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ABSTRACT11

We present an improvement of image classification for landslide mapping by “thresholding”, using
topographic information to determine multiple thresholds. We devised a two-steps procedure for automatic
classification into landslide or no landslide categories of a change-detection map obtained from satellite
imagery. Requirements of the proposed procedure are knowledge of the occurrence of a landslide event,
availability of a pre- and post- event pseudo-stereo image pair and a digital elevation model. The novel
feature of the approach is represented by the use of slope units as topographic-aware subsets of the
scene within which we apply a multiple thresholding method to classify a landslide class membership
tuned on the sole landslide spectral response. The method is fully automatic after site-dependent
operations, required only once, are performed, and exhibits improved classification performance with
limited training requirements. Our automatic procedure is a step forward towards systematic acquisition
of landslide events and real-time landslide mapping from satellite imagery.
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INTRODUCTION23

The most effective source of information describing a landslide event extension and magnitude in a given24

region is an event landslide inventory map (eLIM). An eLIM is a key input to derive landslide hazard25

and risk maps, and its preparation require effective monitoring and fast, cost-efficient mapping tools.26

More in general, despite their importance, landslide inventory maps cover a limited extension of the27

landslide-prone areas across the global landmass (Guzzetti et al., 2012; Marchesini et al., 2014).28

Landslide inventory maps are best prepared by visual interpretation of stereoscopic aerial images29

(Fiorucci et al., 2011). In the last two decades the images captured by high resolution and very high30

resolution optical satellites (Guzzetti et al., 2012; Casagli et al., 2017), and synthetic aperture radar (Casagli31

et al., 2017; Mondini, 2017), are becoming a viable replacement of aerial photographs, encouraging32

research efforts in the direction of developing automatic and semi-automatic classification algorithms to33

distinguish different land covers, including vegetation, urban areas, water bodies and landslides. Use of34

LiDAR data for automatic landslide mapping is beyond the scope of this work, mainly because it is not35

suitable for use within the approach described here, and will not be discussed.36

Automatic and semi-automatic landslide mapping require image classification methods, including37

supervised and unsupervised clustering (Borghuis et al., 2007; Martha et al., 2011), and index thresholding38

(Rosin and Hervás, 2005; Alvioli et al., 2018). Supervised classification calls for a manual training39

process which can result difficult and time consuming. Reducing the time and the overall effort required40

to prepare an eLIM, while increasing the level of automation of the mapping procedure, are key issues to41

obtain a reliable estimate of the extent and magnitude of landslide events on a routinely basis.42

In this work, we focus on a classification method which assigns individual pixels to the generic43

bare soil class, with a spectral fingerprint corresponding to landslides (Mondini and tsung Chang, 2014)44

occurred within an individual event. We use a Bayesian-based maximum likelihood (ML) approach45
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to assign each pixel either to the “landslide” or “no landslide” land cover classes by thresholding, the46

simplest existing decision rule. The procedure requires to single out a numerical value (threshold), among47

all the values in the image, and to assign the pixels values above (or below) the threshold to a particular48

class (Cheng et al., 2004). We used thresholding to classify a change detection (CD) function, obtained49

from a combination of widely used change detection indices tuned on landslide spectral response. In50

particular, we devised a multi-threshold approach that takes advantage of the topographic information51

contained in a slope unit (SU) subdivision of the area under investigation (Carrara, 1993; Guzzetti et al.,52

1999; Alvioli et al., 2016; Schlögel et al., 2018; Bornaetxea et al., 2018). Slope units are morphological53

terrain units bounded by drainage and divide lines, and corresponds to what a geomorphologist or a54

hydrologist would recognize as single slopes, a combination of adjacent slopes, or small catchments.55

Using a custom classification threshold within each slope unit allows to overcome limitations posed56

by the different geometric conditions, dictated by the combination of satellite point of view, sun position,57

slope orientation and inclination (Fiorucci et al., 2018a). Such conditions can be considered homogeneous58

within typical individual SUs, while they pose limitations when the CD function values are classified59

using a single threshold. A large number of false negatives and false positives are inherently introduced60

by a single threshold. On the other hand, misclassifications may be strongly reduced using multiple61

thresholds.62

METHODS AND RESULTS63

Our method to automatically identify the pixels belonging to the landslide land cover class relies on the64

concept of a CD function, denoted here and in Alvioli et al. (2018) as gls (“ls” stands for “landslides”),65

obtained with a simplified ML classifier. Figure 1 summarizes the method developed in Alvioli et al.66

(2018), illustrating the two basic steps, which we updated in this work.67

In the first step, we define the function gls whose values represent the ML distance of each pixel68

from the landslide class, providing a pixel-by-pixel measure of the presence or absence of new landslides.69

The gls function is obtained measuring changes occurred between a pre- and a post-event image, using70

three different metrics: changes of NDVI (Tucker, 1979), Spectral Angle (SA) (Sohn and Rebello, 2002;71

Richards and Jia, 2006; Mondini et al., 2011b) and Principal Component Analysis (PCA) (Richards and72

Jia, 2006). The three metrics were combined in a single image stack of changes for the analysis.73

In the second step, a map is generated by evaluating the gls function in each pixel of the study area.74

Then the gls map pixels are classified as “landslide” or “no landslide”, either by: (i) thresholding the75

gls values, i.e., selecting as landslides the pixels with gls values larger than a single threshold value over76

the whole study area; (ii) using multiple threshold values, within square and rectangular subsets of the77

gls map; (iii) as in (ii), but replacing regular subsets with irregular SU polygons, thus introducing local78

geomorphological information.79

In the first step, the innovative feature is represented by the fact that we only aim at defining the80

landslide class, thus we only need to train the procedure once. In the test case of Alvioli et al. (2018), the81

calibration area was selected in only one (big) landslide, for a total of 421 pixels (about 10,000 m2 out of82

about 1,000 km2) in the stack of changes.83

In the second step, the core innovation of the procedure is the application of thresholding gls values84

within a large number of subsets of the study area, singled out either with and without a topographic85

information. Existing thresholding approaches use a single threshold, necessarily reducing accuracy,86

while SU provide local topography information and allows to find local custom thresholds.87

The proposed method was tested in an area of about 1,000 m2 in Myanmar, where torrential rainfall88

triggered extensive landslides in 2015, including the massive Tonzang landslide and the large number of89

fatalities (Brakenridge et al., 2017).90

Figure 2 shows histograms of the values for the CD discriminant function gls. A distinctive feature of91

the global histogram, Figure 2(a), is a bi-modal behavior, characterized by a small peak around gls = 0,92

overwhelmed by a broad peak containing the vast majority of pixels with spectral properties dissimilar93

from the landslide ones. The two peaks (modes) are separated by a well-defined local minimum, occurring94

at some gls value denoted as M. The first approximation to a binary classification of the gls values is to95

flag as “landslide” the pixels with M < gls < 0, and to flag as “no-landslide” the remaining pixels.96

The next approximation we discuss consists in tracing a grid onto the gls map, calculate a histogram97

of the values of gls for each rectangular polygon singled out by the grid, and process the histogram with98

the automatic, non-parametric mode detection software of Delon et al. (2007), implemented as standalone99
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Figure 1. The algorithm proposed in Alvioli et al. (2018), and updated in this work, applied upon
knowledge of the occurrence of a landslide event. Step 1: calculation of the discriminant function; step 2:
three different classification possibilities by index thresholding, resulting in three different eLIMs (cf.
Section II). The table describes the level of automation of the individual operations involved in each of
the two steps. A: one-time, site-dependent operations; B: operations that can be optionally performed
again in a new study area; C: fully automatic operations, to which we added “Riverbank Mapping” in this
work, with respect to Alvioli et al. (2018).

Figure 2. (a): histogram of the gls function values over the whole study area. (b-d): four sample
histograms of the gls values, corresponding to four individual slope units. The vertical lines represent the
divide between different modes of the distributions, if more than one exist. The mode located right from
the divide may be due (e), or may not be due (d), to pixels with spectral behavior very similar to pixels
known to be within the landslides selected for the training procedure, by construction of gls.
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program. Depending on the number and values of the separations between different modes found by100

the software, we developed an algorithm to determine custom thresholds to be applied within the single101

polygons we introduced.102

The third and last approximation is to replace the rectangular polygons with topography-aware slope103

units. Figure 2(b)-(e) shows a sample of the resulting histograms, with the corresponding separations104

between different modes of the distributions. The histograms of Figure 2(b)-(c) only have one mode, thus105

zero separations; the histograms of Figure 2(d)-(e) have two modes, and one separation.106

SU were delineated using the automatic software of Alvioli et al. (2016), using a portion of ASTER107

digital elevation model, and are shown in Figure 3 for the calibration study area (about 1/4 in size of108

the whole area). The number and size of SU were chosen maximizing agreement of the automatic109

classification with an eLIM prepared by expert geomorphologists, by photo-interpretation, in a calibration110

region. The method was then extended to a different, and wider, validation region. Visual interpretation111

and gls analysis were performed on a 5m x 5m RapidEye stereo-pair.112

Figure 3. (a): the SU subdivision of the calibration area, in the calibration subset of our test area located
in Myanmar (see Alvioli et al. (2018) for details). (b): red pixels denote the automatically-mapped
landslide inventory, eLIMSU (cf. Figure 1), obtained with multiple thresholds within the SU polygons
shown in (a).

In this work, we added an additional level of automation with respect to the work in Alvioli et al.113

(2018). The comparison between automatic and expert mapping was performed everywhere but on114

pixels corresponding to rivers. We automated riverbanks mapping using a pixel-based method (Mondini115

and tsung Chang, 2014; Mondini et al., 2017), thus making the overall method fully automatic after116

site-dependent operations, required only once, are performed. Such operations are listed in Fig. 1.117

We report results of the three different approximations (also reported in Alvioli et al. (2018)), expressed118

in terms of an error index EI , first introduced in Carrara (1993) and recently employed as a benchmark119

for selecting optimal requirements of images from remote sensing for landslide mapping (Fiorucci et al.,120

2018b). Results for “grid” and “SU” are obtained with a number of polygons that minimizes EI in both121

cases. Results are listed in Table I. The percentage gain of multi-thresholding with respect to the “global”,122
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single-threshold results, are calculated as (ESU
I - Eglobal

I )/Eglobal
I , in the SU case, and correspond to 8.1%123

in training and 4.8% in validation.124

Eventually, we replaced riverbanks mapped by visual interpretation with a riverbank layer mapped125

automatically and calculated EI in the training area using the new layer; results are listed in Table I as126

well. The percentage gain using SUs (7.7%) is comparable to the results obtained with visual mapping of127

riverbanks (8.1%).128

DISCUSSION AND CONCLUSIONS129

The topography-driven, multi-threshold approach to landslide mapping from satellite imagery proposed130

in Alvioli et al. (2018), and updated in this work, presents several advantages.131

The numerical results of the comparison of the automatic mapping procedure with the ground-truth of132

an eLIM prepared by visual interpretation (Table I) reveal that the topographic-aware subdivision of the133

territory allows for a better classification performance both than thresholding applied globally, or within134

a topographic-blind subdivision. This is particularly true in the validation area, where the grid-based135

method shows little gain (0.4%) with respect to the global thresholding method.136

In second place, we substantially simplified image preparation with respect to existing land cover137

classification methods using remote sensing. Considering the only “landslide” class reduces the time and138

effort needed to train the algorithm to distinguish the spectral response of landslides.139

In third place, once the preliminary steps of SU delineation, gls training and calibration of thresholds140

are performed, the procedure is fully automatic, including the detection of riverbanks, left out of our141

previous work (Alvioli et al., 2018). Class assignment is automatic and it does not require a-posteriori142

identification of the different classes. Figure 1 contains a table describing the different levels of automation143

of the various actions required to achieve multi-threshold classification.144

In preparing the gls function map, we combined three indices embodying both radiometric (∆NDVI145

and SA) and geometric (PCA) information contained in satellite images, to account for the heterogeneity146

showed by the spectral response of landslides (Mondini et al., 2011b,a). Further developments may147

include different indices, in the discriminant function preparation, or additional topographic drivers148

(Blaschke et al., 2014). The method can be used on a routinely basis, and run whenever the occurrence149

of a new landslide event is otherwise detected with specialized methods (Mondini, 2017; Mondini et al.,150

2017).151

In conclusion, we argue that the improved performance and limited training requirements of the152

classification procedure represent a step forward towards an automatic, reliable real-time landslide153

mapping from satellite imagery.154

Riverbanks
Training Validation

Mapping

Visual
EI 0.369 0.344 0.399 0.512 0.510 0.487

Gain – 6.7% 8.1% – 0.4% 4.8%

Automatic
EI 0.401 – 0.370 – – –

Gain – – 7.7% – – –

Table 1. Numerical results from the comparison of eLIMs obtained with global thresholding and with
grid-based and SU-based multi-threshold presented in this work and Alvioli et al. (2018).
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