

complex and chaotic systems which are hard to reproduce (Casadevall and Fang (2010)). At the same27

time, when approaching the digital world, we would expect software-based experiments to be easily28

reproducible, because digital data can be easily provided and computer algorithms operating on these29

data are typically well-described and deterministic. However this is currently often not the case due to a30

lack of disclosure of relevant software and data that would be necessary to repeat a simulation. Ongoing31

open science initiatives aim at having researches providing access to data and software together with their32

publication in order to allow reviewers to make well-informed decisions and to provide other researchers33

with the information and necessary means to build upon and extend the original research (Ram (2013)).34

This paper addresses two questions related to reproducibility using two different methodologies. First35

the current practice, awareness of the subject and possible concerns have been examined by an online36

survey, which addressed people at different stages in universities, research institutions and companies.37

After evaluating the results and elaborating a number of relevant points to be addressed, we identify38

four tools that can and have been used to support reproducibility. We present three case studies where39

three different types of software projects are packaged to provide an accurate and easy possibility for40

reproducing results in an identical environment. Due to conflicting requirements, none of the presented41

solutions fulfills all intended goals perfectly. The reasons for this are elaborated in Section 6.42

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

1 RELATED WORK43

Walters Walters (2013) notes that it is often difficult to reproduce the work described in molecular44

modeling and chemoinformatics papers. A main problem is the absence of a disclosure requirement in45

many scientific publication venues so far. Morin et al. (2012) reports that in 2010 out of the 20 most cited46

journals, only three had editorial policies requiring availability of computer source code after publication.47

Fortunately, this situation is changing to the better, for example Science introduced a policy that requires48

authors to make data and code related to their publication available whenever possible (Witten and49

Tibshirani (2013); Peng (2011); Hanson et al. (2011)). In a comment to this policy, Shrader-Frechette and50

Oreskes (2011) brings up the issue that privately funded science, despite it may well be of high quality,51

is not subject to the same transparency requirements as public science. Another obstacle is the use of52

closed-source tools and undisclosed software results in publicly funded research software development53

projects (Morin et al. (2012)).54

Several papers report on case studies for data repositories in the context of reproducibility. Examples55

are from such different domains such as geographic information systems (Steiniger and Hunter (2013)),56

astrophysics (Allen and Schmidt (2015)), microbiome census (McMurdie and Holmes (2013)) and57

neuroimaging (Poline et al. (2012)). These approaches are promising, but it cannot be expected that the58

described approaches are going to be used beyond the field they have been introduced. Simflowny (Arbona59

et al. (2013)) is another platform for formalizing and managing the main elements of a simulation flow,60

which is not tied to a field, but a specified simulation architecture. The Whole Tale approach (Brinckman61

et al. (2018)) aims at linking data, code, and digital scholarly objects to publications and to integrate62

all parts of the research story. Other works focus on code and data management, such as by Ram63

(2013) suggesting very general version control systems like Git for transparent data management in64

order to enable reproducibility of scientific work. The CARE approach (Janin et al. (2014)) extends the65

archiving concept with an execution system for Linux systems, which also takes software installation66

and dependencies into account. Docker (Boettiger (2015)), which will be closer examined in this paper,67

provides an ever more generic approach by utilizing virtualization for providing cross-platform portability.68

In 2016, ACM SIGCOMM Computer Communication Review conducted a survey on reproducibility69

with 77 responses from authors of papers published in CCR and the SIGCOMM sponsored confer-70

ences (Bonaventure (2017)). The responses showed that there is a good awareness of the need for71

reproducibility, and a majority of authors either considered their paper self-contained or have released the72

software used to perform experiments. However, there was a shortcoming of releases of experimental73

data or of modifications of existing open source software. An open question part of the survey indicated74

a need for encouragement for publishing reproducible work or for papers that attempt to reproduce or75

refute earlier results.76

2 SURVEY77

In computer science quite a lot of research is backed up by prototypes, implementations of algorithms,78

benchmarking and evaluation tools, and data generated in the course of research. A critical factor for79

cutting edge research is to be able to build upon the results of other researchers or groups by extending80

their ideas, applying them to new domains or by just reflecting them from a new angle. This is easily done81

with scientific publications, which are nowadays mostly available online. While the hypotheses, findings,82

models, processes and equations are published, the data generated and the tools used for generating the83

data and evaluating new approaches are sometimes only pointed out, but have to be found elsewhere.84

Our hypothesis in that direction is that there is a gap between scientific publishing on the one hand85

and the publication of software artifacts and data for making results reproducible for other researchers86

on the other hand. In that sense we created a survey asking researchers in the computer science field for87

their approach and opinion. The survey consists of five parts. First, basic demographic information is88

surveyed, including the type of research, the field of research, the typical research contribution, and the89

type of organization. Second, the common practice of the participant for publishing software artifacts and90

data is surveyed, ie. the steps the researchers take to make their work reproducible. Third, we focused on91

the researchers expectations when they want to reproduce scientific results. Fourth, we asked for opinions92

on integrating the question of reproducibility in the peer review process. Finally, we collected additional93

thoughts with open questions.94

2/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

2.1 What Researchers Want95

With 125 participants most of the people where from academic research with 74 out of the 125 working96

or studying at a university and 35 of 125 from research institutes. 13 participants noted that they are97

mainly working for a company, 2 were private researchers, 1 from school. Within their career 30% of the98

participants were PhD students, 28% were professors or group leader, 17% worked as researchers within99

a project, 12% were principal investigators, and 9% were undergraduate students at the time of the study.100

Three participants were head of departments or organizations, and only two participants indicated that101

they are postdoctoral researchers. Computer science or computer engineering was the field of research102

for 72% of the participants. 7.2% of the participants came from electrical engineering and 4% from103

information systems.104

Within the survey we used Likert scales indicating the level of agreement in five steps from 1 (strongly105

agree) to 5 (strongly disagree). Fig. 1 visualizes the answers in the section on how researchers commit106

to reproducibility. As can be seen from the chart, the majority of people want to reproduce results from107

other researchers or groups: 103 out of 125 indicated agreement. Even more (110 out of 125) considered108

reproducible results as added value for publishing. More than half of the participants (67 out of 125),109

however, are not willing to pay for open access publishing of their results. There is also a difference110

in numbers between researchers who typically try to reproduce results from others (53 out of 125) and111

those who want to do it (103 of 125). Moreover, more than 100 of 125 participants want to publish their112

software and tools and intend to give detailed documentation on how to produce their results.113

74 29 6 9 7

66 36 11 7 5

21 32 41 23 8

13 34 34 33

51 53 15 5 1

81 29 10 1 4

57 46 17 2 3

strongly agree agree neutral disagree strongly disagree

I am willing to pay for open access to my research software tools and
frameworks to make them available to other researchers.

I want to reproduce the results of other researchers or groups from their
original work (software tools or libraries) to compare it to my work.

Published software artifacts are added value to the published text in the
research paper.

Is it possible to reproduce your research results with free and open
source software?

I typically try to reproduce the research results of other groups or
researchers by installing and running their tools.

When I publish software I intend to provide detailed documentation on
how to install and run the software.

I want to publish software tools and methods from my research to allow
others to reproduce my results.

Figure 1. Responses from the second part of the survey cover the common practice of participants.

The question on how many hours researchers wanted to invest into making their results reproducible114

(excluding three outliers with an answer of 1000 or more hours) led to an average of 24.4 hours, whereas115

4 participants indicated 0 hours, 55 participants wanted to invest from 1-16 hours, 37 participants116

indicated they’d invest 20-80 hours and 6 participants would invest 100-250 hours. 35 participants haven’t117

published any software artifacts at the time of the study. For the other participants, means of making118

their results reproducible were – multiple means could be specified – detailed instructions (68), make119

scripts (54), installation scripts (34), virtualization software (29), and container frameworks (15). There120

were two mentions of hosting web front ends as means of making results available and three mentions121

of public source code repositories as platforms for distribution. Answering the question if results could122

be reproduced with free software, participants indicated the use of non-free programming language123

environments (50 times part of the answer), licensed operating systems (35), copyrighted materials (19),124

and commercial tools (11).125

57 46 17 2 3

47 49 21 5 3

7 21 37 26 34

30 26 31 27 11

strongly agree agree neutral disagree strongly disagree

Local computer security and local data security is a major concern for me
when installing and running software from other researchers.

I am willing to pay for easily accessible software tools and for being able to
reproduce results of other researchers.

I want to build my research tools by extending on the work (software, tools
or frameworks) of other researchers or groups.

I want to reproduce the results of other researchers or groups from their
original work (software tools or libraries) to compare it to my work.

Figure 2. Responses from the third part of the survey cover the expectations of the participants.

Fig. 2 visualizes answers from the survey regarding the researchers’ expectations on the reproducibility126

of the work of others. As can be seen, most of the participants want to use software from others and want127

to build upon the work of others. However, paying for such a service is not agreeable for nearly half of128

3/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

the participants. Computer security when installing programs from others is a major concern for 56 out of129

125 participants. Leaving aside five outliers (either 0 or greater than 100) participants stated that software130

for reproducing results should be available for an average of 9.1 years. Whereas 30 participants think131

it should be up to 0.5-3 years, 55 indicate it should be 4-5, 26 state 8-10, and 9 think it should be more132

than ten years available. Answering how much time in hours participants would invest to get software of133

others running to reproduce results, the average amount was 15.94 hours leaving aside 5 outliers with 100134

or more hours. 3 participants would invest no time at all, 47 participants would invest 1-8 hours, 32 would135

invest 10-24 hours, and 18 participants 30-80 hours. Regarding the major concerns on installing and136

running software from other researchers, participants mentioned that critical factors for them are primarily137

the ease of installation (104), license issues (72), and hardware requirements (71). Fewer participants138

noted the size of the download (27).139

An open question asking for reasons why software artifacts should be published yielded diverse140

answers. Main lines of arguments were improvements in credibility and reliability of results, building141

trust and improving understanding of results of others. Besides that people pointed out the benefit of the142

practical approach by fostering task based research, spreading your own research by making the tools143

available and open communication to foster research in general. Another open question was focusing on144

reservations towards publishing data and software. Most common class of answers noted legal or privacy145

issues (14). Others pointed out the additional effort needed (8), possible commercial interests (8), missing146

reward or support for doing so (3), and that it’s not part of their job, ie. not supported by the group or147

organization (2).148

34 45 18 14 7

35 52 23 7 1

strongly agree agree neutral disagree strongly disagree

As a reviewer I would be willing to check research
results in addition to the traditional peer review

Checking for reproducibility of research results
should be part of a peer review process.

Figure 3. Responses from the fourth part of the survey cover the integration of reproducibility checks in

the peer review process. Note that 7 participants did not provide an answer, so there are only 118

responses instead of 125.

Fig. 3 visualizes the researchers opinions on checks for reproducibility in the peer review process.149

73.7% of the participants (87 out of 118) noted agreement on additional checks in the review process.150

66.9% of the participants (79 out of 118) would be willing to do checks on reproducibility as peer151

reviewers.152

While we assume a minor bias caused by the study’s title in the way that participants are attracted by153

the title if they could identify themselves with the topic of reproducibility in a positive way, it is still valid154

to create hypothesis from the findings. So while the majority has agreed with reproducibility of results155

being necessary, major concerns are legal issues, additional effort and possible commercial interests.156

Regarding legal issues we have to distinguish between privacy concerns, i.e. sensitive data on clinical157

patients, photos or videos of people, etc. and violations of for instance copyright law, license issues158

or export restrictions. An interesting hypothesis is that researchers would be willing to share if legal159

issues and efforts are reduced to a minimum. This may be achieved by license constraints (only licenses160

others can build upon) or exceptions (leaving license issues aside for research by general agreement) for161

publishing research, as well as by providing a framework for publishing, sharing and building upon each162

others research, i.e. a GitHub for researchers.163

3 REQUIREMENTS AND GENERAL GUIDELINES164

First of all, authors publishing results need to make all information available that is necessary to reproduce165

the results.166

Second, the effort necessary to reproduce the results needs to match the value of doing the work.167

Work reproducing or refuting previous results is in overall much less appreciated than original work,168

so the effort a researcher is willing to invest in order to reproduce previous results is much lower than169

effort willing to spend for new work. On the other hand, when planning to build own research on top of170

other results the investment can be higher. The most critical case is in reviewing, when reproducibility171

4/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

is intended to by checked as part of the reviewing process. Reviewers have a strict timeline to perform172

their review, so there is a need for a straightforward, mostly automated process to reproduce the results.173

Moreover, despite contributing to verifying the results of a paper, reviewers are nowhere mentioned in174

connection with the work. Adding that reviewers are doing voluntary work, they are probably the least175

motivated to reproduce results.176

In order to address these issues, the following guidelines should be followed:177

• Code, data and information on how to conduct an experiment should be gathered at a single place178

(a single container) which can be found in connection with the paper.179

• The reproduction process should be highly automated (for example by an easy to handle build and180

execution script).181

• To address security issues, the published code should be provided as source code and/or run within182

a virtual environment.183

• Commercial libraries and other components that need the reviewer to pay for its use should be184

avoided unless absolutely necessary.185

• Since research papers tend to create some interest even long after they have been published, it is186

necessary to ensure that software and environment for the reproduction process stays available,187

either by packing all necessary components into a container or by referring to well-archived open188

source tools.189

• The time and necessary information to reproduce a result should be tested with an uninvolved190

person. Unless the size of the project requires it, the reproduction process should take at most one191

day.192

4 EXISTING TOOLS193

Most tools for sharing software artifacts are at the same time tools used in the development of software194

artifacts. This could be either tools for simple tasks like compiling software projects, but also more195

complex tools for tasks like automated dependency installation and software packaging. To prevent196

unnecessary complex configuration, it is wise to base the selection of the used tool on the complexity of197

the software artifact. Software artifacts which are complex to run require a more sophisticated tool with a198

high level of abstraction, while a simple artifact does not need a complex tool to run it.199

In this section we present four commonly used open-source tools for sharing software artifacts. We200

begin with the simple tool CMake which is used as build management solution and continue with tools201

utilizing a higher level of abstraction. Finally, we summarize the features of the different tools and202

highlight benefits of each tool.203

4.1 CMake204

CMake is a cross-platform build-tool based on C++. It is designed to be used with native build envi-205

ronments such as make. Platform-independent build files are used to generate compiler-specific build206

instructions, which define the actual build process. Main features of CMake are tools for testing, building207

and packaging software, as well as the support of hierarchical structures, the automatic resolution of208

dependencies and parallel builds.209

One drawback of CMake is that required libraries or other dependencies of software artifacts must be210

available and installed in the required version on the host system in order to successfully build the project.211

This could lead to extensive preparations for a build which is mandatory for executing software artifacts.212

Tools with similar functionality are configure scripts, the GNU Build System and the WAF build213

automation system.214

4.2 Gradle215

Gradle is a general purpose build tool based on Java and Groovy. Gradle integrates the build tools Maven216

as well as Ant and can replace or extend both systems. Main features of Gradle are the support for Maven217

repositories for dependency resolution and installation and the out of the box support for common tasks,218

i.e. building, packaging and reporting. Gradle supports multiple programming languages, but has a strong219

5/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

focus on Java, especially as it is the recommended build system for Android development. An integrated220

wrapper system allows to use Gradle for building software artifacts without installing Gradle. Dependency221

installations and versions are maintained automatically. If a build requires a new version of a library, it is222

downloaded and installed automatically.223

The automated dependency installation is a great benefit of Gradle, although there are still some224

challenges to overcome. One issue is that automated dependency installation only works, if the required225

libraries are offered in an online repository. If the required dependency is removed from the online226

repository, building any software depending on this library becomes impossible.227

For other programming languages tools with similar functionality are available, i.e. the Node Package228

Manager (NPM) for JavaScript projects.229

4.3 Docker230

The open-source software Docker allows packaging software applications including code, runtime, system231

tools, and system libraries into a single container. The resulting container can be published, downloaded232

and executed on various systems without operating system restrictions in a virtualized environment. That233

way, an application embedded in a Docker container will execute in a predefined way, independently of234

the installed software environment on the host computer. The only requirement for the host system is the235

installed Docker engine.236

A Docker container is a kind of lightweight virtual machine. A running Docker container is accessible237

via terminal or graphical user interface. Thereby, Docker has a broad range of application. A container238

could contain the runtime environment for a single application with graphical user interface, but it239

could also contain a ready to deploy server application for web services or even environments for heavy240

calculations or simulations.241

The major difference between Docker and the previously presented tools is that Docker is usually242

not used for the development of an artifact. In most cases, a Docker container is created for sharing a243

predefined environment in a team. This means, that the container is created and the software artifact is244

deployed in the container afterwards.245

4.4 VirtualBox246

VirtualBox is an open-source software for the virtualization of an entire operating system. VirtualBox247

emulates a predefined hardware environment, where multiple operation systems, like Windows, Mac OS248

and most Unix Systems can be installed. The installed operating system is stored as persistent image,249

which allows the installation and configuration of software. Once the image is created, it can be shared250

and executed on multiple machines.251

As mentioned before, VirtualBox emulates the entire hardware of a computer resulting in higher252

execution overhead as well as higher setup effort. Before the scientific software artifact can be installed in253

an VirtualBox container, an operating system and all dependencies have to be installed.254

4.5 Comparison of Analyzed Tools255

After the presentation of selected tools in the last section, we now want to compare their features relevant256

for sharing scientific software artifacts. Table 1 briefly summarizes our findings.257

Security: Some software artifacts require administrator access rights on the local machine in order to258

be executed. These access rights allow malicious behavior, which could lead to unwanted consequences259

on the local machine or even on the local network.260

VirtualBox and Docker execute software artifacts in sandboxed environments and therefore allow261

the secure execution of software artifacts. Tools like CMake and Gradle do not offer this security262

mechanism. When executing a shared software artifact from untrusted sources, a sandboxed environment263

is recommended.264

Required Software: Gradle has the lowest requirements regarding required software for the execution265

of software artifacts. The only requirement for building an artifact with Gradle is the Java Virtual Machine,266

which is nowadays installed on most hosts. The Gradle Wrapper allows the dependency installation and267

the build of artifacts without installing Gradle itself. VirtualBox and Docker have no additional software268

requirements. CMake is comparatively cumbersome. It is required to install all dependencies of the269

desired software artifact, which can be time-consuming.270

6/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

Table 1. Comparison of tools for sharing scientific software artifacts

Tool CMake Gradle Docker VirtualBox

Security no security mecha-

nisms

no security mecha-

nisms

sandboxed envi-

ronment

sandboxed envi-

ronment

Required Soft-

ware

CMake, required

dependencies

Java, (Gradle) Docker Platform

or Docker Tools

VirtualBox

Supported plat-

forms

Linux, MacOS,

Windows

Java VM Linux, MacOS,

Windows

Linux, MacOS,

Windows

Required knowl-

edge for sharing

little little moderate little

Required knowl-

edge for installa-

tion and execution

moderate moderate little little

Effort for sharing little little moderate high

Effort for installa-

tion and execution

moderate/high little little little

Size of shared ob-

ject

small small up to multiple GBs up to multiple GBs

Limitations Installation could

be exhausting

Specific Gradle

project structure

required

GUI requires extra

effort

Images always in-

clude the entire op-

erating system

Supported platforms: All tools work on various platforms. CMake, Docker and VirtualBox are271

compatible to most Linux platforms, Windows and MacOS. Gradle is working everywhere, where the272

Java Virtual Machine is available. Besides this great platform support it has to be kept in mind that the273

software artifacts itself could require a certain operating system. Through the virtualization of Docker274

and VirtualBox this problem can be eliminated.275

Required knowledge for sharing: If a build management tool is used in the development of a scientific276

software artifact, we assume that the researchers become familiar with the build management tool during277

the development phase. Therefore, no additional knowledge for the researcher who is sharing the artifact278

is required.279

VirtualBox also does not require a lot of additional background information. Everybody who is able280

to install an operating system is able to share a software artifact embedded in a VirtualBox image.281

Docker, especially the terminology of Docker seems to be confusing on the first sight. It is necessary282

to become familiar with the terminology.283

Required knowledge for installation and execution: Researchers are often not familiar with the tools284

used for the creation of software artifacts. Reading the documentation of build management tools can be285

exhausting and not time-efficient for a short test of an artifact. CMake and Gradle require some knowledge286

in order to build a software artifact, especially if errors appear.287

VirtualBox and Docker are easier to use. If a Docker image is hosted on DockerHub, a single288

command is sufficient for downloading and running the image. If this command is provided, no additional289

knowledge is required. Due to a graphical user interface, running a virtual box image is even easier.290

Effort for sharing: CMake, Gradle and other build management systems are intended to define a291

standardized build process. If a build management system is used during the development of the scientific292

software artifact, no additional effort arises for sharing. The configuration file for the build management293

system can be shared along the source code of the software artifact.294

Docker and VirtualBox are usually not directly involved in software development. In most cases, a295

Docker or VirtualBox image has to be created explicitly for sharing the software artifact. The structured296

process of building a Docker container allows easy reuse of already existing Docker containers for other297

software artifacts. In case of VirtualBox the whole VirtualBox image has to be shared on a file server.298

Docker containers can be shared on the free to use Docker Hub or on a file server. Alternatively, a299

7/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

Dockerfile, which contains the building instructions for a Docker container, can be created and shared as300

a text file.301

Effort for installation and execution: The installation effort is low for all discussed tools. The highest302

effort regarding the execution of software artifacts arises when using CMake, where required dependencies303

have to be installed manually. For building and executing software artifacts with Gradle only a few304

commands are required. Docker and VirtualBox require the least effort; the shared image only needs to be305

executed.306

Size of shared object: When using CMake or Gradle, only the source code of the software artifact and307

the configuration file of the build management tool have to be shared which usually leads to small shared308

objects.309

The shared container of Docker or VirtualBox has to contain the source code and all other tools which310

are required for the execution, such as the operating system. This results in large shared objects, in some311

cases the size of a Docker container exceeds a Gigabyte or more.312

Alternatively, Docker provides an option allowing for smaller shared objects – Dockerfiles. A313

Dockerfile contains only text instructions for building a Docker image. Therefore, the size of a Dockerfile314

is only a few kilobytes, but once it is executed Docker automatically pulls and builds the source code of315

the software artifact, which results in a large Docker image on the local machine.316

Limitations: All analyzed tools show limitations. CMake is a lightweight tool for software development,317

but the effort for installing the dependencies of a software artifact could be extensive. Furthermore, it is318

only applicable for a handful of programming languages like C or C++.319

When Gradle is chosen as build system early in the development phase, it is perfectly suited for Java320

projects. Unfortunately, Gradle requires a certain project structure which makes it hard to configure321

Gradle for existing projects which are not structured in the Gradle way.322

Docker is perfectly suited for command-line or web applications, which is the case for a huge323

amount of scientific software artifacts. Additional configuration is required to support GUIs of desktop324

applications. Frevo (see section 5.2), used in one of our case studies, demonstrates GUI support for325

desktop applications with Docker.326

VirtualBox is applicable for all types of software artifacts, but the overhead of creating and sharing327

a VirtualBox image could be huge. For sharing an artifact, independent of its size and complexity, a328

complete operating system has to be installed and shared.329

5 USE CASES330

After introducing the theoretical background in the last sections, we now present case studies where we331

analyzed the applicability of various tools for sharing software artifacts. Therefore, we selected three332

scientific artifacts from different computer science research areas, which allows a broad view on sharing333

scientific software artifacts.334

5.1 Stochastic Adaptive Forwarding335

Stochastic Adaptive Forwarding (SAF) (Posch et al. (2017)) is a forwarding strategy for the novel Internet336

architecture Named Data Networking (NDN) (Zhang et al. (2014)). Forwarding strategies in NDN are337

responsible for forwarding packets to neighboring nodes and therefore select the paths of traffic flows in338

the network.339

The Network Forwarding Daemon (NFD) implements the networking functionalities of NDN. It is340

written in C++ and uses the WAF build automation system. For testing purposes, the network simulator341

ns-3/ndnSIM (Mastorakis et al. (2016)) is utilized, which also uses the WAF build system. For testing SAF342

in the simulation environment three steps are required: i) The installation of the NFD; ii) the installation343

of the network simulator ns-3/ndnSIM and finally iii) patching SAF into a compatible version of the NFD.344

The installation of SAF was tested and analyzed in the standard way by using WAF and by using Docker.345

SAF with WAF: The standard way of developing the NFD is by using the WAF build system. The346

functionality of the WAF build system is similar to the functionality of CMake. This means that347

WAF automatically resolves dependencies, but the installation of dependencies must be done manually.348

8/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

Although extensive installation instructions were published1, it is quite difficult to install the simulator349

and it’s dependencies. Furthermore, there are slight undocumented differences when installing the NDN350

framework on different Unix versions. Once the NDN framework is compiled in the correct version, it is351

easy to patch SAF. Nevertheless, it takes up to multiple hours to compile the NDN framework with SAF352

the first time.353

SAF with Docker: NDN and SAF are licensed under GPL V3, which means that packaging the software354

is not a legal issue. Technically, Docker provides two possibilities for creating and sharing images. The355

first variant is to check out a preconfigured image like Ubuntu Linux from the Docker website and connect356

to it via terminal. All required changes can be done in the terminal and finally persisted with a commit.357

The changed image can be shared via the Docker website or as binary file. The second possibility to create358

the image is by using Dockerfiles. These files contain simple creation instructions for images and can be359

easily shared due to their small size. To build an image, the Dockerfile can be executed on any host with360

the Docker framework installed. Both variants were tested for SAF. The resulting images, containing all361

dependencies and the compiled software artifacts, have a size of about 4.6 GB; the size of the Dockerfile362

is only about 2 KB. When using the precompiled image2, running the image only takes an instant. The363

execution of the Dockerfile takes, depending on the Internet connection and the computing power of364

the host system, between 15 and 60 minutes. Once the image is running, the results of the paper can be365

reproduced or new experiments with SAF can be done by conducting simulations using the provided366

network simulator.367

5.2 FREVO368

FREVO (Sobe et al. (2012)) is an open-source framework to help engineers and scientists in evolutionary369

design or optimization tasks to create a desired swarm behavior. The major feature of FREVO is the370

component-wise decomposition and separation of the key building blocks for an optimization task. This371

structure enables the components to be designed separately allowing the user to easily swap and evaluate372

different configurations and methods or to connect an external simulation tool. FREVO is typically used373

for evolving swarm behavior for a given simulation (Fehervari and Elmenreich (2010); Monacchi et al.374

(2014)). FREVO is a mid-sized project with 50k lines of mostly Java code, having a graphical interface375

as well as a mode for pure command line operation, e.g. on a simulation server. The component-based376

structure allows to easily extend and remove components (e.g., a simulation, a type of neural network, an377

optimization algorithm), which sometimes creates some effort in newly setting up FREVO.378

FREVO was tested and analyzed with the following three tools:379

FREVO with build script: Until recently, FREVO was provided as a download zip file3 that included380

sources of the main program and additional components together with an ant build file. However, there had381

been problems in the past with different language versions of Java. A further problem can be dependencies382

on third party tools or libraries, which are not automatically maintained by this type of build script.383

FREVO with Gradle: An analysis showed that the current structure of FREVO, especially because of384

its component-plug-in-architecture, conflicts with the expected and possible project structure for Gradle.385

FREVO with Docker: Since FREVO and its components are open source under GPL V3, there was386

neither a legal nor a technical problem to put it into a virtual Docker container. We used an Ubuntu387

Linux system that was provided by Docker. Openjdk8 was installed as Java Runtime environment. After388

installing FREVO in the Docker system, it was pushed onto the free Dockerhub fileserver.4 To reproduce a389

result made with Frevo it thus possible to (given that Docker is installed) download the respective Docker390

container and start it. In general, the result was easily usable, apart from some effort to get a graphical391

display working. The parallelization of simulation, which is a natural ability of FREVO, works fine as392

well inside a Docker container. The FREVO container has a compressed size of 223 MB, which is mostly393

due to the files of Ubuntu Linux.394

1https://github.com/danposch/SAF, last visited 2018-04-25
2https://hub.docker.com/r/phmoll/saf-prebuild/, last visited 2018-04-25
3http://frevo.sourceforge.net/
4https://hub.docker.com/r/frodewin/frevo/

9/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

5.3 LireSolr395

LireSolr (Lux and Macstravic (2014)) is an extension for the popular Apache Solr5 text retrieval server to396

add functionality for visual information retrieval. It adds support for indexing and searching images based397

on image features and is for instance in use by the World Intellectual Property Organisation, a UN agency,398

within the Global Brand DB6 for retrieval of similar visual trademarks.399

LireSolr brings the functionality of the LIRE library (Lux and Marques (2013)) to the popular search400

server. While LIRE is a library for visual information retrieval based on inverted indexes, it’s research401

driven and to be integrated in local Java applications. Apache Solr on the other hand is more popular402

than the underlying inverted index system Lucene as it allows to modularize retrieval functionality by403

providing a specific retrieval server with cloud functionality and multiple APIs to access it for practical404

use.405

LireSolr is intended for people who need out of the box visual retrieval methods without the need of406

integrating a library in their applications. It can be called from any mobile, server or desktop platform and407

runs on systems with a Java 8 runtime. This flexibility is valued among researchers as well as practitioners.408

LireSolr is hosted on Github7. Gradle and Docker build files are part of the repository.409

LireSolr with Gradle: The standard way for building LireSolr is by using Gradle. Current IDEs can410

import Gradle build files; any task can be done from within the IDE. While Gradle makes sure that the411

right version for each library is downloaded and everything is ready to build, installing the new features to412

the Solr server has to be done manually. The supporting task in Gradle just exports the necessary JAR413

files. The user or developer has to install Solr, then create a Solr core, change two configuration files, copy414

the JARs and restart the server to complete the installation. While these steps are extensively described in415

the documentation, it’s still major effort for new users, who do not have prior experience with retrieval in416

general or Apache Solr in particular.417

LireSolr with Docker: As LireSolr is extending Solr by adding additional functionality, the intuitive418

way to create a Docker container is to extend the Solr Docker container. The Dockerfile defining the build419

of the Docker container is part of the LireSolr repository, where a specific Gradle task is building and420

preparing relevant files for the creation of the image. This includes the aforementioned JARs and config421

files as well as a pre prepared Solr core and a small web application as a client. The Docker container422

can easily be run and provides basic functionality for digital image search. Developers who just want to423

test LireSolr can get it running within seconds using Docker Hub: https://hub.docker.com/r/424

dermotte/liresolr/.425

6 ONE TOOL TO REPRODUCE THEM ALL426

In the previous sections, we presented tools for sharing software artifacts and a case study showing how427

the tools can be applied in order to share scientific software artifacts. In this section, we now reflect on the428

advantages and shortcomings of the tools with respect to the results from our survey presented in Section429

2.430

Each of the presented tools has its advantages and shortcomings. For instance, the additional effort431

for sharing an artifact when using a build management tool is very low because in most cases a build432

management tool is already used during the creation of the artifact. In contrast, it can be challenging433

and time-consuming for other researchers to get the build management tool up and running because434

required dependencies or the installation process may not be documented in detail. Software artifacts,435

which are provided as virtualized containers are easy to run and provide a high degree of security but are436

cumbersome in case a researcher wants to build upon or extend previously published software artifacts.437

When weighing these advantages and shortcomings we quickly see that the one tool to reproduce all438

our scientific results does not exist. Nevertheless, based on our findings from the survey we now want439

to give recommendations for creating reproducible results and scientific software artifacts which can be440

easily used by other researchers.441

The survey clearly showed that many researchers are interested in building their research on the work442

of others, which gets much easier, when published software artifacts can be reused. Furthermore, we443

5http://lucene.apache.org/solr/, last visited 2018-04-13
6http://www.wipo.int/branddb/en/, last visited 2018-04-13
7https://github.com/dermotte/liresolr, last visited 2018-04-13

10/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

saw that the average time researchers are willing to invest to get artifacts running is only about two444

workdays. Thus, we assume that it is very important for researchers to get the artifact running in a short445

time, otherwise, researchers lose interest in using the artifact and start developing their own solution.446

When taking the demand for security into account as well, we see that virtualized containers appear to447

be a good choice. The provided software artifact can be executed without the overhead of installing it,448

by simply running the container. Furthermore, it is possible to become familiar with the artifact in the449

virtualized environment and check if the artifact is suitable to base own work on it.450

When researchers decide to build on the artifact, it may be cumbersome to continue using a virtualized451

container, because altering a software artifact is more convenient on a local system. This means that452

the researcher has to install the artifact locally, without virtualized container. According to our study,453

researchers currently prefer providing detailed instructions and build tools. Solely relying on this454

information, it could be challenging to install the artifact, as already discussed.455

Dockerfiles are one solution to overcome this issue. As already explained, a Dockerfile is a kind of a456

construction guideline for Docker containers. It contains all command line directives, which are required457

to build a Docker container and can therefore be seen as exact procedure for the local installation of458

an artifact. Following the commands listed in the Dockerfile, local installation of a sofware artifact is459

a breeze. These commands ensure that all dependencies are installed correctly, otherwise it would not460

be possible to create a Docker container. This means by providing a Dockerfile both options become461

possible, the software artifact can be executed in a secure container, but it can also be easily installed by462

following the instructions from the Dockerfile.463

Another finding of our survey is that the long-term availability of software artifacts is important464

for researchers and should be about 10 years. In addition, the ACM Artifact Reviewing and Badging465

guideline8 emphasizes the importance of the possibility to reproduce results after a long time, by providing466

a separate badge for artifacts which are archived in archival repositories. When looking at our presented467

tools, we can see technical, as well as legal issues on the way to achieve long term availability. Although468

services, such as Code Ocean9 or Dryad10, for archiving software artifacts exist, the following things469

should be kept in mind. Tools, such as Gradle, rely on online repositories for downloading required470

dependencies. If one of the required dependencies becomes unavailable, the build is not possible any471

more. This means that all dependencies as well as all required tools have to be included when the artifact472

is archived. This leads to technical issues, because the amount of required tools to reproduce a result473

could be tremendously high. For instance, if a required operating system or compiler is not available any474

more, the results can not be reproduced, which means that even such tools need to be archived. Besides475

this technical issue, packaging these tools could lead to legal issues as well when tools with limiting476

licenses are used. Furthermore, also the platform for archiving software is operated by someone. If it’s477

operator decides to discontinue service, all artifacts archived by this provider are lost.478

7 CONCLUSION479

In this paper we focused on the reproducibility of research results in computer science. We collected the480

opinions and requirements of 125 researchers by means of a survey. The analysis of the survey’s results481

confirmed our initial assumption that the reproducibility of research results is an important concern in482

computer science research. In addition, researchers not only want to reproduce results, but also want483

to base their own work on the results of others. Main reasons for the importance of reproducibility are484

improved credibility and improved understanding of results. Based on the researchers opinions, we created485

guidelines which aid researchers in making their research reproducible. The applicability of various486

tools for publishing software artifacts was discussed while keeping our guidelines in mind. Scientific487

artifacts of different research areas in computer science were used to test the applicability of discussed488

tools for sharing reproducible research. Finally, we discussed our findings and concerns on the process489

of publishing reproducible research. According to our study, the long-term availability of reproducible490

results is of great importance to many researchers, but we identified open issues in achieving availability491

for longer periods. Even if reproducibility of research is currently not the common case, we recognized a492

strong positive shift towards reproducible research, backed not only by individual researchers, but also by493

renowned scientific journals and publishers.494

8https://www.acm.org/publications/policies/artifact-review-badging, last visited 2018-04-06
9https://codeocean.com/, last visited 2018-04-06

10https://datadryad.org/, last visited 2018-04-06

11/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

ACKNOWLEDGMENTS495

We would like to thank all participants of the survey for their valuable input and all colleagues who helped496

us by sharing their practical experience and discussion.497

This work was supported in part by the Austrian Science Fund (FWF) under the CHIST-ERA project498

CONCERT (project no. I1402).499

REFERENCES500

Allen, A. and Schmidt, J. (2015). Looking before Leaping: Creating a Software Registry. Journal of501

Open Research Software, 3 (1):e15, 3.502

Arbona, A., Artigues, A., Bona-Casas, C., Massó, J., Miñano, B., Rigo, A., Trias, M., and Bona, C.503

(2013). Simflowny: A general-purpose platform for the management of physical models and simulation504

problems. Computer Physics Communications, 184(10):2321 – 2331.505

Boettiger, C. (2015). An introduction to docker for reproducible research. SIGOPS Oper. Syst. Rev.,506

49(1):71–79.507

Bonaventure, O. (2017). The january 2017 issue. SIGCOMM Comput. Commun. Rev., 47(1):1–3.508

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M. B., Kowalik, K., Kulasekaran, S.,509

Ludäscher, B., Mecum, B. D., Nabrzyski, J., Stodden, V., Taylor, I. J., Turk, M. J., and Turner, K.510

(2018). Computing environments for reproducibility: Capturing the “whole tale”. Future Generation511

Computer Systems.512

Casadevall, A. and Fang, F. C. (2010). Reproducible science? Infection and Immunity, 78(12):4972–4975.513

Fehervari, I. and Elmenreich, W. (2010). Evolving neural network controllers for a team of self-organizing514

robots. Journal of Robotics.515

Hanson, B., Sugden, A., and Alberts, B. (2011). Making data maximally available. Science,516

331(6018):649.517

Janin, Y., Vincent, C., and Duraffort, R. (2014). Care, the comprehensive archiver for reproducible execu-518

tion. In Proceedings of the 1st ACM SIGPLAN Workshop on Reproducible Research Methodologies519

and New Publication Models in Computer Engineering, TRUST ’14, pages 1:1–1:7, New York, NY,520

USA. ACM.521

Lux, M. and Macstravic, G. (2014). The LIRE Request Handler: A Solr Plug-In for Large Scale Content522

Based Image Retrieval, pages 374–377. Springer International Publishing, Cham.523

Lux, M. and Marques, O. (2013). Visual information retrieval using java and lire. Synthesis Lectures on524

Information Concepts, Retrieval, and Services, 5(1):1–112.525

Mastorakis, S., Afanasyev, A., Moiseenko, I., and Zhang, L. (2016). ndnSIM 2: An updated NDN526

simulator for NS-3. Technical Report NDN-0028, Revision 2, NDN.527

McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive analysis and528

graphics of microbiome census data. PLOS ONE, 8(4):1–11.529

Monacchi, A., Zhevzhyk, S., and Elmenreich, W. (2014). HEMS: A home energy market simulator.530

Computer Science – Research and Development.531

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., and Sliz, P. (2012). Shining light into532

black boxes. Science, 336(6078):159–160.533

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060):1226–1227.534

Poline, J.-B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Halchenko, Y. O., Hanke, M., Haselgrove, C.,535

Helmer, K. G., Keator, D. B., Marcus, D. S., Poldrack, R. A., Schwartz, Y., Ashburner, J., and Kennedy,536

D. N. (2012). Data sharing in neuroimaging research. Front Neuroinform, 6:9.537

Posch, D., Rainer, B., and Hellwagner, H. (2017). Saf: Stochastic adaptive forwarding in named data538

networking. IEEE/ACM Transactions on Networking, 25(2):14.539

Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source540

Code for Biology and Medicine, 8(1):7.541

Shrader-Frechette, K. and Oreskes, N. (2011). Symmetrical transparency in science. Science,542

332(6030):663–664.543

Sobe, A., Fehérvári, I., and Elmenreich, W. (2012). FREVO: A tool for evolving and evaluating self-544

organizing systems. In Proceedings of the 1st International Workshop on Evaluation for Self-Adaptive545

and Self-Organizing Systems, Lyon, France.546

Steiniger, S. and Hunter, A. J. (2013). The 2012 free and open source {GIS} software map – a guide to547

12/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

facilitate research, development, and adoption. Computers, Environment and Urban Systems, 39(0):136548

– 150.549

Walters, W. P. (2013). Modeling, informatics, and the quest for reproducibility. Journal of Chemical550

Information and Modeling, 53(7):1529–1530.551

Witten, D. M. and Tibshirani, R. (2013). Scientific research in the age of omics: the good, the bad, and552

the sloppy. J Am Med Inform Assoc, 20(1):125–127. amiajnl-2012-000972[PII].553

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., Papadopoulos, C., Wang, L., and554

Zhang, B. (2014). Named data networking. SIGCOMM Comput. Commun. Rev., 44(3):66–73.555

13/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27082v1 | CC BY 4.0 Open Access | rec: 1 Aug 2018, publ: 1 Aug 2018

