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high spectral similarity between species and large intra-species variability. This paper

proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE)

algorithm. MI-ACE estimates a discriminative target signature to differentiate between a

pair of tree species while accounting for label uncertainty. Additionally, the performance of

MI-ACE does not rely on parameter settings that require tuning resulting in a method that

is easy to use in application. Results presented are using training and testing data

provided by a data analysis competition aimed at encouraging the development of

methods for extracting ecological information through remote sensing obtained through

participation in the competition.
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ABSTRACT7

Tree species classification using hyperspectral imagery is a challenging task due to the high spectral

similarity between species and large intra-species variability. This paper proposes a solution using the

Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a discriminative

target signature to differentiate between a pair of tree species while accounting for label uncertainty.

Additionally, the performance of MI-ACE does not rely on parameter settings that require tuning resulting

in a method that is easy to use in application. Results presented are using training and testing data

provided by a data analysis competition aimed at encouraging the development of methods for extracting

ecological information through remote sensing obtained through participation in the competition.
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INTRODUCTION10

Spectral signatures of tree crowns across species often have high spectral similarity as well as significant11

intra-species variability (Cochrane, 2000), making tree crown classification from hyperspectral imagery a12

challenging task. In this work, a discriminative multiple instance hyperspectral target characterization13

method, the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm (Zare et al., 2018b), is14

proposed for this problem.15

In many remote sensing applications, precise pixel level training labels are expensive or infeasible to16

obtain (Blum and Mitchell, 1998). In the case of tree crown classification, pixel level ground truth labeling17

for tree crowns can be extremely challenging to collect. When looking at aerial hyperspectral imagery,18

given overlapping tree crowns and mixed pixels in which individual pixels contain responses from multiple19

neighboring tree species due to the image spatial resolution, manually labeling individual tree crowns is20

generally infeasible as the precise outline of each tree cannot be easily identified. Marconi et al. (2018)21

organized data science challenges for airborne remote sensing data. One of these challenges was to22

perform species classification of individual trees given airborne hyperspectral data. The challenge provided23

competitors (Anderson, 2018; Sumsion et al., 2018; Dalponte et al., 2018) with training and testing24

hyperspectral signatures extracted from individual tree crowns in the National Ecological Observatory25

Network (NEON) hyperspectral data collected at the Ordway-Swisher Biological Station in north-central26

Florida. These signatures were extracted from the imagery and labeled by the competition organizers by27

generating individual tree crown polygons using a tablet computer, GIS software, and an external GPS28

device in the field as described by Marconi et al. (2018). The team loaded the aerial hyperspectral imagery29

onto tablet computers in the field and simultaneously visually assessed the scene in person and the aerial30

imagery to mark and digitize the outlines of individual tree crowns. This was a time consuming process31

that required some subjectivity in assessing the field and the overhead view. The difficulty of this process32

and the subjectivity needed may result in some individual pixels in tree crown polygons being mislabeled.33

The MI-ACE algorithm presented in this paper is designed to be robust to this sort of imprecise labels34

without the need for any parameter tuning or any additional steps for outlier removal.35

MI-ACE is a multiple instance learning (MIL) algorithm (Maron and Lozano-Pérez, 1998) where36

precise instance level labels are not necessary. Instead only a bag level label indicating the existence or37

abscence of a target in a bag (or set) of instances is needed. In MIL, a bag is labeled as a positive bag38
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containing a target if at least one data point in the bag corresponds to target and a bag is labeled as a39

negative bag if none of the data in the bag correspond to the target. The MI-ACE algorithm estimates40

a discriminative target signature from data with this sort of bag-level labels. This target signature can41

then be used within the ACE detector to perform pixel-level target detection and classification (Kraut42

et al., 2001). Since MI-ACE needs only bag-level labels, the algorithm naturally addresses the tree crown43

classification problem outlined above. Each tree crown (and the associated set of hyperspectral signatures)44

are considered a bag and that bag is labeled as the corresponding target tree species. Since MI-ACE45

assumes multiple instance style labels, the algorithm does not assume that each pixel in every bag is46

representative of the associated tree species (but only assumes that there exists at least one representative47

signature in the tree crown) and, thus, addresses imprecision in labeling.48

PROPOSED APPROACH49

In this section, a brief review of MI-ACE is presented, then the proposed one-vs-one MI-ACE tree species50

classification approach is outlined.51

MI-ACE target characterization52

MI-ACE (Zare et al., 2018b) is a discriminative target characterization method that based on ACE detector53

and multiple instance concept learning. In multiple instance learning, sets of data points (termed bags) are54

labeled as either positive or negative. Specifically, let X = [x1, · · · ,xN ] * R
d×N be training data where55

d is the dimensionality of an instance, xi, and N is the total number of training instances. The data is56

grouped into K bags, B = {B1, . . . ,BK}, with associated binary bag-level labels, L = {L1, . . . ,LK} where57

L j * {0,1} and x ji * B j denotes the ith instance in bag B j. Positive bags (i.e., B j with L j = 1, denoted as58

B+
j ) contain at least one instance composed of some target:59

if L j = 1,#x ji * B+
j s.t. x ji > N

(

αits+µb,σ
2
1 Σb

)

,αit �= 0 (1)

where Σb is the background covariance, µb is the mean of the background, s is the known target signature

which is scaled by a target abundance, a, and σ2
1 = 1

d
(x2as)T

Σ21
b (x2as). However, the number of

instances in a positive bag with a target component is unknown. If B j is a negative bag (i.e., L j = 0,

denoted as B2
j ), then this indicates that B2

j does not contain any target:

if L j = 0,x ji > N
(

µb,σ
2
1 Σb

)

"x ji * B2
j (2)

Given this problem formulation, the goal of MI-ACE is to estimate the target signature, s, that

maximizes the corresponding adaptive cosine estimator (ACE) detection statistic for the target instances

in each positive bag and minimize the detection statistic over all negative instances. This is accomplished

by maximizing the following objective:

argmax
s

1

N+ ∑
j:L j=1

DACE(x
7
j ,s)2

1

N2 ∑
j:L j=0

1

N2
j

∑
xi*B2

j

DACE(xi,s) (3)

where N+ and N2 are the number of positive and negative bags, respectively, N2
j is the number of

instances in the jth negative bag, and x7j is the selected instance from the positive bag B+
j that is mostly

likely a target instance in the bag. The selected instance is identified as the point with the maximum

detection statistic given a target signature, s:

x7j = arg max
xi*B+

j

DACE(xi,s) (4)

Since the first term of the objective function relies only on the selected instance from each positive bag,

the method is robust to outliers and incorrectly labeled samples. The DACE is the ACE detection statistic,

DACE(x,s) =

(

ŝ

�ŝ�

)T (
x̂

�x̂�

)

= ˆ̂sT ˆ̂x (5)

where x̂ = D2 1
2 UT (x2 µb) and ŝ = D2 1

2 UT s, U and D are the eigenvectors and eigenvalues of the60

background covariance matrix, respectively.61
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As outlined by Zare et al. (2018b), the MI-ACE algorithm optimizes (3) using an alternating opti-62

mization strategy. After optimization, an estimate for a discriminative target signature (that is used to63

distinguish between two classes and perform pixel level classification using the DACE detector) is obtained.64

The MI-ACE code is available and published on our GitHub site (Zare et al., 2018a).65

Proposed one-vs-one MI-ACE66

The original MI-ACE algorithm was designed for target detection. Target detection can also be viewed67

as a two-class classification problem with one class being target and the other class being non-target68

or background (often with heavily imbalanced class sizes). In this work, we extend MI-ACE using a69

one-vs-one scheme for application to multi-class classification problems. The basic idea for the proposed70

approach is to train a set of MI-ACE classifiers. Two MI-ACE classifiers are trained for every pair of71

two classes in the multi-class classification problem. Two classifiers are trained so that each class can be72

considered as the target class once in this pair. An MI-ACE classifier consists of a trained discriminative73

target signature (estimated using the MI-ACE approach outlined in the previous section), a background74

mean and covariance computed using the training samples from the non-target class, and a threshold value75

used to assign a target or non-target label to individual data points given their ACE detection confidence76

computed using the estimated target signature, background mean and background covariance values.77

During testing, each trained MI-ACE classifier is applied to an input test point. Since each classifier78

yields a classification result, the final classification for a testing bag is obtained by aggregating all of the79

individual results. Specifically, a test bag is assigned the class label associated with the class that had the80

largest number of votes associated with each class. The votes are tallied by, first, averaging the confidence81

values estimated from each of the individual classifiers applied to each test point in the bag and, then,82

thresholding these average confidence values to obtain a binary target vs. non-target label the test bag.83

Then, the class label with the largest number of votes from the binary classification results is assigned as84

the final class label. Pseudocode for the proposed method is shown below. In the pseudocode, let X and Y85

be the set of all training and testing bags, respectively, with XL being the set of all bags assigned label L,86

Ym being the mth testing bag, and Ym,n being the nth data point in the mth testing bag. Let L and R be the87

corresponding bag level labels for the training and testing bags, respectively. C denotes the number of88

classes. M denotes the number of testing bags. The variables si, j and τi, j represent the estimated target89

signature and classification threshold for target class i and background class j, respectively, and zm,i, j90

denotes the confidence value estimated by ACE detector given the estimated si, j and τi, j values for the91

mth test bag. The threshold value is set by determining the threshold that minimizes classification error92

on the training data. This approach does not have any parameters to tune as all parameters are estimated93

from the training data.94

EXPERIMENTAL RESULTS95

The proposed method was applied to and entered into the tree crown classification challenge organized96

and described by Marconi et al. (2018).97

Data description98

The training data released by Marconi et al. (2018) contains the hyperspectral signatures from 305 tree99

crowns collected over the Ordway-Swisher Biological Station (OSBS) by the National Ecological Obser-100

vatory Network (NEON). The data from NEON included the following data products: 1) Woody plant101

vegetation structure (NEON.DP1.10098); 2) Spectrometer orthorectified surface directional reflectance102

- flightline (NEON.DP1.30008); 3) Ecosystem structure (NEON.DP3.30015); and High-resolution or-103

thorectified camera imagery (NEON.DP1.30010). Figure 1 shows a region in OSBS containing various104

tree species. However, for this tree crown classification challenge, only individual spectral signatures105

for each tree crown are stored and provided. Thus, no spatial information is given nor can any image106

processing approach be applied. The signatures provided contain 426 spectral bands ranging from 383107

nm to 2512 nm. Water absorption wavelengths, of which reflectance are set to be 1.5 as shown in Figure108

2, correspond to 1345 nm to 1430 nm, 1800 nm to 1956 nm and 2482 nm to 2512 nm. Each training tree109

crown is paired with a genus class label and a species class label. The genus consisted of 5 classes which110

are Acer (AC), Liquidambar (LI), Pinus (PI), Quercus (QU) and OTHERS (OT). OTHERS represent the111

tree crowns that cannot be classified to any one of the four known genera. Each genus has a different112

number of associated species. AC and LI contains only one species, which are Acer rubrum (ACRU) and113
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Procedure 1 One-vs-one MI-ACE classification

1: Train two MI-ACE classifiers for each pair of class labels:

Input: X, Y, L

2: for Every pair of classes c1 = 1 : C and c2 = 1 : C where c2 �= c1 do

3: Train MI-ACE: (sc1,c2
,τc1,c2

,µc2
,Σc2

) = MI-ACE(XL=c1,XL=c2)
4: Train MI-ACE: (sc2,c1

,τc2,c1
,µc1

,Σc1
) = MI-ACE(XL=c2,XL=c1)

5: end for

6: Test using a one-vs-one voting scheme:

7: for Every test bag m = 1 : M do

8: for Every pair of classes c1 = 1 : C and c2 = 1 : C where c2 �= c1 do

9: for Every data point, n = 1 : Nm in bag m do

10: Apply the c1 vs. c2 classifier: zm,n,c1,c2
= ACE(Ym,n,sc1,c2

)
11: end for

12: Average the confidence scores over all points in the bag: zm,c1,c2
= 1

N ∑
Nm
n=1 zm,n,c1,c2

13: if zm,c1,c2
> τc1,c2

then

14: Rm,c1,c2
gets one vote for class c1

15: else

16: Rm,c1,c2
gets one vote for class c2

17: end if

18: end for

19: Rm is assigned to the class with the largest number of votes.

20: end for

Output: R

Liquidambar styraciflua (LIST), respectively. PI and QU contains more than 3 species individually, which114

are Pinus elliottii (PIEL), Pinus palustris (PIPA), Pinus taeda (PITA) and OTHERS (for PI), Quercus115

geminata (QUGE), Quercus laevis (QULA), Quercus nigra (QUNI) and OTHERS (for QU). The number116

of tree polygons for each species are shown in Table 1. In the current implementation of this work,117

OTHERS in both the genus and species level are not used for training as the proposed approach did not118

have a mechanism to identify points that did not belong to any of the labeled training classes.119

Species ACRU LIST PIEL PIPA PITA QUGE QULA QUNI OTHERS

Number 6 4 5 197 14 12 54 5 8

Table 1. The number of training tree crowns for each species

The testing data was also NEON tree crown hyperspectral data in the same format. There were 126120

testing tree crowns. The test labels were not provided by the competition organizers.121

Data preprocessing and MI-ACE training122

Prior to application of the MI-ACE algorithm, the water bands of the spectral signatures are removed.123

Then, since in our current implementation data points labeled as OTHERS genus or species are not124

addressed, the signatures that were labeled as OTHERS are removed from the training set.125

After removal of the water bands and the OTHERS data points, the target signatures and classification126

threshold values are trained using the proposed one-vs-one MI-ACE approach. Training was conducted127

at two levels, the genus and the species levels. During the training phase, each training tree crown was128

considered a bag for MI-ACE, thus the training label (genus or species level) was the bag label. A129

one-vs-one MI-ACE was used in which a set of MI-ACE target signatures representing the difference130

between every two genera or species were estimated. For instance, a target signature was trained to131

distinguish between the genus PI and the genus QU where tree crown labeled as PI was labeled target132

(or ‘1’) and QU was labeled as non-target (or ‘0’). For this competition only one MI-ACE classifier was133

trained for each pair of classes (as opposed to two for each pair) because results were similar between the134

two approaches. Similarly, a set of target signatures were estimated between every two species (if there135

were at least two species) that belonged to the same genus. For example, a target signature was estimated136
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Figure 1. An example RGB, LiDAR, and (the RGB image generated from the corresponding)

Hyperspectral image of a region in OSBS
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Figure 2. Average spectral signature of (a) all genera and (b) all species, colored by genera.

using training data to distinguish between species PIEL and PITA where the tree crowns labeled as PIEL137

were labeled as target (or ‘1’) and PITA was labeled as non-target (or ‘0’).138

Testing using ACE detector and voting139

Testing was also conducted in two stages where a test tree crown was first classified at the genus level and,140

then, further classified at the species level. An ACE detector was used to estimate the confidence value141

indicating how similar a test signature is to a trained target signature. Classification of test tree crowns142

consisted of the following steps. First, the confidence values of each instance signature inside the a test tree143

crown were computed using each of the six genus-level trained MI-ACE classifiers. Second, the confidence144

value for each testing crown was estimated by taking the average value over all of the instance-level145

confidence values. These average confidence values were then thresholded using the trained threshold146

values to obtain a binary classification result. The classification thresholds were determined during147

training to minimize the number of misclassified tree crowns in the training data. The final classification148

of a tree crown is the class label with the highest number of corresponding binary classifications. After149

the genus level classification, a test tree crown can be classified at species level using the same approach150

among the species associated with the genus to which the tree crown assigned.151

Results152

Genus level classification153

Classification result when testing on training samples are shown via confusion matrix in Table 2. The154

overall classification accuracy on the training dataset is 97.31%. The pixel confidence distributions155

and the aggregated crown confidence distributions for each classifier are shown in Figure 3 (a) and (b),156

respectively. In Figure 3, each row represents one of the six classifiers and each column denotes each157

ground truth genus type. The associated threshold value for each classifier is plot as a vertical blue line in158
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each subfigure. For instance, the top left subfigure in Figure 3 (a) shows the averaged ACE confidence159

value distribution of AC tree crowns detected using AC-vs-LI classifier and the same subfigure in Figure 3160

(b) shows the corresponding pixel confidence value distributions. A good result for the AC-vs-LI classifier161

will have all AC confidence values to right of the threshold value and all LI confidence values (shown in162

the second plot in the first row) to the left of the threshold value. As can be seen, the AC-vs-LI classifier163

accurately distinguishes between these two classes on the aggregated crown-level scale. However, when164

considering the same plots in Figure 3 (b) for the pixel level confidences, we can see that there are many165

AC pixels to the left of the threshold causing significant overlap with the LI pixels confidences. This166

indicates that the aggregation procedure helps to improve results.167

True

Predict
AC LI PI QU

AC 6 0 0 0

LI 0 4 0 0

PI 0 0 212 4

QU 0 0 4 67

Table 2. The classification confusion matrix on all training data (except for OHTERS) in genus level
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Figure 3. Confidence distributions of crown (left figure) and pixel (right figure) levels in training set.

Rows from top to down are AC-vs-LI, AC-vs-PI, AC-vs-QU, LI-vs-PI, LI-vs-QU and PI-vs-QU

classifiers, respectively. Columns from left to right are tree crowns genus types of AC, LI, PI, QU,

respectively.

Since there were six classifiers trained and four classes in this data set, there are only a small set of168

possible voting cases. These cases are: a. (3,1,1,1) votes for each class; b. (3,2,1,0) votes for each class; c.169

(2,2,1,1) votes for each class and d. (2,2,2,0) votes for each class. For cases a. and b., there is a single170

class with the largest amount of votes, thus, labeling of the crown is straightforward. However, for voting171

cases c. and d., there are ties among 2 or 3 candidate classes. In our current implementation, we randomly172

assign the label of one of the tied classes. We found that cases c. and d. are rare in our training and testing173

results. In the testing on training data results, votes for all of the tree crowns fell into either case a. or b.174

When applying the trained approach to the testing dataset provided by the competition, there is only one175

tree crown in which there was a tie (and resulted in voting case is d). For this tree crown, we found that it176

has 2 votes for AC, 2 votes for LI and 2 votes for PI. Our implementation in test randomly assigned this177

tree crown to the AC class. Since the ground truth labels of testing data are not released by organizer, the178

true genus class of this testing tree crown is unknown. However, we found that in our classification results179

on testing data, there are three tree crowns that were predicted to be in class AC by our method. Two180

of these crowns were correctly classified into class AC and the other false positive tree crown actually181

belonged to the OTHER class (see Table 7). Thus, it is likely that this tree crown may be the tree crown182

with the tied result.183
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Cross validation studies on the training data were also conducted. There are a limited number of184

training tree crowns for the AC and LI classes (only 6 AC and 4 LI tree crowns). Due to this reason, cross185

validation experiments were not conducted for AC or LI. In the training phase, the PI training (pixel-level)186

samples and QU (pixel-level) training samples are considered target and background, respectively. The187

learned target signature is shown in Figure 4 (a), which characterizes the spectral difference between PI188

and QU shown in Figure 4 (b). In the testing phase, each pixel signature of PI and QU are compared189

with estimated target signature using the ACE detector resulting in a confidence value shown in Figure 5.190

Since most confidence values of PI pixels are larger than QU pixels, a threshold value (of 0.05) can be191

selected such that the misclassified error is minimized.192
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(a) Estimated target signature
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(b) average PI and QU spectra

Figure 4. Comparison between estimated target signature and average class signatures. As can be seen,

the target signature tends to be positive in the wavelengths where the target class has a larger response

than the background class and negative where the target class has a smaller response. Thus, the target

signature gives insight into discriminative features for the detection problem.

PI pixels QU pixels

Figure 5. ACE detection statistic on PI & QU pixels

Two-fold cross validation was applied to the PI and QU samples. The PI and QU classes were193

randomly split into two datasets (50% of PI and QU tree crowns are selected as d1 and the rest as d2)194

We train on d1 and validate on d2, followed by training on d2 and validating on d1. After training the195

PI-vs-QU target signature and corresponding threshold, the histogram of the average confidence values196

on the validation set is shown in Figure 6. In this figure, the PI and QU tree crowns are colored by their197

ground truth classes, i.e., red for PI and blue for QU. The threshold value estimated from training can be198

directly applied to the validation set for classification of the validation training crowns.199

The cross validation experiment was repeated ten times and the mean confusion matrix is shown in200

Table 3. The average classification accuracy on the PI and QU given two-fold cross validation dataset was201

95.8%, which is similar to the test-on-train accuracy indicating robust results.202
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Figure 6. Histogram of average confidence values on validation set

True

Predict
PI QU

PI 105.8 2.2

QU 3.8 31.2

Table 3. The mean classification confusion matrix on all PI and QU training data via cross validation

Species level classification203

After the genus level classification, the tree crowns were further classified into species. If a tree is204

classified as AC or LI, it is classified also as ACRU or LIST automatically. If a tree is classified as PI205

or QU, the one-vs-one MI-ACE method is used to classify it into one of the corresponding species. The206

confusion matrices for species level classification (testing on training data) are shown in Table. 4. The207

classification (rank-1) accuracy is 95.62% on the training dataset in species level with a cross entropy208

value of 0.2649.209

True

Predict
ACRU LIST PIEL PIPA PITA QUGE QULA QUNI

ACRU 6 0 0 0 0 0 0 0

LIST 0 4 0 0 0 0 0 0

PIEL 0 0 5 0 0 0 0 0

PIPA 0 0 3 188 2 2 2 0

PITA 0 0 0 0 14 0 0 0

QUGE 0 0 0 2 0 10 0 0

QULA 0 0 0 2 0 0 53 0

QUNI 0 0 1 0 0 0 0 4

Table 4. The classification confusion matrix on all training data (except for OHTERS) in species level

The confusion matrices for species level classification for testing data are shown in Figure 7 as210

provided by the competition organizers. The classification (rank-1) accuracy is 86.40% and cross entropy211

is 0.9395 on the testing dataset. However, this accuracy includes data points labeled as OTHERS in the212

testing dataset which, using our approach, were all misclassified to one of the four genus types since we213

did not implement a mechanism to distinguish outliers in this approach. If the OTHERS tree crowns (3214

tree crowns) are excluded, the classification accuracy would come to 88.52% and cross entropy would be215

0.7918 on the testing dataset.216

The species level classification results are further evaluated using several metrics on the testing data217

by the organizer, including per-class accuracy, specificity, precision, recall and F1 score. For comparison,218

we also evaluated the classification performance using the same metrics on the training data. The accuracy219

and specificity score, F1 score, precision, recall for both training and testing dataset are shown in Figure220

8, 9, 10 and 11, respectively. As can be seen, accuracy and specificity results between training and testing221

8/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27052v1 | CC BY 4.0 Open Access | rec: 26 Jul 2018, publ: 26 Jul 2018



Species ID A
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A
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Q
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ACRU 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LIST 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OTHER 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

PIEL 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

PIPA 0.00 0.00 0.00 1.00 81.00 0.00 1.00 0.00 0.00

PITA 0.00 0.00 0.00 1.00 2.00 2.00 0.00 1.00 0.00

QUGE 0.00 1.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00

QULA 0.00 0.00 0.00 0.00 1.00 0.00 4.00 17.00 1.00

QUNI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Figure 7. The classification confusion matrix on all testing data (except for OHTERS) in species level

(provided by competition)
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Figure 8. Accuracy and Specificity Scores (Per-Class) for training data (a) and testing data (b - provided

by competition)
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Figure 9. F1 Scores (Per-Class) for training data (a) and testing data (b - provided by competition)

data are similar whereas the F1, precision and recall curves highlight that challenging classes in the testing222

data were PIEL, PITA and QUGE.223
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Figure 10. Precision (Per-Class) for training data (a) and testing data (b - provided by competition)
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Figure 11. Recall (Per-Class) for training data (a) and testing data (b - provided by competition)

SUMMARY AND FUTURE WORK224

A one-vs-one version of MI-ACE is proposed in the work to address the hyperspectral tree crown225

classification problem. The proposed method achieved a 86.4% overall classification accuracy on a226

blind testing dataset. Certainly, there are many improvements can be investigated in the future such as227

mechanisms to identify outliers and label them as members of the OTHERS class and estimate a likelihood228

of belonging to each class (as opposed to binary classification labels).229

In the current implementation, only crisp binary classification results are estimated. However, com-

petition organizers evaluated results using the cross entropy evaluation metric assuming probabilities of

belonging to each class are estimated,

cost =2
∑n,k ln pn,kδ (gn,k)

N
(6)

where gn is the ground truth class of crown n, pn,k is the probability assigned that crown n belongs to230

class k. Class probabilities given the one-vs-one scheme can be estimated in the future using approaches231

such as those proposed by Wu et al. (2004). Furthermore, even if individual probabilities per data are232

not computed, an overall uncertainty value can be estimated from the training data. In other words, as233

opposed to assigning 0-1 probabilities for the crisp class labels. In our implementation data points were234

assigned to the estimated class label with probability 1 and all others with probability 0. Instead, we235

could pre-compute an optimal epsilon value, ε7, to add to the ‘0’ probabilities and subtract from the ‘1’236

probabilities to ensure values sum to one across classes to minimize cross entropy on the training data.237

For instance, we found that when ε7 = 0.017, the cross entropy for our results comes to 0.68, which is238

a smaller (i.e., better) than the cross entropy of 0.94 obtained using crisp labels and calculated by the239

competition organizers. The relationship between the cross entropy and epsilon value for the training data240
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provided shown in Figure 12.241
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Figure 12. Cross entropy vs optimum epsilon value

In addition, in the current proposed framework, each one-vs-one classifier is equally weighted in242

final voting. However, the classification accuracies and the applicability of each classifier varies. For243

instance, if a tree crown is in class PI, the PI-vs-QU classifier should be more heavily weighted than244

the AC-vs-LI classifier. Investigation into whether this could be determined by considering the average245

confidence values estimated from the individual ACE detectors is needed. Furthermore, since some of246

the classes are more spectrally distinct, some one-vs-one classifiers have better prediction performances.247

One possible solution is to weight the classifiers based on the difference between the average confidence248

values of target and background classes for training data. Another possible solution is to weight based on249

the difference between the confidence value of testing point and threshold value of the classifier. In some250

scenarios, these two solutions might be equivalent. Finally, data fusion is also a promising approach for251

boosting the classification performance. For example, height information from Lidar data could be also252

incorporated into the training phase since different species generally have different average heights. In the253

current implementation, only hyperspectral information was leveraged.254
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