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Abstract 
Stream temperature is an important exogenous factor influencing populations of stream 
organisms such as fish, amphibians, and invertebrates. Many states regulate stream protections 
based on temperature. Therefore, stream temperature models are important, particularly for 
estimating thermal regimes in unsampled space and time. To help meet this need, we developed 
a hierarchical model of daily stream temperature and applied it across the eastern United States. 
Our model accommodates many of the key challenges associated with daily stream temperature 
models including the lagged response of water temperature to changes in air temperature, 
incomplete and widely-varying observed time series, spatial and temporal autocorrelation, and 
the inclusion of predictors other than air temperature. We used 248,517 daily stream temperature 
records from 1,352 streams to fit our model and 100,909 records were withheld for model 
validation. Our model had a root mean squared error of 0.61 C for the fitted data and 2.03 C for 
the validation data, indicating excellent fit and good predictive power for understanding regional 
temperature patterns. We then used our model to predict daily stream temperatures from 1980 - 
2015 for all streams <200 km2 from Maine to Virginia. From these, we calculated derived stream 
metrics including mean July temperature, mean summer temperature, and the thermal sensitivity 
of each stream reach to changes in air temperature. Although generally water temperature 
follows similar latitudinal and altitudinal patterns as air temperature, there are considerable 
differences at the reach scale based on landscape and land-use factors. 

1 Introduction 
Temperature is a critical factor in regulating the physical, chemical, and biological properties of 
streams. Warming stream temperatures decrease dissolved oxygen, and decrease water density of 
streams. Biogeochemical processes such as nitrogen and carbon cycling are also temperature 
dependent and affect primary production, decomposition, and eutrophication. Both physical 
properties and biogeochemical processes influence the suitability for organisms living in and 
using the stream habitat beyond just primary producers. Additionally, temperature can have 
direct effects on the biota, especially poikliotherms such as invertebrates, amphibians, and fish. 
Given commercial and recreational interests, there is a large body of literature describing the 
effects of temperature on fish, particularly the negative effects of warming temperatures on cool-
water fishes such as salmonids [Xu et al., 2010a, 2010b; Al-Chokhachy et al., 2013a; Kanno et 
al., 2013]. Finally, stream temperature can even affect electricity, drinking water, and recreation 
[van Vliet et al., 2011]. Therefore, understanding and predicting stream temperatures is important 
for many of stakeholders. 

Stream temperature models can be used for explanatory purposes (understanding factors 
and mechanisms affecting temperature) and for prediction. Predictions can be spatial and 
temporal including forecasting and hindcasting. Predictions across space are especially valuable 
because there is often a need for information at locations with little or no observed temperature 
data. For example, many states have regulations related to the management of streams classified 
as cold, cool, and warm waters [Beauchene et al., 2014], but because of the tremendous number 
of headwater streams it is impossible classify most streams based on observed data. Therefore, 
modeled stream temperature is needed to classify most streams for regulatory purposes. 
Forecasting can provide immediate information such as the expected temperature the next hour, 
day, or week as well as long-term information about expected temperatures months, years, and 
decades in the future. Hindcasting can be used to examine temperature variability and trends 
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over time and for model validation. Both forecasting and hindcasting are useful for 
understanding climate change effects on stream temperature regimes. 

Given the importance of temperature in aquatic systems, it is not surprising that there are 
a variety of models and approaches to understanding and predicting stream temperature. Stream 
temperature models are generally divided into three categories: deterministic (also called 
process-based or mechanistic), stochastic, and statistical [Caissie, 2006; Benyahya et al., 2007; 
Chang and Psaris, 2013]. Deterministic models are based on heat transfer and are often modeled 
using energy budgets [Caissie, 2006; Benyahya et al., 2007]. These models require large 
amounts of detailed information on the physical properties of the stream and adjacent landscape 
as well as hydrology and meteorology. They are useful for detailed assessments and local 
scenario testing. However, the data requirements preclude the models from being applied over 
large spatial extents. 

Stochastic models attempt to combine pattern (seasonal and spatial trends) with the 
random deviations to describe and predict environmental data [Kiraly and Janosi, 2002; Sura et 
al., 2006; Chang and Psaris, 2013]. Stochastic models of stream temperature generally rely on 
relationships between air and water temperature adding random noise and an autoregressive 
correlation, often decomposed by seasonal and annual components. These models are most 
commonly used to estimate daily temperature fluctuations because of their ability to address 
autocorrelation and approximate the near-random variability in environmental data [Caissie et 
al., 2001; Kiraly and Janosi, 2002; Ahmadi-Nedushan et al., 2007]. A limitation is that the 
physical processes driving temperature fluctuations are not elucidated with these models. They 
are generally used to describe characteristics and patterns in a system and to forecast these 
patterns in the future [Kiraly and Janosi, 2002]. Additionally, stochastic models rely on 
continuous, often long, time series from a single or a few locations. Inference cannot be made to 
other locations without assuming that the patterns and random deviations are identical at those 
locations. 

As with stochastic models, statistical models generally rely on correlative relationships 
between air and water temperatures, but also typically include a variety of other predictor 
variables such as basin, landscape, and land-use characteristics. Statistical models are often 
linear with normally distributed error and therefore used at weekly or monthly time steps to 
avoid problems with temporal autocorrelation at shorter time steps (e.g. daily, hourly, sub-
hourly). Parametric, nonlinear regression models have been developed to provide more 
information regarding mechanisms than traditional statistical models without the detail of 
physical deterministic models [Mohseni et al., 1998]. Researchers have also developed 
geospatial regression models that account for spatial autocorrelation within dendritic stream 
networks [Isaak et al., 2010; Peterson et al., 2010, 2013]. However, due to the complexity of the 
covariance structure of network geostatistical models, they are best used for modeling single 
temperature values across space (e.g. summer maximum, July mean, etc.) rather than daily 
temperatures [Peterson et al., 2010; Ver Hoef and Peterson, 2010]. Additionally, statistical 
machine learning techniques such as artificial neural networks have been used to model stream 
temperatures when unclear interactions, nonlinearities, and spatial relationships are of particular 
concern [Sivri et al., 2007, 2009; DeWeber and Wagner, 2014]. 

In contrast with deterministic approaches, statistical models require less detailed site-
level data and therefore can be applied over greater spatial extents than process-based models. 
They also can describe the relationships between additional covariates and stream temperature, 
which is a limitation of stochastic models. These relationships can be used to understand and 
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predict anthropogenic effects on stream temperature such as timber harvest, impervious 
development, and water control and release [Webb et al., 2008]. Quantifying the relationship 
between anthropogenic effects, landscape characteristics, meteorological patterns, and stream 
temperature allows for prediction to new sites and times using statistical models. This is 
advantageous for forecasting and hindcasting to predict and understand climate change effects on 
stream temperatures. This is critical because not all streams respond identically to air 
temperature changes and the idiosyncratic responses may be predicted based interactions of 
known factors such as flow, precipitation, forest cover, basin topology, impervious surfaces, soil 
characteristics, geology, and impoundments [Webb et al., 2008]. 

Letcher et al. [2016] outline six general challenges of statistical stream temperature 
models including accounting for 1) the non-linear relationship between air and water temperature 
at high and low air temperatures, 2) different relationships between air and water temperature in 
the spring and fall (hysteresis), 3) thermal inertia resulting in lagged responses of water 
temperature to changes in air temperature, 4) incomplete time series data and locations with large 
differences in the amount of available data, 5) spatial and temporal autocorrelation, and 6) 
important predictors of stream water temperature other than air temperature. They developed a 
statistical model that addresses aspects of non-linear relationships, hysteresis, thermal inertia, 
and spatial and temporal autocorrelation but their analysis was limited to a single small network 
of one stream with three tributaries and multi-decadal  time series [Letcher et al., 2016]. 

Many fish biologists have focused on weekly, monthly, or summer-only metrics of 
stream temperature to relate warm conditions to trout distributions [Al-Chokhachy et al., 2013b; 
Jones et al., 2014]. However, daily temperatures are useful because they can be used to 
understand and model activity or detection conditional on the thermal conditions at the time of 
sampling [Kery, 2010; Hocking et al., 2013; Milanovich et al., 2015]. They can also be 
summarized into any derived metrics of interest by scientists or managers [Jackson et al., 2018]. 
Depending on the species, life-stage, or management options, decision makers and biologists 
might be interested in different metrics such as degree days since an event (e.g. oviposition, 
hatching), frequency of thermal excursions, magnitude of excursions, mean summer temperature, 
or variability in temperature of different time frames, all of which can be derived from daily 
temperature predictions. Daily temperatures can also relate more closely to state agency 
regulations such as the frequency of daily temperatures over a threshold when classifying cold, 
cool, and warm streams for legal protection [e.g. MassDEP, 2013]. Without knowing in advance 
all the potential uses of predicted stream temperatures, a daily model provides the flexibility to 
derive the values needed for particular decisions. 

We describe a novel statistical model of daily stream temperature that incorporates 
features of stochastic models and extends the Letcher et al. [2016] framework to large 
geographic areas. This model handles time series data of widely varying duration from many 
sites using a hierarchical mixed model approach to account for autocorrelation at specific 
locations within watersheds. It incorporates catchment, landscape, and meteorological covariates 
for explanatory and predictive purposes. It includes an autoregressive function to account for 
temporal autocorrelation in the time series, a challenge with other statistical models at fine 
temporal resolution. Additionally, our hierarchical Bayesian approach readily allows for greater  
accounting of uncertainty. We use the model to predict daily stream temperature across the 
northeastern United States over a 36-year time record and derive metrics of thermal 
characteristics for each stream reach. 
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2 Data and Methods 

2.1 Water temperature data 
We gathered stream temperature data from state and federal agencies, individual academic 
researchers, and non-governmental organizations (NGOs) from Maine to Virginia (Figure 1). 
The data were collected using automated temperature loggers. The temporal frequency of 
recording ranged from every five minutes to once per hour. Organizations used a variety of 
different loggers but accuracies were generally reported as ±0.4 - 0.5 C with 0.1 C recording 
resolution. These data were consolidated in a PostgreSQL database linked to a web service at 
http://db.ecosheds.org. Data collectors could upload data at this website and choose whether to 
make the data publicly available or not. The raw data were stored in the database and users could 
flag problem values and time series. Only user-reviewed data were used in the analysis and 
flagged values were excluded. For our analysis, we performed some additional automated and 
visual quality assurance and quality control (QAQC) on the sub-daily values, summarized to 
mean daily temperatures and performed additional QAQC on the daily values. The QAQC was 
intended to flag and remove values associated with logger malfunctions, out-of-water events 
(including first and last days when loggers were recording but not yet in streams), and days with 
incomplete data which would alter the daily mean. Most QAQC was done through visual 
inspection of each time series. The QAQC webtool used for flagging questionable data can be 
found at http://db.ecosheds.org/qaqc. We also developed an R [R Development Core Team, 
2016] package for analyzing stream temperature data from our database, including the QAQC 
functions which can be found at https://github.com/Conte-Ecology/conteStreamTemperature. 
The R scripts using these functions for our analysis are available at https://github.com/Conte-
Ecology/conteStreamTemperature_northeast. 
 
Figure 1. Map of the locations where temperature data were collected and indicating which locations were used for 
validation or model calibration (fitting). Many locations were used for both with some years withheld for validation. 
No individual datum was used for both calibration and validation. 
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Stream reach (stream section between any two confluences) was our finest spatial 
resolution for the analysis. In the rare case where we had multiple logger locations within the 
same reach recording at the same time, we used the mean value from the loggers for a given day. 
In the future, with sufficient within reach data, it would be possible to use our modeling 
framework to also estimate variability within reach by adding one more level to the hierarchical 
structure of the model (see 2.4 Statistical model description below). 

2.2 Stream network delineation 
Temperature logger locations were spatially mapped to the stream reaches of a high-resolution 
network of hydrologic catchments developed across the Northeastern United States. The 
National Hydrography Dataset High Resolution Delineation Version 2 (NHDHRDV2) maintains 
a higher resolution and catchment area consistency than the established NHDPlus Version 2 
dataset. The main purpose of the higher resolution was to capture small headwaters that may be 
critical to ecological assessment. A summary of this dataset with links to detailed documentation 
can be found in the SHEDS Data project. 

2.3 Meteorological and landscape data 
The landscape and meteorological data were assembled from various sources. These variables 
were spatially attributed to the hydrologic catchments for incorporation into the model and 
include total drainage area, percent riparian forest cover, daily precipitation, daily air 
temperature, upstream impounded area, percent agriculture, and percent high-intensity 
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development. Air temperatures were gathered from Daymet (Table 1). These values are available 
on a 1 x 1 km grid across North America on a daily temporal resolution from 1980 – 2016. We 
used the mean temperature when multiple points fell within a single catchment. Air temperatures 
have relatively smooth transitions across the landscape and we used a weighted mean based on 
catchment area for all upstream drainage catchments because all of the upstream air temperatures 
the stream water is exposed to will influence the local water temperature. 
 We used air temperature of the day of the water temperature measurement to incorporate 
immediate responses along with 7-day air temperature to account for lagged changes in water 
temperature. Daily air temperature and prior 7-day air temperature were important predictors in 
other stream temperature models [DeWeber and Wagner, 2014; Jackson et al., 2018]. This 7-day 
lag may result from a combination of factors including water flow from upstream, conductive 
heating from the ground which is slow to transfer heat and averages temperatures over extended 
periods, and through delayed surface and shallow ground-water inputs [Benyahya et al., 2008; 
Webb et al., 2010]. 
 Forest cover, impoundments and dam releases, human development, and flow have all 
been important in other stream temperature models [DeWeber and Wagner, 2014; Jackson et al., 
2018]. We did not include other predictors previously found to be important in statistical models 
because of correlation with existing covariates or a lack of variability in the potential predictor 
across the study area. For example, elevation can be a useful predictor of stream temperature 
[DeWeber and Wagner, 2014; Detenbeck et al., 2016] but it lacks a specific mechanistic 
relationship or confounds multiple effects and covaries strongly with air temperature across the 
region. Similarly, human development and impervious surfaces can affect stream temperature. 
These variables exhibited high negative correlation with forest cover and both variables could 
not be included in the model. As more stream temperature data become available, it may be 
possible to separate the effects of forest cover and human development variables. Likewise, 
agricultural land-use can influence stream temperature or the effect of air temperature on stream 
temperature [DeWeber and Wagner, 2014], but there were insufficient observations over a range 
of agriculture in our data to include it in the current model. Agriculture can be added to a future 
version of the model as we expand coverage to the mid-Atlantic region of the U.S. and as more 
data accumulate. Direct stream shading can also influence local stream conditions [Johnson, 
2004; Caissie, 2006; Detenbeck et al., 2016], but is challenging to quantify over large regions. 
Ground water input is one of the few major remaining influences of headwater stream 
temperature that we do not account for because of a lack of currently reliable information on 
inputs over broad spatial ranges in this region.  
 Data continuous independent variables were standardized to Z-scores by subtracting the 
mean and dividing by the standard deviation. This is done primarily for computation efficiency 
and numeric stability but also to put the variables on similar scales for comparison. 
Standardization also reduces multicollinearity among independent variables in the model. This 
resulted in variables with little correlation excepting daily air temperature and 7-day air 
temperature (see Table 2S.). The correlation among these may slightly confound the effects of 
each air temperature variable. Further descriptions and data sources for each of these variables 
are described in Table 1. All of the variables referenced in the table refer to values calculated for 
the downstream point of each catchment (confluence pour point). 
 
 
Table 1. Description and original source of variables used in the model. 
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Variable Description Source 
Total Drainage 

Area 
The total contributing drainage area from the entire upstream 
network The SHEDS Data project 

Riparian Forest 
Cover 

The percentage of the upstream 61 m (200 ft) riparian buffer 
area that is covered by trees taller than 5 meters 

The National LandCover Database 
(NLCD) 

Daily 
Precipitation 

The mean daily precipitation for the individual local 
catchment 

Daymet Daily Surface Weather 
and Climatological Summaries 

Daily Air 
Temperature 

The daily mean air temperature for the individual local 
catchment as the mean of the minimum and maximum daily 
temperature from Daymet 

Daymet Daily Surface Weather 
and Climatological Summaries 

Upstream 
Impounded Area 

The total area in the contributing drainage basin that is 
covered by wetlands, lakes, or ponds that intersect the stream 
network 

U.S. Fish & Wildlife Service 
(FWS) National Wetlands 
Inventory 

   
   

 

2.4 Statistical model 
Statistical models of stream temperature often rely on the close relationship between air 
temperature and water temperature. However, this relationship breaks down during the winter in 
temperate zones, particularly as streams freeze, thereby changing their thermal properties. Many 
researchers and managers are interested in the non-winter effects of temperature. The winter 
period, when phase change and ice cover alter the air-water relationship, differs in both time 
(annually) and space. Our temperature model was for non-winter periods to avoid when phase-
change and ice cover alter the air-water relationship. To determine the ice-free, non-winter 
portion of the year, we calculated an index of air-water synchrony [Letcher et al. 2016] for each 
stream reach across the region to truncated the time series accordingly. 

We used a generalized linear mixed model to account for correlation in space (stream 
reach nested within the 8-digit Hydrologic Unit Code [HUC8; 
https://water.usgs.gov/GIS/huc.html]). This allowed us to incorporate short time series as well as 
long time series from different reaches and disjunct time series from the same reaches without 
risk of pseudoreplication [Hurlbert, 1984]. By limiting stream drainage area to <200 km2 and 
only modeling the synchronized period of the year, we were able to use a linear model, avoiding 
the non-linearities that occur at very high temperatures due to evaporative cooling and near 0 C 
due to phase change [Mohseni and Stefan, 1999]. The general model structure is depicted in 
Figure 2. 

 
Figure 2. Hierarchical structure of the daily stream temperature model. The observed daily temperatures are th, r, y, d 
at HUC8 h and reach r in year y on day d. In general, µ represent means, σ represent standard deviations, B represent 
vectors of coefficients with subscripts representing the level of variation, Σ is the covariance matrix, ρ is the 
correlation matrix, ω is the expected temperature as a function of the deterministic components prior to inclusion of 
temporal autocorrelation, and δ is the autocorrelation coefficient. See details in the text for further description of the 
coefficients. 
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We assumed stream temperature measurements were normally distributed following, 
 

 .  
 
where th, r, y, d is the observed mean daily stream water temperature at the reach (r) within the sub-
basin identified by the HUC8 (h) for each day (d) in each year (y). The expected mean 
temperature is µh, r, y, d and σ[t] is the standard deviation. Subscripts represent the levels at which 
the value varies. Bracketed subscripts are solely for additional naming purposes, for example to 
distinguish means and variances from different levels of the hierarchical model. 

The expected mean temperature (µh, r, y, d) was adjusted based on the residual error from 
the previous day 
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where δ is an autoregressive (AR1) coefficient and ωh, r, y, d is the mean expected temperature 
before accounting for temporal autocorrelation in the error structure (Figure 2B). This mean 
temperature is modeled to follow a linear trend 
 

   
 
where B[0] is the vector of K coefficients and K is the number of fixed effects parameters 
including the overall intercept. X[0] is the n × K matrix of predictor values where n is the 
observation number for a particular reach-HUC-year-day combination. We used 15 fixed effect 
parameters including interaction terms but not the overall intercept. These were 2-day total 
precipitation, 30-day cumulative precipitation, drainage area, upstream impounded area, percent 
riparian forest cover, and various two- and three-way interactions (Table 2). We assumed the 
following distributions and vague priors for the fixed effects coefficients 
 

   
 
Bh, r is the R × L matrix of regression coefficients where R is the number of unique reaches and L 
is the number of regression coefficients that vary randomly by reach within HUC8 (Figure 2C). 
In this case, we included a random intercept, and random slopes for the air temperature and 7-
day air temperature (L = 3; Table 2). We assumed prior distributions of 
 

   
 
where Bh, r is an R × L matrix, βh, r are normally distributed vectors of coefficients with a mean of 
0 and length of R, for the intercept (βh, r, [0]) and random slopes. We assumed an independent 
uniform prior on each standard deviation [Gelman2006], 
 

   
 

For the random HUC8 level component, Xh is the matrix of parameters that vary by 
HUC8. Bh is the H × L matrix of coefficients where H is the number of HUC8 groups (Figure 
2D). We allowed for correlation among the effects of these HUC8 coefficients as described by 
Gelman and Hill [2007]. As such, we assumed priors distributions of 
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where M[h] is a vector of the means of length L and Σ[h] is the L × L covariance matrix. We 
assumed the means followed a multivariate normal distribution, 
 

   
 
with a vague normally distributed prior on the means, 
 

   
 
We used a vague inverse-Wishart prior to describe the covariance matrix, 
 

   
 
where σ[h1], σ[h1] and σ[h2] are the standard deviations of the random HUC8 effects and ρ1 : 3 are 
the correlation coefficients. In addition to random reach and HUC effects, we also allowed for 
the intercept to vary randomly by year (Figure 2E). We assumed a prior distribution of 
 

   
 
for the random year effects with the standard deviation following a vague uniform distribution, 
 

   
 

To estimate all the parameters and their uncertainties, we used a Bayesian analysis with a 
Gibbs sampler implemented in JAGS [http://mcmc-jags.sourceforge.net/] through R [R 
Development Core Team, 2016] using the rjags package [Plummer, 2016]. This approach was 
beneficial for hierarchical model flexibility and tractability for large datasets. We used vague 
priors for all parameters so all inferences would be based on the data. We ran 13,000 iterations 
on each of three chains with independent random starting values. We discarded the first 10,000 
iterations, then thinned; saving every third iteration for a total of 3,000 iterations across three 
chains to use for inference. We visually inspected the MCMC iterations for convergence and 
autocorrelation, and mixing. We further used potential scale reduction factors (PSRF, ) to 
assess mixing of the MCMC chains [Brooks and Gelman, 1998]. 
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2.5 Model validation 
 
To validate our model, we held out 10% stream reaches at random along with 10% of remaining 
reach-year combinations. Additionally, we held out all 2010 data because it was an especially 
warm summer across the northeastern U.S. based on the mean summer Daymet air temperatures. 
This approach was also used by [DeWeber and Wagner, 2014] and helps to assess the model's 
predictive ability under future warming conditions. In total, 26.4% of observations (100,909) and 
33.3% of reaches (723) were held out for validation. From these validation data, we were able to 
generate a variety of post hoc validations to examine the predictive ability in reaches without 
data in a given year, reaches without data in any years, and all reaches in years without any data 
(as in future scenarios), and HUC8 without data. The most challenging validation scenario was 
for reaches in HUC8s without any data (Table 3).  

2.6 Derived metrics 
We used the meteorological data (air temperature, precipitation) from Daymet to predict daily 
stream temperatures for all stream reaches (<200 km2) in the region for the synchronized period 
of the year from 1980-2015. The predictions are conditional on the specific random effects 
where available and receive the mean effect for reaches, HUC8s, and years when no data was 
collected. From these daily predictions, we derive a variety of metrics to characterize the stream 
thermal regime. These include mean (over the 36 years) July temperature, mean summer 
temperature, mean number of days per year above a thermal threshold (such as 18, 22 C), 
frequency of years that the mean daily temperature exceeds each of these thresholds, and the 
maximum 30-day moving means averaged across all years. We also calculated the resistance of 
water temperature to changes in air temperature during peak air temperature (summer) based on 
the cumulative difference between the daily temperatures. Finally, we assess the thermal 
sensitivity for each stream reach as the change in daily stream temperature per 1 C change in 
daily air temperature. This is essentially the reach-specific air temperature coefficient converted 
back to the original scale from the standardized scale. These metrics were selected for 
comparison to other studies [DeWeber and Wagner, 2014; Jackson et al., 2018] and based on the 
interests of various biologists and state regulatory agencies expressed in discussions and 
workshops. 

3 Results 

3.1 Model fitting and MCMC convergence 
To fit the model, we used 248,517 daily temperature observations from 1,352 stream reaches 
within 116 HUC8 subbasins over a 21-year period between 1995 and 2015, excluding all records 
from 2010 for validation. The iterations of the three MCMC chains converged on a single area of 
high posterior probability while exhibiting minimal autocorrelation, based on visual inspection of 
the iteration traceplots, partial vs. full density plots, and autocorrelation (ACF) plots. We chose 
not to thin chains more than necessary for computational memory purposes and processing of 
derived parameters because thinning in inefficient and can reduce the precision of summary 
estimates [Link and Eaton 2012]. The potential scale reduction factors (PSRF, ) for all 
parameters and the multivariate PSRF were < 1.1, further indicating good convergence of the 
MCMC chains [Brooks and Gelman, 1998]. 
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3.2 Coefficient estimates and variability 
Most variables and their interactions had 95% Credible Intervals (CRI) that did not overlap zero 
(Table 2), which indicates a 95% probability that the true value of the effect differs from zero. 
The only parameters with CRI overlapping zero were the interactions of air temperature and 
forest cover and air temperature and Impounded Area. Drainage area alone was not significant 
but it was significant in its interactions with all combinations of air temperature and precipitation 
(Table 2). Air temperature (1-day and 7-day) had the largest effect on daily water temperature. 
The effect of air temperature was slightly dampened by interactions with precipitation and 
drainage area (negative 3-way interactions; Table 1). There was also a large autocorrelation 
coefficient (AR1 = 0.77). 

There was much more unexplained random variation among sites (SD = 1.03) than 
among HUC8 (SD = 0.59), but the effects of air temperature on water temperature were only 
slightly more variable among sites (SD = 0.29) compared with HUC8 (SD = 0.27). There was 
very little random variability among years not explained by other parameters (SD = 0.28; Table 
2). 

From past experience in the northeast, we found that 2-day precipitation multipled by 
drainage area was a reasonable index of flow response to precipitation, whereas 30-day 
precipitation multiplied by drainage area was a good index of baseflow in small streams. We 
multiplied these terms by daily air temperature to serve as an index of how flow can moderate 
the effects of air temperature on stream temperature as seen in other studies [Smith and Lavis, 
1975; Webb et al., 2003; van Vliet et al., 2011]. We also used interaction effects of impounded 
area with air temperature and forest cover with air temperature. This is because a forest might 
not just cool down a stream compared to other habitat but might moderate the fluctuations with 
air temperature. Similarly, relatively small impoundments could generally result in warming of 
streams but also could moderate the effect of air temperature on stream temperature. See the 
discussion for more regarding impoundment effects. 

 
 

Table 2. Regression summary table with coefficient estimates including the mean, standard deviation (SD), and 
95% credible intervals (LCRI = 2.5%, UCRI = 97.5%). 
 
Fixed effects: 

Parameter Mean SD LCRI UCRI 
Intercept 16.69 0.135 16.42 16.950 

AirT 1.91 0.022 1.862 1.950 
7-day AirT 1.36 0.029 1.302 1.417 

2-day Precip 0.06 0.002 0.055 0.063 
30-day Precip 0.01 0.006 0.001 0.026 

Drainage Area 0.04 0.096 -0.145 0.232 
Impounded Area 0.50 0.095 0.318 0.691 

Forest Cover -0.15 0.047 -0.246 -0.059 
AirT x 2-day Precip 0.02 0.002 0.020 0.028 

AirT x 30-day Precip -0.01 0.004 -0.022 -0.007 
AirT x Drainage -0.06 0.029 -0.117 -0.006 

AirT x Impounded Area 0.02 0.029 -0.035 0.077 
AirT x Forest -0.02 0.015 -0.051 0.009 

2-day Precip x Drainage -0.04 0.002 -0.042 -0.034 
30-day Precip x Drainage -0.06 0.006 -0.071 -0.046 
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AirT x 2-day Precip x Drainage -0.01 0.002 -0.016 -0.008 
AirT x 30-day Precip x Drainage -0.01 0.004 -0.019 -0.004 

AR1 0.77 0.002 0.768 0.776 
Random effects: 
Group Coef SD LCRI UCRI 

Site Intercept 1.03 1.01 1.05 
 AirT 0.29 0.27 0.31 
 7-day AirT 0.35 0.33 0.37 

HUC8 Intercept 0.59 0.48 0.72 
 AirT 0.27 0.24 0.30 
 7-day AirT 0.26 0.22 0.31 

Year Intercept 0.28 0.23 0.36 
HUC8 coefficient correlations: 

  Intercept AirT 7-day AirT 
Intercept    

AirT 0.640   
7-day AirT 0.338 0.234  
 

3.3 Evaluation of model fit and prediction 
The overall Root Mean Squared Error (RMSE) was 0.61 C and the residuals were normally 
distributed and unbiased (exhibiting no visual heterogeneity), indicating that the model was a 
good approximation of the process generating the data. These predicted values are adjusted for 
residual error, but it is better to use the predictions prior to adjusting with the residual AR1 term 
to understand how well the model predicts temperatures when the previous day's observed 
temperature is unknown. The RMSE for the fitted data using unadjusted predictions was 1.08 C. 
All following predictions and summaries use the unadjusted values to focus on the predictive 
abilities of the model. 

Specifically, to evaluate the spatial and temporal predictive power of our model, we used 
independent validation data consisting of 100,909 daily temperature observations from 723 
stream reaches within 101 HUC8 subbasins over 20 years from 1996 to 2015. The overall 
unadjusted RMSE for all validation data was 2.03 C. Similar to the fitted data, there was 
generally no bias in the predictions of the validation data, with the potential exception of slight 
over-prediction at very low temperatures and possible slight under-prediction at temperatures 
over 25 C (Figure 3). 

 
Figure 3. Relationship between observed and predicted water temperature. The top plot shows the observed 
temperature versus the predicted temperature for the fitted data and the bottom plot shows the predictions for the 
validation data withheld from modeling fitting. 
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Predicting to unsampled reaches in HUC8 with data from other reaches and in years with 

observed data elsewhere resulted in a RMSE of 1.96. Prediction for reaches in HUC8 with no 
data was considerably worse (Table 3). To assess predictive accuracy in warm years without data 
(potential for forecasting under climate change), we calculated the RMSE for all reaches in 2010 
(excluded from model fitting) to be 2.13 C. 
 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27069v1 | CC0 Open Access | rec: 30 Jul 2018, publ: 30 Jul 2018



 

16 
 

Table 3. The root-mean-squared error (RMSE) based on the data used and excluded from different subsets of the 
validation data. N is the number of daily temperature observations used in each subset of the data. Validation data 
was completely withheld at random from the data used in model fitting (calibration). Only one set of validation data 
was used and the additional evaluations represent post hoc comparisons to examine the effects of different levels of 
data on the predictive ability. 
 

Data Used Reach HUC8 Year 
Reach-
Year RMSE N 

Fitted RMSE X X X X 0.59 248517 
Overall validation RMSE X X X X 2.03 100909 
Missing reach-year but reach, HUC8, and year with data X X X  1.90 18401 
Missing reaches but HUC8 and year with data  X X  1.96 42602 
Missing HUC8 but year with data   X  2.52 1081 
Missing year but reaches and HUC8 with data X X  X 2.06 19090 
2010 excluded but all other data available Mixed Mixed   2.13 38825 
No data for reach, HUC8, or year     1.83 2644 
 
 We used the Daymet air temperature and precipitation along with landscape covariates to 
predict daily stream temperatures in each reach then calculated derived metrics of potential 
interest to biologists, managers, and policy makers (Table 4). 
 
Table 4. Summary and description of derived metrics for each stream reach summarized for predictions from 1980-
2015. The mean number of days over 18 and 22 C were only calculated for predictions in the middle 194 days of the 
year to avoid problems outside the synchronized period of the year while keeping the length consistent among 
reaches across the region. 
 
Metric Mean Min Max Description 

Mean maximum temperature 20.57 12.61 34.11 Maximum daily mean water temperature (C) averaged over 36 
years (1980 - 2015) 

Max maximum temperature 22.30 14.05 35.25 Maximum over years of the maximum daily mean temperature 
Mean July temperature 18.25 8.83 32.34 Mean daily July temperature over years 
Mean August temperature 17.74 8.52 31.76 Mean daily August temperature over years 
Mean summer temperature 17.49 7.92 31.77 Mean daily summer temperature over years 
Mean 30-day maximum 
temperature 18.76 9.68 32.71 Maximum 30-day temperature for each year averaged over years 

Mean number of days over 18 
C 47.73 0.00 194.00 Mean number of days per year the mean daily temperature 

exceeds 18 C 
Mean number of days over 22 
C 5.17 0.00 194.00 Mean number of days per year the mean daily temperature 

exceeds 22 C 
Annual frequency of 
exceeding 18 C 0.86 0.00 1.00 Frequency of years the mean daily temperature ever exceeds 18 

C 
Annual frequency of 
exceeding 22 C 0.28 0.00 1.00 Frequency of years the mean daily temperature ever exceeds 22 

C 

Mean annual resistance 311.95 69.96 789.80 Mean annual resistance of water temperature to peak (summer) 
air temperature 

Thermal sensitivity 0.61 0.35 0.98 Thermal sensitivity of water temperature to changes in air 
temperature 

 
 
 We generated maps of mean derived metrics from temperatures predicted over the 
Daymet record (1980-2015). Land cover was assumed to be static over this period. Future 
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models could incorporate more details regarding land-use change over this time period. When 
scaled to view the entire region the patterns generally follow air temperature patterns with cooler 
temperatures at higher elevations and latitudes and warmer temperatures in urban, coastal, and 
lowland areas. An example of this can be seen on the mean 30-day maximum of the mean daily 
stream temperature map. However, when zoomed in to view individual catchments on the HUC8 
or HUC10 scale, it is clear that there is considerable local variation in water temperatures (Figure 
4) based on forest cover, drainage area, and local reach effects (unaccounted for local conditions 
including ground-surface water interactions), as expected based on the model coefficients and 
past research [Kanno et al., 2013]. 
 
Figure 4. Map of the mean annual maximum 30-day mean stream temperature (mean temperature during the 
warmest 30-day period each year). The inset shows how much local variation there is that is not clearly visible on 
the regional map. Gray areas have no predictions, usually because they are in larger streams, outside the bounds of 
the data used in the model (>200 km2 drainage area).  
 

 
 
 In lieu of presenting many small static maps, many of which would look somewhat 
similar when zoomed out to the regional scale, we added maps of the derived metrics to our web 
application which can be found at http://ice.ecosheds.org/stm. Users can zoom to specific areas 
and view information about individual stream reaches and associated catchments. There is also 
the ability to filter to locate areas with specific conditions. Our general Interactive Catchment 
Explorer (ICE) for the northeastern and mid-Atlantic regions of the U.S. will be regularly 
updated as new data become available and can be found at http://ice.ecosheds.org. It includes 
information about the landscape conditions and Brook Trout occupancy in addition to stream 
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temperatures. This is part of our web platform for Spatial Hydro-Ecological Decision Systems 
(SHEDS; http://ecosheds.org) where we present visualizations linking datasets, statistical 
models, and decision support tools to help improve natural resource management decisions. 
Interested users can contribute, view, and download (if user-designated as publicly available) 
data at http://db.ecosheds.org. As noted above, these data will be used to further improve model 
estimates and predictions, which will be presented in ICE. 

Although many of the derived metrics relating to peak temperatures have relatively 
similar broad-scale spatial patterns, there are some metrics that quantify other aspects of the 
thermal regime. For example, we calculated the resistance of water temperature to changes in air 
temperature during peak air temperature (summer) based on the cumulative difference between 
the daily temperatures. The distribution of resistance values was more right-skewed than the 
annual mean 30-day maximum temperature (Figure 5). 

 
Figure 5. Histograms of the distribution of values for various derived metrics across all stream reaches. Clockwise 
from upper left: annual 30-day maximum of mean daily temperature, frequency of years the maximum daily 
temperature exceeds 22 C, thermal sensitivity of water temperature to changes in air temperature, and resistance to 
changes in summer air temperature (degree-days: C days-1). 
 

 
 

4 Discussion 
 Our approach handles most of the challenges described by Letcher et al. [2016] for 
modeling stream temperatures including the non-linear relationship between air and water 
temperature at high and low air temperatures, thermal inertia resulting in lagged responses of 
water temperature to changes in air temperature, incomplete time series data and locations with 
large differences in the amount of available data, spatial and temporal autocorrelation, and 
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important predictors of stream water temperature other than air temperature. We expanded on 
their initial work to model daily stream temperatures of broad, regional spatial scales. Our model 
performed well for explaining landscape and climate effects on stream temperature and 
predicting temperatures to unsampled space and time. The model does especially well if a reach 
has been sampled in at least one previous period and if there are data from other reaches within 
the same HUC8 sub-basin. Our model also performed well when predicting validation data for a 
warm year, suggesting that it may be reliable for predictions under future climate change. 

Rather than explicitly model the non-linear relationship between air and water at low and 
high temperatures, we took the approach of avoiding the low temperature issues associated with 
phase change and ice-cover by restricting data to the synchronized portion of the year. Using the 
synchronized period is advantageous because it is empirically-estimated for each location and 
year, rather than setting a broad subjective cut off or only using summer temperatures [e.g. 
Garreta et al., 2009; Mayer, 2012; Detenbeck et al., 2016]. This is most effective when there are 
data for that reach but we used the synchronized period from the HUC8 or nearest HUC8 when 
reach data were not available. 

Our approach also partially accounted for the thermal inertial and lagged response of 
water temperature to changes in air temperature [Letcher et al., 2016; challenge 3]. In our 
analysis, 7-day air temperature had nearly as much influence as same-day air temperature (Table 
2), indicating the importance of accounting for delayed and averaged temperature in daily stream 
temperature models. We initially explored the inclusion of 1-day and 2-day lagged air 
temperature in place of the 7-day mean air temperature but the daily lags tended to be 
excessively correlated with same-day air temperature for inclusion (Pearson correlation r > 0.7). 

A considerable advantage of our approach compared with models of weekly or monthly 
metrics (e.g. mean temperature) is the inclusion of short and incomplete time series [Letcher et 
al., 2016; challenge 4]. Models that use data consolidated to the weekly, monthly, or seasonal 
scale require complete, continuous water temperature time series to avoid statistical bias [e.g. 
Garreta et al., 2009; Mayer, 2012; Detenbeck et al., 2016]. If a day or few days of data are 
missing or unreliable due to sensor malfunction, then entire time series must be excluded from 
the analysis or risk biased inference. This limits the number of locations that can be monitored 
and used for a regional analysis. There are now a large number of state and federal agencies, 
individual research scientists, and nongovernmental organizations measuring stream temperature 
because new sensors are relatively cheap and easy to use. As of 09 February 2017, there were 58 
different organizations in the northeastern United States alone that have contributed stream 
temperature records to just our database (http://db.ecosheds.org/). However, these groups record 
data for varying lengths of time at a given location, from four days to more than a year, but even 
these longer time series often have missing or corrupted data, causing effective breaks in the time 
series. Our model can incorporate locations with time series of any length. Reaches will little 
data contribute less information to the model but do provide some local and spatial information. 
Locations with more data contribute more to the likelihood so there is less shrinkage of 
parameter estimates towards the mean values [Gelman and Hill, 2007]. One potential 
shortcoming of this approach is the propagation of uncertainty from the daily values to the 
derived metrics. The effects of this propagation and influence on risk assessment in natural 
management decision making is an area that warrants future study. 

Our model also accounted for spatial and temporal correlation [Letcher et al., 2016; 
challenge 5]. We allowed the overall intercept and effects of air temperature and 7-day mean air 
temperature to vary randomly among reaches and HUC8 sub-basins. This allows for 
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measurements and effects within a particular reach over time to be more correlated to each other 
than would be expected by random chance. Similarly, reaches within the same HUC8 were 
expected to be more similar to each other on average than to a random stream reach. For 
example, a reach or reach within a HUC8 that is typically cooler than expected based on the 
covariates in the model would have a lower random intercept. A reach that is less responsive to 
daily fluctuations in air temperature would have a lower coefficient for air temperature than the 
average stream. This later result could potentially be a coarse indicator of relative ground water 
inputs. We explicitly accounted for local air temperature, size of the stream (drainage area), 
forest cover, upstream impounded area, and indices of flow (2-day and 30-day precipitation x 
drainage area). Ground water temperatures tend to be more stable than surface temperatures, 
thereby effectively buffering stream temperature from rapid changes in air temperature [e.g. 
Caissie, 2006; Kaushal et al., 2010; Zhou et al., 2014]. As such, our reach-level random effect of 
air temperature may indicate relative groundwater input, but would reflect a combination of the 
amount of ground water and the depth or temperature of that ground water relative to the surface 
temperature. We did not test this hypothesis, but future work would benefit from comparing our 
reach-specific air temperature coefficient estimates to stream reaches with measured ground 
water influence. This is an active area of interest with other ground-water indices being explored 
and evaluated [Figura et al., 2015; Kurylyk et al., 2014; Snyder et al., 2015]. 

Similar to the spatial correlation, we accounted for temporal autocorrelation in the data. 
Temporal autocorrelation occurs when the data from the adjacent time-steps are not independent, 
such as yesterday’s and today’s stream temperatures being more similar to each other than 
expected compared to more distantly spaced temperature measurements. This is a common issue 
in modeling time series and causes estimation problems and bias if not accounted for in the 
model [Caissie, 2006; Benyahya et al., 2007; Ver Hoef and Peterson, 2010]. We assumed a first-
order autoregressive process (AR1) on the residuals of the linear model. Our estimated 
AR1parameter was 0.77 (Table 2), indicating a high level of temporal autocorrelation in the data 
and the coefficient estimates would have likely be biased if we did not account for this process. 
We also allowed the daily stream temperature (overall intercept) to vary randomly by year to 
account for similarities within years not accounted for by the other temporal effects. The random 
variability attributed to year was moderately low (SD = 0.28) and contributed considerably less 
to the variance than reach or HUC8 spatial random effects (Table 2). 

Finally, our model includes predictors of stream temperature other than just air 
temperature [Letcher et al., 2016; challenge 6]. Of the parameters modeled, the current day's air 
temperature and the mean air temperature over the previous seven days had the largest effect on 
daily stream water temperature. This is not surprising as we limited our analysis to small streams 
and to the synchronized period of the year when air and water temperature are most correlated. 
Past studies of small streams have also found air temperature to be the main predictor of stream 
temperature [e.g. Mohseni and Stefan, 1999; DeWeber and Wagner, 2014; Detenbeck et al., 
2016]. However, the effects of air temperature and 7-day air temperature were not identical 
across space. These effects varied moderately across sites and HUC8 (Table 2), with similar 
variance for both temperature effects although the daily air temperature had a slightly larger 
mean effect (Table 2). Additionally, air temperature had significant 3-way interactions with 
precipitation and drainage area. We used 2-day precipitation multiplied by drainage area as an 
index of flow associated with storms and 30-day precipitation multiplied by drainage area as an 
index of baseflow in these small headwater streams (A. Rosner personal communication). 
Therefore, the negative 3-way interactions with air temperature are what we would expect, 
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indicating that at high flows the effect of air temperature on water temperature is dampened. The 
effect sizes of these interactions are extremely small, likely in part because of the coarseness of 
using precipitation multiplied by drainage area as an index of flow and not being able to account 
for local ground-surface water interactions at this broad spatial scale. Air temperature did not 
interact significantly with percent forest cover or impounded stream area. Alone, forest cover 
had a significant, but small, negative effect on stream temperature during the synchronized 
period, whereas impounded area had a significant, moderately large positive effect on 
temperature (Table 2). However, the effect of impoundments is more complicated that we were 
able to model in a broad spatial model. Different types of impoundments may have different 
effects and these may vary seasonally depending on flow, directed releases, and stratification of 
impounded water. 
Although there were many variables that influenced daily stream temperature in our model (95% 
credible intervals not overlapping zero), the primary drivers were mean daily air temperature and 
7-day previous air temperature (Table 2). These both corresponded strongly with stream 
temperature. There were very slight moderations of the air temperature effect due to our flow 
indices but they had limited influence on stream temperature. This may be due to the course 
nature of the flow index necessary for modeling over such a large range. Air temperature and 
flow have been important factors influencing stream temperature in other stream temperature 
models Smith and Lavis, 1975; Webb et al., 2003; van Vliet et al., 2011]. Additionally, 
impoundments had a moderate warming effect, whereas forest cover modest general cooling 
effect on daily ice-free stream temperatures similar to what was found in other studies [DeWeber 
and Wagner, 2014; Jackson et al., 2018]. Neither impounded area or forest cover moderated the 
effect of daily air temperature on stream temperature (Table 2). In addition to explaining 
factors influencing stream temperatures, we were interested in predicting temperatures in 
unsampled time and space. As such, we examined the model fit as well as its predictive ability 
with various types of validation data. Our model fit the data well as indicated by the RMSE < 1 
C. It also had a good ability to predict daily stream temperatures across space and time. With 
regards to predicting temperatures in warm years without fitted data, such as 2010, the model 
predicted temperatures well even in reaches with no other data (RMSE = 2.13 C). The 
predictions were better at reaches with data from other years (RMSE = 1.90 C), indicating that 
reach-specific data can improve predictions in future years but this improvement is not dramatic. 
The lack of dramatic improvement is likely due to multiple factors. Some of the reach-level 
variability is probably accounted for by other nearby reaches within the same HUC8 (influence 
of HUC8 random effects). We did not have sufficient data from combinations of reaches, HUC8, 
and years to compare the RMSE for HUC8 with single versus multiple observed reaches, but 
based on similar levels of variability explained at the reach and HUC8 levels it is likely that 
having data from other reaches in a HUC8 improves the predictions for unmonitored reaches in 
the same HUC8. Therefore, predictions will generally be worse at reaches within HUC8 with no 
data.  

There are a few limitations in the current iteration of our modeling approach. The first is 
that ground-water influence is not explicitly accounted for, although the model may be useful in 
identifying ground water at sampled reaches. If region-scale ground water indices were available, 
it would be straightforward to add these into our modeling framework. The other limitation is 
that our model does not include spatially-explicit correlation following the downstream flow of 
the network [Peterson et al., 2013; Isaak et al., 2014]. inclusion of continuous spatial 
autocorrelation, but for now we found that reach and HUC8 random effects handled the spatial 
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correlations sufficiently. Other future advances could include detailed effects of impoundments 
using an exponential decay with distance, using a nonlinear model to include winter temperatures 
and larger streams [Mohseni et al., 1998], or a dynamic model that allows the effect of air 
temperature to vary over time (seasonally) to account for hysteresis [Letcher et al., 2016; 
challenge 2]. 

Our measure of resistance of water temperature to changes in air temperature during the 
summer was based on the cumulative difference between the daily air and water temperatures. 
This metric was intended as a potential index of ground water influence on stream temperature, 
similar to the reach-specific air temperature effect but focusing on the buffering during summer 
when ground water inputs are likely to have the largest influence. Streams with larger resistance 
values would be expected to have higher ground water influence because they would essentially 
be buffered from changes in air temperature during the warmest part of the year. This value 
could be adjusted for drainage area or flow since it is possible that larger streams always 
fluctuate less and it could be divided by mean water temperature during the summer to make it 
reflect the relative resistance. We anticipate future efforts to quantify the influence of ground 
water in summer stream temperature and explore how well this metric is able to predict those 
values.  

Similarly, thermal sensitivity (Figure 5) or the size of the specific reach random effect 
could serve as indicators of ground water influence. In particular, the specific reach slope of air 
temperature suggests that reaches with larger coefficients are highly responsive to changes in air 
temperature (little ground water buffering) and reaches with small coefficients are insensitive to 
changes in air temperature and therefore likely to have significant ground water influence. These 
metrics are hypothesized to indicate ground water influence but remain to be tested. Given the 
differences in the distributions of these metrics (Figure 5), it is likely that some will be 
considerably more effective as ground water indices than other metrics. A similar effort has 
recently shown promise in creating a ground water influence index from stream temperature data 
[Snyder et al., 2015]. These indices would currently only apply to reaches with observed data, so 
the next step would be to find landscape and geological parameters that could predict the best 
ground water index across the region.   
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