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Summary	
The	 success	 of	 personalized	medicine	 does	 not	 only	 rely	 on	methodological	 advances	 but	 also	 on	 the	
availability	 of	 data	 to	 learn	 from.	 While	 the	 generation	 and	 sharing	 of	 large	 data	 sets	 is	 becoming	
increasingly	 easier,	 there	 is	 a	 remarkable	 lack	 of	 diversity	within	 shared	datasets,	 rendering	any	 novel	
scientific	 findings	 directly	 applicable	 only	 to	 a	 small	 portion	 of	 the	 human	 population.	 Here,	 we	 are	
investigating	 two	 fields	 that	have	been	majorly	 impacted	by	data	 sharing	 initiatives,	 neuroscience	and	
genetics.	Exploring	the	limitations	that	are	a	result	of	a	lack	of	participant	diversity,	we	propose	that	data	
sharing	in	itself	is	not	enough	to	enable	a	global	personalized	medicine.	
	

Personalized	or	stratified	medicine	has	been	one	of	the	hot	topics	in	health	care,	reaching	well	beyond	

the	launch	of	the	Precision	Medicine	Initiative	in	the	United	States	[1]	.	The	promise	of	personalized	

medicine	is	to	identify	individuals	at	risk	and	find	optimally	tailored	health	care	solutions	based	on	

their	 genetic	 and	 environmental	makeup	 [2].	Although	personal	medicine	 spans	over	 a	 variety	 of	

medical	 and	 biological	 disciplines,	 two	 subfields	 are	 particularly	 promising	 due	 to	 their	 growing	

adoption:	 genetics	 and	neuroscience.	 Indeed,	many	 current	 examples	 of	 precision	medicine	 come	

from	pharmacogenomics	in	general,	specifically	from	oncology,	where	cancer	treatments	are	picked	

to	match	the	mutations	found	in	tumours	[3]–[5].		

While	this	use	of	genetic	data	in	health	care	is	projected	to	become	more	central	in	the	next	years,	its	

success	will	depend	on	multiple	factors.	As	for	most	things	in	healthcare,	cost	plays	a	huge	role.	But	

while	the	costs	for	performing	a	high	precision	medical	examination,	like	a	brain	scan,	or	sequencing	

a	human	genome	continue	to	drop	[6],	their	usefulness	is	bound	by	both	our	ability	to	quickly	process	

these	large	amounts	of	data	as	well	as	the	lack	of	medically-relevant	scientific	knowledge	we	have	

about	 individual	 genetic	 variants	 [7],	 or	 complex	neurobiological	processes.	As	 such	 it	 is	 key	 that	

science	be	able	to	generate	genetic	knowledge	more	quickly	[8].	
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Two	recent	trends	in	science,	big	data	and	artificial	intelligence,	appear	to	be	promising	for	not	only	

accelerating	our	genomic	and	neurobiological	understanding	but	also	for	diagnosing	in	a	precision	

medicine	framework	[9],	[10].	The	idea	is	that	artificial	intelligence	can	be	used	to	mine	large	data	

sets	 to	 find	 the	 smallest	 associations	 between	 genetic	 variants	 /	 neuromarkers	 and	 disease	

phenotypes,	and	to	track	disease	progression	or	predict	optimal	treatments.	To	effectively	create	such	

large	data	collections	it	thus	becomes	central	to	link	and	share	individual	data	sets	[8].	But	while	the	

total	number	of	basepairs	sequenced	per	time	as	well	as	the	total	number	of	participants	included	in	

neuroscientific	studies	have	exponentially	increased	over	the	last	years,	sharing	practices	for	such	

data	has	not	kept	up	a	similar	speed	[11],	despite	individual	efforts	to	enable	open	sharing	of	genetic	

[12],	[13]	or	neuroscientific	[14]	data.	

Sharing	genomic	data	

To	alleviate	these	shortcomings	individual	academic	consortia	have	been	founded	to	pool	data	sets	

across	institutions	and	individual	researchers.	National	efforts	include	the	UK10K	[15],	which	aimed	

to	sequence	10,000	participants	in	the	United	Kingdom	and	the	similarly	structured	100,000	Genomes	

Project	by	Genomics	England	[16].	In	the	United	States	the	Exome	Aggregation	Consortium	(ExAC)	[17]	

-	which	has	collected	over	60,000	exomes	-	and	more	recently	the	All	of	Us	initiative	[18]	are	collecting	

and	aggregating	more	patient	data	for	research	purposes.	And	it's	not	only	academic	research	that	is	

starting	to	collect	 large	data	sets	for	personalized	medicine,	commercial	companies	are	starting	to	

explore	the	field	too.	

Since	deCODE	Genetics	and	23andMe	released	the	first	Direct-To-Consumer	genetic	tests	back	in	2007	

[19]	 the	 market	 for	 commercial	 genetic	 testing	 has	 grown	 significantly:	 Not	 only	 in	 terms	 of	

companies	 like	MyHeritage,	FamilyTreeDNA,	AncestryDNA	or	Veritas	 that	have	entered	the	market,	

but	also	in	terms	of	the	number	of	people	who	have	gotten	genetic	tests	through	these	services.	Today	

AncestryDNA	has	over	5	million	customers	and	industry	veteran	23andMe	has	genetic	data	for	over	2	

million	people	[20].	These	sizable	commercial	databases	are	of	interest	to	academic	and	commercial	

researchers.	23andMe	has	collaborated	with	academic	researchers	on	numerous	research	papers	[21]	

and	has	done	commercial	 for-profit	 collaborations	with	pharmaceutical	 companies	 like	Pfizer	 and	

Genentech.	

Who	profits	from	such	large-scale	research	remains	open.	As	an	example,	in	psychology	the	need	to	

look	into	how	representative	study	participants	are	has	been	acknowledged.	After	all,	around	80%	of	
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all	 participants	 in	 psychology	 studies	 are	 from	WEIRD	 (Western,	 Educated,	 Industrialized,	 Rich,	

Democratic)	 countries	 and	 do	 thus	 not	 represent	 human	 diversity	 [22].	 As	 such,	 only	 WEIRD	

participants	can	fully	profit	from	much	of	psychological	research.	To	avoid	the	overrepresentation	of	

WEIRD	 individuals	 found	 in	 psychology,	 it	 is	 key	 that	 our	 genetic	 research	data	 resources	 reflect	

human	diversity	across	populations.	 	 Indeed,	 this	 issue	of	 representativeness	becomes	even	more	

central	 in	 the	genetic	 framework	of	Genome	Wide	Association	Studies	 (GWAS).	These	 studies	 are	

commonly	used	to	 inform	personalized	medicine	by	identifying	genetic	risk	factors,	e.g.	 for	cancer	

[23].	Unfortunately,	most	of	 these	 identified	 risk	 factors	 are	mere	 correlations,	not	 genes	directly	

causing	a	disease.	As	these	correlations	depend	on	the	ancestry	context	in	which	they	were	found,	

findings	 of	 a	 GWAS	 are	 not	 necessarily	 applicable	 outside	 the	 human	 population	 in	 which	 an	

association	was	initially	found	[24]	and	cannot	be	replicated	in	many	cases	[25].	

Indeed,	many	data	sharing	efforts	show	such	a	 lack	of	population	diversity:	More	than	50%	of	the	

over	 60,000	 samples	 in	 the	 ExAC	 consortium	 come	 from	 a	 European	 population	 [17].	 Similarly,	

commercial	databases	like	the	ones	of	23andMe	suffer	from	ancestry	and	race	biases	[26],	[27].	Open	

genomic	databases	–	like	the	Personal	Genome	Projects	and	openSNP	–	are	not	fairing	much	better:	

75%	of	participants	in	one	of	Harvard's	Personal	Genome	Project	studies	identified	as	white	[12]	and	

amongst	a	survey	of	over	500	openSNP	participants	over	70%	come	from	the	US,	UK	and	Canada.	

Additionally,	over	75%	of	openSNP	participants	had	at	least	a	Bachelor's	degree,	hinting	at	a	highly	

skewed	demographic	[28].	

Sharing	neurobiological	data	

Similar	 to	 genetics,	 neuroscience	 has	 gone	 a	 long	 way	 when	 it	 comes	 to	 data	 sharing:	 While	

initial		attempts	to	share	data	mainly	focused	on		post-processed	data,	like	coordinate-based	results	

or	statistical	maps	of	magnetic	resonance	imaging	(MRI)	[29],	more	recent	initiatives	enable	sharing	

of	entire	functional	or	structural	MRI	datasets	[30],	[31]	and	magneto-	or	electro-	encephalography	

(M/EEG)	data	[32].		

As	 in	 the	 case	 of	 psychology	 and	 genomics,	 neuroscience	 research	 is	 largely	 based	 on	 data	 of	

individuals	from	WEIRD	societies	[33],	despite	a	plethora	of	studies	showing	that	brain	development	

is	affected	by	socioeconomic	status,	early	life	stress,	or	cultural	differences	[34]–[38].	Indeed,	within	

or	 across	 household	 socio-economic	 variables	 during	 childhood,	 such	 as	 family	 income,	 parental	

education	 [39],	 [40]	 or	 neighbourhood	 poverty	 levels	 [35],	 can	 be	 traced	 on	 trajectories	 of	 brain	

development,	and	result	in	differences	in	brain	structure	[39]	and	cognitive	functions	[41],	or	gene	
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expression	[42].	Differences	in	brain	networks	according	to	socio-economic	status	are	also	evident	

during	adolescence	[40]	and	adulthood	[36].	

	

Furthermore,	 culture	 has	 been	 shown	 to	 influence	 neural	 functions	 [38].	 Cultural	 and	 ethnic	

differences	have	an	impact	on	emotion	perception	and	expression,	and	brain	responses	to	emotional	

or	social	cues	[43].	Moreover,	ethnic	differences	have	been	found	in	physiological	responses	to	fear	

or	novelty	[44],	[45],	which		are	commonly	used	to	assess	anxiety	or	post-traumatic	stress	disorders	

[46].	This	situation	is	aggravated	by	the	fact	that	ethnicity	can	influence		commonly	used	laboratory	

measurements	of	fear	like	skin	conductance	responses	[45],	potentially	 leading	to	the	exclusion	of	

ethnicities	despite	being	at	higher	risk	e.g.	for	post-traumatic	stress	disorders	[47].		

How	much	 existing	 data	 sharing	 efforts	 for	 neuroscience	 are	 affected	 by	 these	 biases	 is	 hard	 to	

estimate	at	this	point:	Although	these	initiatives	generally	tend	to	support	standardized	data	formats	

for	 data	 sharing	 [48],	 [49],	 they	 only	 rarely	 include	 concrete	 guidelines	 for	 reporting	 of	 socio-

demographic	variables	[50].	

Data	sharing	as	a	social	movement	

All	of	this	paints	a	bleak	picture:	The	populations	we	are	using	to	develop	personalized	medicine	are	

highly	WEIRD	[22].	Even	worse,	we	might	often	not	be	even	aware	of	this,	as	we	are	not	collecting	the	

needed	 demographic	 data	 to	 identify	 our	 biases.	 Depending	 on	 the	 field,	 research	 studies	 can	

furthermore	 only	 contain	 small	 sample	 sizes,	 making	 it	 hard	 to	 evaluate	 how	 ethnicity	 or	 social	

factors	 influence	neurobiological	 functions	and	gene	expression.	Only	by	sharing	diverse	datasets,	

and	including	rich	demographic	information	will	it	be	possible	to	make	our	understanding	of	disease	

progression,	and	neurobiological	functions	relevant	for	all	individuals,	irrespective	of	their	social	or	

ethnic	background.	

Back	in	2005,	Thomas	Friedman	firmly	believed	that	next	great	breakthrough	in	bioscience	could	come	

from	a	15-year-old	who	downloads	the	human	genome	in	Egypt	[51].	Today,	we	have	to	acknowledge	

that	 there's	 a	 good	 chance	 that	 this	 15-year-old	 would	 not	 be	 able	 to	 profit	 from	 their	 own	

breakthrough.	Because	of	this	we	are	still	far	away	from	a	truly	personalized	medicine,	making	our	

personal	data	political.	It	is	up	to	us,	the	generators	of	data	and	the	people	sharing	data	to	work	on	

changing	this,	ensuring	that	the	promise	of	personalized	medicine	is	equitable.	Or	to	say	it	with	Carol	

Hanisch's	words:	There	 are	 no	 personal	 solutions	 at	 this	 time.	 There	 is	 only	 collective	 action	 for	 a	

collective	solution	[52].		
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