1	LINEAR MITOCHONDRIAL GENOME IN ANTHOZOA (CNIDARIA): A CASE STUDY IN
2	CERIANTHARIA
3	
4	Sérgio N. Stampar ^{1*} , Michael B. Broe ² , Jason Macrander ³ , Adam M. Reitzel ³ , and
5	Marymegan Daly ²
6	1 - Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, UNESP –
7	Universidade Estadual Paulista, Assis, SP, Brazil
8	2 - Department of Evolution, Ecology, and Organismal Biology, The Ohio State University,
9	Columbus, OH, USA
10	3 – Department of Biological Sciences, University of North Carolina at Charlotte,
11	Charlotte, NC, USA
12	
13	* Corresponding author: E-mail: sergio.stampar@unesp.br
14	
15	
16	
17	
18	
19	
20	
21	Key words: Mitochondrial genome, Evolution,
22	Running head: Linear mitochondrial genome in Anthozoa
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 Abstract

33 Sequences and structural attributes of mitochondrial genomes have played a key role in the clarification of relationships among Cnidaria, a key phylum of early-diverging animals. 34 Among the major lineages of Cnidaria, Ceriantharia ("tube anemones") remains one of the 35 most enigmatic groups in terms of its phylogenetic position. We sequenced the 36 mitochondrial genomes of two ceriantharians to see whether the complete organellar 37 genome would provide more support for the phylogenetic placement of Ceriantharia. For 38 both ceriantharian species studied, the mitochondrial gene sequences could not be 39 assembled into a circular genome. Instead, our analyses suggest both species have 40 fragmented mitochondrial genomes consisting of multiple linear fragments. Linear 41 mitogenomes are characteristic of members of Medusozoa, one of the major lineages of 42 Cnidaria, but are unreported for Anthozoa, which includes the Ceriantharia. The number of 43 fragments and the variation in gene order between species is much greater in Ceriantharia 44 than among Medusozoa. The novelty of the mitogenomic structure in Ceriantharia 45 highlights the distinctiveness of this lineage but, because it appears to be both unique to and 46 diverse within Ceriantharia, it is uninformative about the phylogenetic position of 47 Ceriantharia relative to other anthozoan groups. 48

49

50 Introduction

Analyses of the mitochondrial genome have played a pivotal role in understanding 51 52 relationships among Cnidaria. Foundational studies by Bridge et al. (1992, 1995) pointed to 53 a clear division between Anthozoa and Medusozoa, with Medusozoans having the derived feature of linear mitogenomes. Subsequent studies have confirmed a circular mitochondrial 54 55 genome in diverse octocorals (reviewed in Kayal et al. 2013; Figueroa and Baco 2014; Wu 56 et al. 2016; Poliseno et al. 2017) and hexacorals (reviewed by Medina et al. 2006; Brugler and France 2007; Sinniger et al. 2007; Kayal et al. 2013; Foox et al. 2016; Shi et al. 2016; 57 Chi and Johansen 2017; Zhang and Zhu 2017; Zhang et al. 2017) and a linear mitogenome 58 59 in additional diverse medusozoans (reviewed by Smith et al. 2012; Kayal et al. 2013, 2015; Li et al. 2016; but see Takeuchi et al. 2016). Additional studies have identified other 60 61 characters that support a fundamental split within Cnidaria between Medusozoa and

Anthozoa (e.g., Marques and Collins 2004; Daly et al. 2007; Zapata et al. 2015; Kayal et al.
2017).

Comparative analyses of anthozoan mitogenomes have revealed structural genomic 64 features like introns, transpositions, gene losses, homing endonucleases, and gene order 65 rearrangements (Beagley et al. 1998; Fukami et al. 2007; Emblem et al. 2014; Foox et al. 66 67 2016; Chi and Johansen 2017). The structural diversity is unexpected because anthozoan mitogenomes have some of the lowest reported rates of sequence evolution among animals 68 (e.g., Shearer et al. 2002, Huang at al. 2008; Chen et al. 2009; Daly et al. 2010). Within 69 70 Anthozoa, the sequences and structure of the mitogenome have been used to tease apart relationships that had been controversial, such as those between scleractinians and 71 72 corallimorphs (Medina et al. 2006; Kitahara et al. 2014), among Actiniaria (Foox et al. 73 2016), and the relationship of zoantharians and antipatharians to other hexacorallians 74 (Brugler and France 2007; Sinniger et al. 2007).

75 Although mitogenomes have been more thoroughly studied in hexacorallians than in any other group of non-bilaterian metazoans (Kayal et al. 2015; Lavrov and Pett 2016), the 76 taxonomic sampling is highly skewed towards Actiniaria and Scleractinia (Kayal et al. 77 2013), and no complete mitogenomes have been reported for any members of order 78 Ceriantharia. Regions of the mitogenome of ceriantharians appear to evolve under different 79 models than those of other Anthozoa (Kayal et al. 2013, Stampar et al. 2014, Zapata et al. 80 2015), suggesting that there are important differences between the mitochondrial genome of 81 82 ceriantharians and those of other anthozoans.

83 Ceriantharia has been an especially challenging lineage to resolve in the broader cnidarian phylogeny. Historically, they were considered sibling to the Antipatharia and 84 85 grouped with them as subclass Ceriantipatharia based on similarities in the larval stage (van 86 Beneden 1897). This relationship was contested based on anatomical features by Schmidt (1974) and later based on DNA sequence data by Chen et al. (1995). At present, the most 87 commonly cited relationship for Ceriantharia based on DNA sequences is as the sister to all 88 89 other hexacorallians (e.g., Chen et al. 1995; France et al. 1996; Berntson et al. 1999; Won et al. 2001; Daly et al. 2003; Rodríguez et al. 2014; Zapata et al. 2015; Quattrini et al. 90 91 2018). However, Ceriantharia has also been reconstructed as the sister to Octocorallia 92 (Zapata et al. 2015) and as the sister to all other Anthozoa (Stampar et al. 2014).

93 The phylogenetic position of the Ceriantharia has been difficult to test because there 94 is little sequence data, having the fewest sequences in GenBank of any hexacorallian order (411 sequences in nr database, 06/2018). In the phylogenomic analyses of Zapata et al. 95 (2015), Ceriantharia had the lowest percent recovery of genes of any anthozoan and was 96 equally well supported in two phylogenetic positions (sister to all other Hexacorallia or 97 sister to Octocorallia). Some of these difficulties may stem from significant differences in 98 99 evolutionary rate between Ceriantharia and other Anthozoa (Stampar et al. 2014). Taxon sampling of Ceriantharia was low in the analyses of Zapata et al. (2015) and Quattrini et al 100 101 (2018) and the group is generally represented by one or two exemplars in higher-level phylogenies (e.g., France et al. 1996; Daly et al. 2003; Rodriguez et al. 2014; Zapata et al. 102 103 2015; Kayal et al. 2017; Quattrini et al. 2018). This low representation is especially significant and problematic if it is the sister lineage of a much larger group, as implied by 104 105 most interpretations of its phylogeny.

106 Recognizing the power of mitochondrial genomes to illuminate anthozoan relationships, we sequenced and characterized the mitogenome of the ceriantharians 107 Isarachnanthus nocturnus and Pachycerianthus magnus. These are the first reports of 108 109 mitochondrial genomes for members of this lineage. The genomes of *I. nocturnus* and *P.* magnus are like one another and unlike those of all other Anthozoa in being linear, but 110 differ from one another in the arrangement of the genes and the inferred number of linear 111 chromosomes. This surprising finding reinforces the uniqueness of Ceriantharia and 112 113 underscores the difficulty in interpreting its relationship to other major groups within 114 Cnidaria. Phylogenetic analysis of the coding regions of these mitogenomes supports interpreting Ceriantharia as the sister to Octocorallia and Hexacorallia and thus as a third 115 major lineage within Anthozoa. 116

117

118 Material and Methods

119

120 Specimen sampling

121 The two focal species represent the two orders of Ceriantharia (Penicillaria and Spirularia).

122 Isarachnanthus nocturnus (Hartog, 1977), order Penicillaria, was collected in Sao

123 Sebastiao Channel, Sao Paulo, Brazil (MZUSP 1478) (SISBIO 55566-1) and

Pachycerianthus magnus, order Spirularia, was collected from Taiwan, China (MZUSP
1951). Specimens were preserved directly in 92% ethanol. Pieces of marginal tentacles
were used for DNA extraction.

127

128 Methods for obtaining and assembling genomes

129 Libraries were prepared using an Illumina TruSeq PCR-free protocol and sequenced on the 130 Illumina HiSeq 2500 platform yielding 250 bp paired-end reads, with an average insert size of 350 bp for *I. nocturnus* and 550 bp for *P. magnus*. The sequencing runs produced 14.2 m 131 132 mate-pairs for *I. nocturnus* and 15.3 m mate-pairs for *P. magnus*. The reads were evaluated for quality and adapter-contamination using FastQC (Andrews 2016) and cleaned using 133 Trimmomatic (Bolger et al. 2014) to remove adapters and low quality regions. 12.7 m pairs 134 were retained for I. nocturnus (86.1%) and 14.9 m pairs were retained for P. magnus 135 136 (97.7%). De novo assembly was performed using DISCOVAR de novo v. 52488 (Weisenfeld et al. 2014) which is optimized for this type of Illumina data. The resulting 137 assembly was converted to a BLAST database, and mitochondrial contigs identified by 138 querying with a set of known Cnidarian mitochondrial CDS. Trimmed reads were mapped 139 back to the identified mitochondrial contigs using the Geneious 7.1 read mapper (Kearse et 140 al. 2012) using High Sensitivity (Medium) default settings, and the mapped reads were 141 reassembled de novo in Geneious to validate assembly and evaluate evenness of coverage 142 143 and read-agreement. We concatenated species specific mitochondrial contigs into a "pseudo 144 contig" and mapped raw reads to determine if paired end reads would map to different 145 mitochondrial chromosomes. Regions of sequence similarity across chromosomes were identified using LASTZ v.1.02.00 (Harris 2007) and GC content calculated for each 146 chromosome (Richard 2018). 147

148

This pipeline was validated in previous unpublished work by the current authors on anthozoan mitochondrial genomes using identical methods of data generation, that resulted incircularized mitochondrial genomes assembled in a single DISCOVAR contig (Foox et al. 2016). However, in our study of these two ceriantharians, the assembly for both samples unexpectedly yielded numerous linear chromosomes. Since none of the contigs circularized and no paired-end reads seemed to bridge contigs, we attempted to extend contigs using

155	both IMAGE (Tsai et al. 2010) with various kmer settings and the Geneious iterative read
156	mapper. In no case did the contigs significantly extend: reads either falsely assembled into
157	highly discordant, non-homologous low-complexity regions or abruptly terminated. We
158	also independently assembled the data using NOVOPlasty v 2.5.9 (Dierckxsens et al. 2016)
159	which is explicitly designed to assemble circular, organellar genomes. In one case, this
160	assembler extended a single contig and circularized it, however, mapping reads back to this
161	contig revealed that the incorporated direct repeat occurs immediately after a c. 3000 bp
162	region of minimal mapping quality, casting doubt on this assembly. We used the Phobos
163	tandem repeat search tool (Mayer 2010) but found no definitive evidence of telomeric
164	repeats at the ends of any linear fragment.
165	
166	Contigs were annotated using DOGMA (Wyman et al. 2004), MITOS (Bernt et al. 2013)
167	and by transferring homologous gene annotations in Geneious from a representative
168	selection of anthozoan and medusozoan sequences from GenBank, correcting start-stop
169	positions by hand.
170	
170 171	Phylogenetic genome and distance analysis
170 171 172	Phylogenetic genome and distance analysis
170 171 172 173	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa –
170 171 172 173 174	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of
170 171 172 173 174 175	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete
170 171 172 173 174 175 176	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across
170 171 172 173 174 175 176 177	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned
170 171 172 173 174 175 176 177 178	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes.
170 171 172 173 174 175 176 177 178 179	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the
170 171 172 173 174 175 176 177 178 179 180	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the present analysis.
170 171 172 173 174 175 176 177 178 179 180 181	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the present analysis.
170 171 172 173 174 175 176 177 178 179 180 181 182	Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the present analysis.
170 171 172 173 174 175 176 177 178 179 180 181 182 183	 Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the present analysis. The combined dataset was created for all genes from the mitochondrial genomes after alignment of individual genes with MAFFT (parameter: FFT-NS-2) (Kazunori et al., 2016);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184	 Phylogenetic genome and distance analysis Mitochondrial genomes representing all accepted cnidarian clades – except Myxozoa – were obtained from GenBank (Table 1). Sampling aimed to increase the representation of taxonomic diversity across groups when possible. Represented taxa with complete mitogenomes from each major group were chosen to maintain equal sampling across lineages where possible. The genes found in the mitochondrial genomes were partitioned for the subsequent assembly of the matrix with the equivalent order of the genes. Differences in the organization of the gene sequence (Fig. 1) were not considered in the present analysis. The combined dataset was created for all genes from the mitochondrial genomes after alignment of individual genes with MAFFT (parameter: FFT-NS-2) (Kazunori et al., 2016); this dataset was analyzed under Maximum Likelihood criteria (RAxML v8 and PhyML 3.0)

values were biased, two parametric (aLRT and aBAYES) and a non-parametric (Bootstrap) 186 187 bootstrap values were computed in RAxML (500 pseudoreplicates, same parameters as the 188 original phylogenetic analysis) and additional statistical tests were performed using PhyML with SMS to infer tree model (Lefort et al., 2017). The duplicated genes (characterized by 189 190 sequence similarity) were individualized and aligned in MUSCLE and compared by p-191 distance model in order to calculate their respective genetic distances. 192 **Results** 193 194 The linear and fragmented mitochondrial genomes of Ceriantharia 195 196 197 The mitochondrial genomes we present of the ceriantharians *Pachycerianthus magnus* and 198 Isarachnanthus nocturnus are the first linear and fragmented mitochondrial genomes 199 described in Anthozoa. The obtained genomes (Fig. 1) have 78,231 bp and 80,966 bp, respectively, and are organized into nine (P. magnus) and five (I. nocturnus) contigs that 200 201 likely represent chromosomes. Because we did not detect a telomere sector or something 202 similar at the end of each set of genes, we consider these probable or possible chromosomes, rather than definitive chromosomes. 203 204 205 A small percentage of the paired end reads mapped across the possible chromosomes. 206 There were 1,238 PE reads (1%) for *P. magnus* and 1,341 PE reads (0.5%) for *I. nocturnus*. 207 These mismatches resulted in paired ends being mapped consistently to distinct positions 208 within the chromosomes for each species (Supplemental Figure 1). Due to the position of 209 these mismatches, high sequence similarity across AT rich chromosomes, and potentially 210 duplicated chromosomal regions and associated genes, this is likely an artifact of the 211 mapping due to their relatively low occurrence. 212 213 The ceriantharian mitochondrial genomes we have sequenced are, on average, three to four times longer than those of other cnidarians, with P. magnus having the largest 214 215 mitochondrial genome reported for an animal to date. The size (but not content) of the 216 mitogenome of these Ceriantharia is very similar to those reported for Choanoflagellatea

217

218 Long Range PCRs with diverse primers to obtain long mitochondrial sectors with previous 219 mtDNA isolation (Abcam kit (AB65321) S. Stampar & M. Maronna, personal comm.). Previous attempts by S. S (with M. Maronna) to sequence the mitogenome sequencing by 220 the isolation of mitochondria and subsequent sequencing on a ROCHE 454 JR resulted in 221 222 similar data for *Isarachnanthus nocturnus*, but the absence or low number of reads in some 223 sectors meant that not all chromosome sequences could be reconstructed without breaks. 224 225 Despite differences in mitogenome organization and size, the genes in the mitogenomes of I. nocturnus and P. mangus are similar in size to their homologues in other Cnidaria, except 226 227 ND4L (which is as much as twice the length of that in other Anthozoa) and ND6 228 (approximately three times the length compared to other Anthozoa). The percent of each of 229 the ceriantharian genomes that encodes proteins or RNAs was low: 19.6% in I. nocturnus 230 and 20.6% in *P. magnus*. Thus, the size of these ceriantharian mitogenomes is due to an increase in the non-coding regions. 231

(Burger et al., 2003). The length and organization help explain several failed attempts of

232

233 Perhaps surprisingly given their considerable length, we found some genes common in

cnidarian mitogenomes are absent in these Ceriantharia. In both *I. nocturnus* and *P.*

magnus, we did not find the open reading frames (ORFs) polB and ORF314 or the transfer

236 RNAs (tRNAs) methionine (trnM) and tryptophan (trnW). In *P. magnus*, ATP6, CYTb, and

ND1 are duplicated, with the copies differing at 34% (ATP6), 28% (CYTb), and 19%%

238 (ND1).

239

Thus, although the mitogenomes of *I. nocturnus* and *P. magnus* share some characteristics
(linear organization and larger size) when compared with other cnidarian lineages, the
organization of the genes was quite different between the two species and it was difficult to
identify any conservative gene blocks between them (Fig 2).

244

245

246

248 **Phylogenetic genome analysis**

250	The best tree from our maximum likelihood analysis (PHYML - model GTR, Gamma
251	distribution parameter 1.138, AIC=333907.267, Log-likelihood: -291618.12823,
252	Unconstrained likelihood: -218549.49064) of the sequences in the mitochondrial genomes
253	of Cnidaria (Fig. 3) is similar in topology to those recovered previously (e.g., Chen et al.,
254	1995; Song & Won, 1997; Collins et al., 2006; Stampar et al., 2014; Katal et al. 2017). It
255	includes reciprocally monophyletic Medusozoa and Anthozoa, with Ceriantharia as the
256	sister group of Hexacorallia + Octocorallia. In this tree, the monophyly of Anthozoa and of
257	the three subgroups within it are well supported. At the same time, the medusozoan groups
258	have high support levels, despiteonly a small number of mitogenomes available from the
259	Medusozoa (especially in Cubozoa and Staurozoa). The structure of the tree for Medusozoa
260	had relatively short internal branches and relatively long terminal branches (Fig. 3).
261	
262	
263	Discussion
264	Linearization, homology, and cnidarian evolution
264 265	Linearization, homology, and cnidarian evolution
264 265 266	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early-
264 265 266 267	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus
264 265 266 267 268	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base
264 265 266 267 268 269	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is
264 265 266 267 268 269 270	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria,
264 265 266 267 268 269 270 271	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because
264 265 266 267 268 269 270 271 272	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because this feature is both fairly unusual and highly consistent (reviewed by Kayal et al. 2015).
264 265 266 267 268 269 270 271 272 272 273	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because this feature is both fairly unusual and highly consistent (reviewed by Kayal et al. 2015). The linear mitogenomes of major medusozoan lineages are largely conserved in terms of
264 265 266 267 268 269 270 271 272 273 273 274	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because this feature is both fairly unusual and highly consistent (reviewed by Kayal et al. 2015). The linear mitogenomes of major medusozoan lineages are largely conserved in terms of gene order and can be related through a relatively straightforward transformation series
264 265 266 267 268 269 270 271 272 273 274 275	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because this feature is both fairly unusual and highly consistent (reviewed by Kayal et al. 2015). The linear mitogenomes of major medusozoan lineages are largely conserved in terms of gene order and can be related through a relatively straightforward transformation series (Kayal et al. 2015) involving fragmentation and gene re-arrangement through
264 265 266 267 268 269 270 271 272 273 274 275 276	Linearization, homology, and cnidarian evolution Mitochondrial genome architecture seems to be more variable among members of early- diverging clades of Metazoa than among members of Bilateria (Lavrov et al. 2013; Osigus et al. 2013; Lavrov and Pett 2016). Among the phyla traditionally indicated as near the base of Metazoa, only Cnidaria includes major lineages for which the mitochondrial genome is not circular (Bridge et al. 1992; Kayal et al. 2013; Lavrov and Pett 2016). In Cnidaria, linear mitochondrial genomes are compelling as a synapomorphy for Medusoza because this feature is both fairly unusual and highly consistent (reviewed by Kayal et al. 2015). The linear mitogenomes of major medusozoan lineages are largely conserved in terms of gene order and can be related through a relatively straightforward transformation series (Kayal et al. 2015) involving fragmentation and gene re-arrangement through recombination.

278 A striking exception to the pattern in Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa is 279 Myxozoa. Myxozoans are intracellular parasites with complex lifecycles. Although their 280 phylogenetic position has been difficult to assess (reviewed by Foox et al. 2015), they are inferred to be highly modified medusozoans (Evans et al. 2008, 2010; Chang et al. 2015) or 281 as the sister group (Endocnidozoa) to Medusozoa (Kaval et al. 2017). The linear 282 283 mitochondrial genome characteristic among members of Medusozoa appears to be quite 284 variable in Myxozoa. The mitochondrion of species in the myxozoan genus Kudoa are small, and the genes in them are organized into a single circular genome that is evolving 285 286 more quickly than those in other Medusozoa (Takeuchi et al. 2015). The order of genes reported for the mitochondrial genome of Kudoa does not correspond to those published for 287 other Medusozoans (cf. Kayal et al. 2015; Takeuchi et al. 2015). In contrast, in the 288 myxozoan *Enteromyxum leei*, the mitogenome is organized into eight circular 289 290 chromosomes (Yahalomi et al. 2017). This high within-lineage variation in genome architecture mirrors what we have discovered here in Ceriantharia. 291 292

293 This deviation in mitogenome structure in Myxozoa does not refute the value of linear 294 mitochondrial genomes as synapomorphy for Medusozoa, but it does underscore that variation in mitochondrial genome structure is characteristic of Cnidaria. Likewise, the 295 296 linear mitogenome of Ceriantharia we describe here should not be interpreted as proof for a 297 particularly close relationship between Ceriantharia and Medusozoa; it is merely more 298 evidence of plasticity in mitogenome architecture in Cnidaria. The duplication of two genes 299 in *Pachycerianthus magnus* is a very interesting discovery, because there are some 300 substantial distance between each copy of these genes. 301

The present study presents more evidence of the isolation of Ceriantharia in relation to
Hexacorallia and Octocorallia but does not support a close relationship between
Ceriantharia and Medusozoa. The gene order in the mitogenomes of Medusozoa are largely
conserved (Kayal et al. 2013, 2015) and is wholly different in Ceriantharia. Furthermore,
our phylogenetic reconstruction based on the sequences within the mitochondrial genome
supports Ceriantharia as an isolated branch within Anthozoa, rather than as a close ally of
Medusozoa (Fig 3). This pattern of sequence affinity despite structural difference was also

seen for the myxozoans *Kudoa* and *Enteromyxum* (Takeuchi et al. 2015, Yahalomi et al.
2017): phylogenetic analyses of sequences place these species within or sister to the
Medusozoa although the structure of their genomes is unlike those of other medusozoans.

In contrast to the conservation of gene order generally characterizing medusozoan 313 314 mitochondrial genomes, we did not identify any conservative gene blocks among 315 ceriantharians and other anthozoans. We found no consistency between our two ceriantharian species and any other published gene order from a cnidarian mitochondrial 316 317 genome. The absence of any relation to the patterns observed in Octocorallia or Hexacorallia may be an indication of the phylogenetic isolation of Ceriantharia from these 318 two groups. These differences in gene order underscore the differences in rate of gene 319 320 evolution between ceriantharians and other anthozoans reported by Stampar et al. (2014) 321 and may bolster the contention that Ceriantharia are a third major lineage in Anthozoa. 322

The composition of nucleotides in each of the ceriantharian mitogenomes did not deviate from the general pattern seen in other Cnidaria (Table 2). In some cases (e.g. ATP6, NAD4), the nucleotide composition appears to be at an intermediate stage between Medusozoa and Anthozoa. The nucleotide composition is distinct in each of these groups and the values we found for Ceriantharia lies between them. Nevertheless, conclusive interpretations will require a greater number of species of Ceriantharia and greater sampling of Medusozoa (e.g., Cubozoa, Staurozoa).

330

The non-coding areas in Ceriantharia are very long and account for almost 80% of the 331 mitochondrial genome. It is in these regions that the differences between Ceriantharia and 332 333 other Cnidaria are most notable. In general, noncoding regions tend to be larger in 334 Anthozoa than in Medusozoa and represent as much as 10% of the mitochondrial genome (Octocorallia: Park et al., 2011). The marked increase in non-coding DNA in the 335 336 mitochondrial genome of Ceriantharia is noteworthy even though the increases seem not to have been the result of a single event in the two ceriantharians we have studied here. The 337 338 higher rate of mitochondrial gene evolution in Ceriantharia compared to other Anthozoa

339	(Stampar et al. 2014) may help to explain the generation and accumulation of the
340	noncoding regions in Ceriantharia.
341	
342	
343	Acknowledgments
344	This work was partly supported by São Paulo Research Foundation (FAPESP 2015/24408-
345	4, 2017/50028-0) and CNPq 404121/2016-0 to SNS, a SPRINT award from UNC Charlotte
346	to JM and AMR, and by NSF DEB-1257796 to MD. We are deeply indebted to Drs. M.
347	Maronna and M. Kitahara for comments during the development of the study and to Dr. D.
348	Huchon for comments in review.
349	
350	References
351	Andrews S. FastQC: a quality control tool for high throughput sequence data. Version 1
352	[FastQC]. 2018 Jun 18. Available from:
353	http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
354	Beagley CT, Okimoto R, Wolstenholme D R. The mitochondrial genome of the sea
355	anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-
356	standard genetic code. Genetics. 1998;148: 1091-1108.
357	Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf
358	M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome
359	annotation. Mol Phylogenetics Evol. 2013 Nov 1;69(2):313-9.
360	Berntson EA, France SC, Mullineaux LS. Phylogenetic relationships within the class
361	Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. Molecular
362	phylogenetics and evolution. 1999 Nov 1;13(2):417-33.
363	Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
364	data. Bioinformatics. 2014 Apr 1;30(15):2114-20.

Peer Preprints

365	Bridge D, Cunningham CW, DeSalle R, Buss LW. Class-level relationships in the phylum
366	Cnidaria: molecular and morphological evidence. Mol Biol Evol. 1995; 12(4): 679-
367	689.
368	Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW. Class-level relationships
369	in the phylum Cnidaria: evidence from mitochondrial genome structure. PNAS
370	1992; 89: 8750-8753.
371	Brugler MR, France SC. The complete mitochondrial genome of the black coral
372	Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of
373	antipatharians within the subclass Hexacorallia. Mol Phylogenet Evol. 2007;42:
374	776-788.
375	Burger G, Forget L, Zhu Y, Gray MW, Lang BF. Unique mitochondrial genome
376	architecture in unicellular relatives of animals. Proceedings of the National
377	Academy of Sciences. 2003 Feb 4;100(3):892-7.
378	Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P.
379	Genomic insights into the evolutionary origin of Myxozoa within Cnidaria.
380	Proceedings of the National Academy of Sciences. 2015 Dec 1;112(48):14912-7.
381	Chen CA, Odorico DM, Lohuis ten M, et al. Systematic relationships within the Anthozoa
382	(Cnidaria: Anthozoa) using the 5'-end of the 28S rDNA. Mol Phylogenet Evol.
383	1995;4: 175–183.
384	Chen IP, Tang CY, Chiou CY, Hsu JH, Wei NV, Wallace CC, Muir P, Wu H, Chen CA.
385	Comparative analyses of coding and noncoding DNA regions indicate that Acropora
386	(Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs.
387	mitochondrial genomes as in plants. Mar Biotechnol.2009;11: 141-152.
388	Chi SI, Johansen SD. Zoantharian mitochondrial genomes contain unique complex group I

Peer Preprints

389	introns and highly conserved intergenic regions. Gene 2017;628: 24-31.
390	Chi SI, Johansen SD. Zoantharian mitochondrial genomes contain unique complex group I
391	introns and highly conserved intergenic regions. Gene.2017;628: 24-31.
392	Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B.
393	Medusozoan phylogeny and character evolution clarified by new large and small
394	subunit rDNA data and an assessment of the utility of phylogenetic mixture models.
395	Syst biol. 2006;55(1), 97-115.
396	Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC,
397	McFadden CS, Opresko DM, Rodriguez E, et al. The phylum Cnidaria: A review of
398	phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 2007;1668:
399	127-182.
400	Daly M, Fautin DG, Cappola VA. Systematics of the hexacorallia (Cnidaria: Anthozoa).
401	Zoological Journal of the Linnean Society. 2003 Nov 1;139(3):419-37.
402	Daly M, Gusmão LC, Reft AJ, Rodríguez. Phylogenetic Signal in Mitochondrial and
403	Nuclear Markers in Sea Anemones (Cnidaria, Actiniaria). Integr Comp Biol. 2010;50:
404	371-388.
405	Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle
406	genomes from whole genome data. Nucleic acids research. 2016 Oct 24;45(4):e18.
407	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
408	throughput. Nucleic Acids Res. 2004 Mar 1;32(5):1792-7.
409	Emblem Å, Okkenhaug S, Weiss ES, Denver DR, Karlsen BO, Moum T, Johansen SD. Sea
410	anemones possess dynamic mitogenome structures. Mol Phylogenet Evol. 2014;75:
411	184-193.

Peer Preprints

412	Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P. The phylogenetic
413	position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal
414	data sets. Molecular biology and evolution. 2010 Jun 24;27(12):2733-46.
415	Evans NM, Lindner A, Raikova EV, Collins AG, Cartwright P. Phylogenetic placement of
416	the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC
417	evolutionary biology. 2008 Dec;8(1):139.
418	Figueroa DF, Baco AR. Octocoral mitochondrial genomes provide insights into the
419	phylogenetic history of gene order rearrangements, order reversals, and cnidarian
420	phylogenetics. Genome Biol Evol. 2014;7(1), 391-409.
421	Foox J, Brugler M, Siddall ME, Rodríguez E. Multiplexed pyrosequencing of nine sea
422	anemone (Cnidaria: Anthozoa: Hexacorallia: Actiniaria) mitochondrial genomes.
423	Mitochondr DNA Part A. 2016;27: 2826-2832.
424	Foox J, Siddall ME. The road to Cnidaria: history of phylogeny of the Myxozoa. J
425	Parasitol. 2015;101: 269 – 274.
426	France SC, Rosel PE, Agenbroad JE, Mullineaux LS, Kocher TD. DNA sequence variation
427	of mitochondrial large-subunit rRNA provides support for a two-subclass
428	organization of the Anthozoa (Cnidaria). Mol Mar Biol Biotech.1996;5: 15-28.
429	Fukami H, Chen CA, Chiou CY, Knowlton N. Novel group I introns encoding a putative
430	homing endonuclease in the mitochondrial cox1 gene of scleractinian corals. J Mol
431	Evol. 2007;64: 591-600.
432	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms
433	and methods to estimate maximum-likelihood phylogenies: assessing the
434	performance of PhyML 3.0. Syst Biol. 2010 May 1;59(3):307-21.

PeerJ Preprints

435	Harris RS. Improved pairwise alignment of genomic DNA. PhD thesis. Penn State
436	University, Computer Science and Engineering, 2007.
437	Huang D, Meier R, Todd PA, Chou LM. Slow mitochondrial COI sequence evolution at the
438	base of the metazoan tree and its implications for DNA barcoding. J Mol
439	Evol.2008;66: 167-174.
440	Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment,
441	interactive sequence choice and visualization. Briefings in bioinformatics. 2017 Sep
442	6.
443	Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG.
444	Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria:
445	Hydrozoa) using mitochondrial genome data and insight into their mitochondrial
446	transcription. PeerJ. 2015;3: e1403.
447	Kayal E, Bentlage B, Pankey MS, Ohdera AH, Medina M, Plachetzki DC, et al.
448	Phylogenomics provides a robust topology of the major cnidarian lineages and
449	insights on the origins of key organismal traits. BMC Evol Biol. 2018;18(1): 68.
450	Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic
451	relationships as revealed by mitogenomics. BMC Evol Biol. 2013;13:1.
452	Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper
453	A, Markowitz S, Duran C, Thierer T. Geneious Basic: an integrated and extendable
454	desktop software platform for the organization and analysis of sequence data.
455	Bioinformatics. 2012 Apr 27;28(12):1647-9.
456	Kitahara MV, Lin M-F, Forêt S, Huttley G, Miller DJ, Chen CA. The "Naked Coral"
457	hypothesis revisited – evidence for and against scleractinian monophyly. PLoS
458	ONE. 2014;9: e94774.

PeerJ Preprints

459	Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, Kayal E. Mitochondrial
460	DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes,
461	fragmented rRNAs, tRNA editing, and a novel genetic code. Molecular biology and
462	evolution. 2012 Dec 6;30(4):865-80.
463	Lavrov DV, Pett W. Animal mitochondrial DNA as we do not know it: mt-genome
464	organization and evolution in Nonbilaterian lineages. Genome Biol Evol. 2016;8:
465	2896-2913.
466	Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Biol
467	Evol. 2017 May 11;34(9):2422-4.
468	Li HH, Sung PJ, Ho HC. The complete mitochondrial genome of the Antarctic stalked
469	jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae). Genom
470	Data, 2016;8: 113-114.
471	Marques AC, Collins AG. Cladistic analysis of Medusozoa and cnidarian evolution. Invert
472	Biol. 2004;123: 23-42.
473	Mayer C. Phobos 3.3.11. 2018 Jun 18. Available
474	from:http://www.rub.de/spezzoo/cm/cm_phobos.htm.
475	Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL. Naked corals: skeleton loss in
476	Scleractinia. PNAS. 2006;103(24), 9096-9100.
477	Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of
478	Metazoa. Molecular phylogenetics and evolution. 2013 Nov 1;69(2):339-51.
479	Park E, Song JI, Won YJ. The complete mitochondrial genome of Calicogorgia granulosa
480	(Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by
481	repeat expansion and segmental duplication. Gene. 2011 Oct 15;486(1):81-7.

482	Poliseno A, Altuna A, Cerrano C, Wörheide G, Vargas S. Historical biogeography and
483	mitogenomics of two endemic Mediterranean gorgonians (Holaxonia, Plexauridae).
484	Org Div Evol. 2017;17(2): 365-373.
485	Quattrini AM, Faircloth BC, Dueñas LF, Bridge TC, Brugler MR, Calixto-Botía IF, DeLeo
486	DM, Foret S, Herrera S, Lee SM, Miller DJ. Universal target-enrichment baits for
487	anthozoan (Cnidaria) phylogenomics: New approaches to long-standing problems.
488	Molecular ecology resources. 2018 Mar;18(2):281-95.
489	Richard, D. GC content in sliding window - GitHub repository. 2018 Jun 18. Available
490	from: https://github.com/DamienFr/GC-content-in-sliding-window-
491	Rodríguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A, Gusmão L,
492	Häussermann V, Reft A, Daly M. Hidden among sea anemones: the first
493	comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria,
494	Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One. 2014 May
495	7;9(5):e96998.
496	Schmidt H. On the evolution in the Anthozoa. In: Cameron AM, Campbell BM, Cribb AB
497	et al. editors. Proceedings of the 2nd international symposium on coral reefs.
498	Brisbane: The Great Barrier Reef Committee; 1974. pp. 533–560.
499	Shearer TL, Van Oppen MJH, Romano SL, Wörheide G. Slow mitochondrial DNA
500	sequence evolution in the Anthozoa (Cnidaria). Mol Ecol. 2002;11(12): 2475-2487.
501	Shi X, Tian P, Lin R, Lan W, Niu W, Zheng X. Complete mitochondrial genome of disc
502	coral Turbinaria peltata (Scleractinia, Dendrophylliidae). Mitochond DNA.
503	2016;27: 962-963.

PeerJ Preprints

504	Sinniger F, Chevaldonné P, Pawlowski J. Mitochondrial genome of Savalia savaglia
505	(Cnidaria, Hexacorallia) and early metazoan phylogeny. J Mol Evol. 2007;64: 196-
506	203.
507	Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, Keeling PJ. First complete
508	mitochondrial genome sequence from a box jellyfish reveals a highly fragmented
509	linear architecture and insights into telomere evolution. Genome Biol Evol. 2012;4:
510	52-58.
511	Song JI, Won JH. Systematic relationship of the anthozoan orders based on the partial
512	nuclear 18S rDNA sequences. Korean Journal of Biological Sciences. 1997 Jan
513	1;1(1):43-52.
514	Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
515	phylogenies. Bioinfor. 2014 May 1;30(9):1312-3.
516	Stampar SN, Maronna MM, Kitahara MV, Reimer JD, Morandini AC. Fast-Evolving
517	mitochondrial DNA in Ceriantharia: A reflection of Hexacorallia paraphyly? PLoS
518	ONE. 2014;9: e86612.
519	Takeuchi F, Sekizuka T, Ogasawara Y, Yokoyama H, Kamikawa R, Inagaki Y, Nozaki T,
520	Sugita-Konishi Y, Ohnishi T, Kuroda M. The mitochondrial genomes of a
521	myxozoan genus Kudoa are extremely divergent in metazoa. PloS ONE. 2015;
522	10:e0132030.
523	Tsai IJ, Otto TD, Berriman M. Improving draft assemblies by iterative mapping and
524	assembly of short reads to eliminate gaps. Genome biology. 2010 Apr;11(4):R41.
525	van Beneden E. Les Anthozoaires de la "Plankton-Expedition". Ergebn Plankton-Exp
526	Humbolt-Stiftung. 1897;2: 1-222.

527	Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B, Tabbaa D,
528	Williams L, Russ C, Nusbaum C. Comprehensive variation discovery in single
529	human genomes. Nature genetics. 2014 Dec;46(12):1350.
530	Won J, Rho B, Song J. A phylogenetic study of the Anthozoa (phylum Cnidaria) based on
531	morphological and molecular characters. Coral Reefs. 2001 Aug 1;20(1):39-50.
532	Wu JS, Ju YM, Hsiao ST, Hsu CH. Complete mitochondrial genome of Junceella fragilis
533	(Gorgonacea, Ellisellidae). Mitochondr DNA. 2016;27: 1229-1230.
534	Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with
535	DOGMA. Bioinformatics. 2004 Jun 4;20(17):3252-5.
536	Yahalomi D, Haddas-Sasson M, Rubinstein ND, Feldstein T, Diamant A, Huchon D. The
537	multipartite mitochondrial genome of Enteromyxum leei (Myxozoa): eight fast-
538	evolving megacircles. Molecular biology and evolution. 2017 Mar 16;34(7):1551-6.
539	Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL,
540	McFadden CS. France, SC. et al. Phylogenomic analyses support traditional
541	relationships within Cnidaria. PLoS ONE. 2015;10: e0139068.
542	Zhang B, Zhang YH, Wang X, Zhang HX, Lin Q. The mitochondrial genome of a sea
543	anemone Bolocera sp. exhibits novel genetic structures potentially involved in
544	adaptation to the deep-sea environment. Ecol Evol. 2017;7(13): 4951-4962.
545	Zhang L, Zhu Q. Complete mitochondrial genome of the sea anemone, Anthopleura midori
546	(Actiniaria: Actiniidae). Mitochondr DNA 2017;28(3): 335-336.
547	

548 Table 1 - Species	included in present study
-----------------------	---------------------------

-		SPECIES	SOURCE/GENBANK CODE
CERIANTHARIA	Ceriantharia	Isarachnanthus nocturnus	This study
		Pachycerianthus magnus	This study
HEXACORALLIA	Actiniaria	Aiptasia pulchella	NC_022265
		Alicia sansibarensis	NC_027610
		Antholoba achates	KR051002
	Antipatharia	Myriopathes japonica	NC_027667
		Stichopathes lutkeni	NC_018377
	Corallimorpharia	Corynactis californica	NC_027102
		Discosoma nummiforme	NC_027100
	Scleractinia	Dendrophyllia arbuscula	KR824937
		Tubastrea coccinea	KX024566
	Zoantharia	Palythoa heliodiscus	NC_035579
		Zoanthus sansibaricus	NC_035578
OCTOCORALLIA	Alcyonacea	Calicogorgia granulosa	NC_023345
		Corallium konojoi	NC_015406
		Dendronephthya suensoni	NC_022809
		Euplexaura crassa	HQ694728
		Muricea purpurea	NC_029698
		Paracorallium japonicum	NC_015405
		Paracorallium sp.	AB595189
MEDUSOZOA	Cubozoa	Alatina moseri	KJ452776 - 83
	Hydrozoa	Cladonema pacificum	KT809323
		Craspedacusta sowerbyi	JN593332
		Liriope tetraphylla	KT809327
		Pennaria disticha	JN700950
		Physalia physalis	KT809328
	Scyphozoa	Aurelia aurita	DQ787873
		Cassiopea andromeda	JN700934
	Staurozoa	Lucernaria janetae	JN700946
		Haliclystus antarcticus	NC_030337

Table 2 Gene Properties in the mtDNA of Cnidaria after Kayal et al., 2011. * asterisk corresponds to an incomplete stop codon.

	Ceriantharia				Anthozoa				Hydrozoa				Scyphozoa				Staurozoa				Cubozoa			
	Size	%AT	Start	End	Size	%AT	Start	End	Size	%AT	Start	End	Size	%AT	Start	End	Size	%AT	Start	End	Size	%AT	Start	End
atp6	702-738	66-72	A/T	А	695±13	63 ± 2	ATG	A*	704±1	75 ± 4	А	A*	704 ± 3	69 ± 4	А	A*	708	63 ± 1	А	А	708 ± 7	63 ± 2	AG	*
atp8	NP	NP	NP	NP	206 ± 22	66 ± 3	ATG	А	206 ± 3	$83{\pm}5$	А	A*	$208{\pm}7$	73 ± 4	AG	AG*	204	62 ± 4	А	А	210±2	64 ± 4	AG	AG*
cob	1527-1567	65-70	ATG	A/G	1156 ± 13	64 ± 3	ATG	A/G*	1148 ± 12	73 ± 3	AG	А	$1146{\pm}8$	66 ± 2	А	AG	1068	60 ± 2	А	?	1149	62 ± 2	А	G
cox1	1587-1773	58-64	AT	А	$2343{\pm}512$	61 ± 2	ATG	A/G*	1569	67 ± 3	AG	AG	$1580{\pm}7$	64 ± 3	А	AG	1578	61 ± 1	А	А	1569	58 ± 3	А	А
cox2	651-759	61-66	AT	A/G	756 ± 74	62 ± 2	ATG	A/G*	$744{\pm}10$	73 ± 4	А	AG	$746{\pm}8$	67 ± 4	А	AG*	747	62 ± 1	А	AG	737 ± 2	61 ± 2	А	AG*
cox3	690-813	59-67	AT	А	789 ± 4	61 ± 2	ATG	A/G	786	72 ± 4	А	AG	786	64 ± 3	А	AG	786	61 ± 1	А	AG	786	59 ± 3	А	AG
nad1	945-951	65-69	AT	А	$977{\pm}10$	62 ± 1	ATG	A/G	$989{\pm}4$	73 ± 4	А	AG	972 ± 5	66 ± 4	AG	A*	987	59 ± 0	А	А	987 ± 8	62 ± 3	AG	AG
nad2	1113-1116	66-71	AT	А	1148 ± 116	63 ± 3	ATG	А	1328 ± 32	79 ± 5	А	AG*	1323 ± 13	70 ± 5	А	AG	1346 ± 2	$59{\pm}4$	А	А	1341	63 ± 7	А	G*
nad3	351-363	69-70	AT	A/G	343 ± 14	63 ± 1	ATG*	G/A	$355{\pm}4$	77 ± 4	А	*	$357{\pm}6$	69 ± 4	AG	A*	354	$65{\pm}4$	А	A*	351	62 ± 4	AG	*
nad4	1428-1467	68-72	AT	А	$1467{\pm}11$	63 ± 1	ATG*	G/A	$1458{\pm}2$	76±4	А	AG*	$1441{\pm}2$	68 ± 5	А	AG*	1461	61 ± 3	А	AG*	1446	59	А	G
nad4L	474-675	68-71	ATG	А	298 ± 2	68 ± 1	ATG*	А	299 ± 2	$79{\pm}4$	А	*	303 ± 1	72 ± 5	AG	A*	$299{\pm}2$	64 ± 1	А	*	290±2	67 ± 3	А	G*
nad5	1824-1827	68-72	ATG	A/G	$1889{\pm}2{*}$	62 ± 1	ATG	AG	$1832{\pm}2$	76±4	А	AG*	$1830{\pm}19$	68 ± 5	AG	A*	1860	60 ± 2	А	AG	1824	62 ± 1	AG	G
nad6	1395	70	ATA	А	582 ± 32	62 ± 3	ATG	А	556 ± 8	79 ± 5	А	AG*	564 ± 12	70 ± 5	А	AG*	553 ± 2	62 ± 2	А	А	542 ± 4	64±3	А	G*
ORF314	NP	NP	NP	NP	?	?	?	?	291	78	А	G	313 ± 7	73 ± 8	А	А	288	62	А	А	315	64	А	А
polB	NP	NP	NP	NP	?	?	?	?	?	?	?	?	969	70 ± 8	А	А	1119	58	ATG	?	873	58	G	А
rnl	2049-2145	64-67	С	C/A	2345 ± 154	61 ± 5	NA	NA	$1746{\pm}9$	76±4	NA	NA	$1818{\pm}34$	$69{\pm}5$	NA	NA	1830	57 ± 1	NA	NA	769	57	NA	NA
rns	1126-1127	62-66	A/G	T/G	$1128{\pm}77$	55 ± 1	NA	NA	$910{\pm}21$	74 ± 2	NA	NA	$950{\pm}10$	$69{\pm}5$	NA	NA	$914{\pm}1$	57 ± 1	NA	NA	672	62	NA	NA
trnM	NP	NP	NP	NP	71±0	55 ± 2	NA	NA	71±1	$69{\pm}2$	NA	NA	71 ± 0	64 ± 5	NA	NA	69 ± 0	53 ± 2	NA	NA	-	-	NA	NA
trnW	NP	NP	NP	NP	70±0	49 ± 2	NA	NA	70± 1	65 ± 3	NA	NA	70 ± 0	64 ± 5	NA	NA	71 ± 0	52 ± 2	NA	NA	-	-	NA	NA

553

- 567 Figure 3 ML phylogeny of Cnidaria based on sequences from complete
- 568 mitochondrial genomes; support values were calculated in PhyML (aBAYES)

571

573

572 Suppl. Figure 1

